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Abstract— Sepsis arises when a patient’s immune system has
an extreme reaction to an infection. This is followed by septic
shock if damage to organ tissue is so extensive that it causes a
total systemic failure. Early detection of septic shock among
septic patients could save critical time for preparation and
prevention treatment. Due to the high variance in symptoms
and patient state before shock, it is challenging to create a
protocol that would be effective across patients. However, since
septic shock is an acute change in patient state, modeling
patient stability could be more effective in detecting a condition
that departs from it. In this paper we present a one-class
classification approach to septic shock using hyperdimensional
computing. We built various models that consider different
contexts and can be adapted according to a target priority.
Among septic patients, the models can detect septic shock
accurately with 90% sensitivity and overall accuracy of 60% of
the cases up to three hours before the onset of septic shock, with
the ability to adjust predictions according to incoming data.
Additionally, the models can be easily adapted to prioritize
sensitivity (increase true positives) or specificity (decrease false
positives).

I. INTRODUCTION

Sometimes, sever infections can cause an extreme im-
munological response that causes severe tissue damage to
organs and eventually, death. The term for referring to this
condition is sepsis, and it is the leading cause of hospital
deaths in the United States (1 in every 5 deaths) [1]. With
early detection, sepsis can be managed with antibiotics (when
the source of infection is bacterial). Sepsis survival rate is
over 70% if properly diagnosed. If sepsis goes unnoticed,
or the infection is resisting treatment, a patient will suffer
multiple organ dysfunction that causes a systemic shutdown.
This phase is called septic shock [2].

Current protocol [3] defines the clinical criteria for detect-
ing septic shock as the presence of hypotension that won’t
respond to fluid resuscitation, accompanied by associated
tissue hypoperfusion, and requiring the use of vasopressors.
There are different proposed guidelines regarding when va-
sopressor usage should begin – the earliest suggested starting
time being simultaneous to fluid resuscitation in response to
hypotension [4], [5].

Detecting the onset of sepsis depends on the protocol or
scoring system observed by the hospital [6]. The four most
common systems used are:
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• SIRS (Systemic Inflammatory Response Syndrome): A
simple binary scoring system with 4 variables related
to: Temperature, blood pressure, white blood cell count,
and heart rate [7]. If each value is outside a defined
threshold then the score is incremented by 1.

• MEWS (Modified Early Warning Score):Comprises 6
vital signs and assigns a score from 0 to 3 to each one
according to predetermined thresholds. A cumulative
score of 4 or more triggers a call to a Rapid Response
Team.

• SOFA (Sequential Organ-Failure Assessment): Previ-
ously known as the Sepsis-related Organ-Failure As-
sessment. Since 2016, SOFA is part of the official
Sepsis-3 definition [8], that defines sepsis clinically as
an acute increase of 2 or more in SOFA score. It uses a
cumulative score over a number of vital signs (6 groups
in SOFA’s case). The primary objective for SOFA is to
identify organ failure.

When compared in effectiveness for diagnosing outcomes
of septic patients, SIRS has a tendency to be oversensitive
(high number of false positives) [9], and MEWS was not
specifically designed for sepsis, hence, accuracy in identify-
ing it is low [10]. While SOFA has higher sensitivity and
specificity than SIRS or MEWS, it is considered to be the
most burdensome and impractical for continuous monitoring
scenarios. Quick-SOFA (or qSOFA) is a version that uses
a shorter criteria (3 values) that requires a pre-established
suspicion of sepsis, and it’s meant to be a monitoring tool
in non-ICU (Intensive Care Unit) settings [6], [11]. Some
works have tried to produce a predictive tool that would
help in defining a protocol for septic shock [12], [13]. The
effectiveness in modeling septic shock has been limited
[14]. In this paper, we describe modeling of septic shock
using a one-class classifier based on hypderdimensional (HD)
computing. The model targets septic patients in an ICU
setting.

The rest of the paper is organized as follows:
• Methodology describes our HD computing implemen-

tation.
• Results shows a comparison between models that used

different inputs for the same population.
• In Discussion we justify why this approach works and

compare it to industry standards.
• Conclusion summarizes our findings and future work.

II. METHODOLOGY

The primary goal is to create a system that can predict
septic shock before it happens. The target population is ICU
patients with confirmed sepsis. We identify our targeted event
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as the time when a patient’s mean arterial pressure (MAP)
goes below 65 mmHg (hypotension) and/or lactate levels are
over 2 mmol/L (tissue hypoperfusion). These are the two
main indicatives or pre-ambles of septic shock.

A. Hyperdimensional computing

HD computing is computing paradigm inspired by cogni-
tive science [15].It uses high dimensional vectors to encode
information. The mathematical properties of these vectors
can be exploited for efficient pattern recognition and model-
ing.

A general overview of the training algorithm for HD
computing is described as follows:

1) Encode feature values into k-dimensional vectors.
Within the feature domain, each value (or value range
in the case of continuous data) corresponds to a unique
vector. In the case of binary vectors, the number of 1s
and 0s should be equal (partially dense) in order to ex-
ploit mathematical properties of orthogonality among
feature vectors (orthogonal vectors are dissimilar [16]).
This means that the distance between vectors should
not be dependent upon the difference in density, but
about the dimensional distance between them.

2) For each data point (also known as instance or subjects,
i.e., the units of a dataset), combine all the feature
vectors to form a new k-dimensional vector. Common
operations for combining these feature involve adding
them through arithmetic addition (for vectors of scalar
values), multiplication (for polar vectors where every
number is 1 or -1) or majority voting (for binary vector
where each number is 1 or 0).

After populating the training space, for each new data
point or query introduced for classification, inference unfolds
as follows:

1) Encode the data point using the same methodology
used in training to generate a k-dimensional vector.
This vector is called the query vector.

2) Compute the distance between the query vector and all
the training vectors or class vectors.

3) Output the predicted class as that of the closest training
vector.

In this work, we focus on binary 10k-dimensional (10
thousand elements) vectors and Hamming distance for pre-
diction. The main advantages of HD computing within this
specific project are:

• Dimensionality is constant and adaptable, regardless of
the number and/or magnitude of the features.

• There isn’t an iterative training phase like most tradi-
tional Machine Learning (ML) have.

• The encoding algorithm relies largely on two simple
math operations: addition and multiplication.

• Correlation is captured during encoding, making it
highly adaptable to different domains. New data points
can be incorporated without having to rebuild the model.

• Because classification is dependent on proximity, we
can implement a one-class classifier natively.

However, there are relevant weaknesses when compared to
classical ML approaches. Two of the main weaknesses are:

• Classification performance is highly susceptible to how
encoding is done. This impact can only be assessed at
run-time, relying on trial and error.

• Depending on the application, encoding may require
extensive domain knowledge to understand feature cor-
relation. Preserving linearity or evaluating feature rel-
evance are not part of the main algorithm and more
traditional approaches are currently needed.

We chose HD computing because we believe that for this
problem, the strengths outweigh the weaknesses. We base
our encoding and feature extraction on domain knowledge
from previous work in this area. Furthermore, we can design
the application around the data we have available.

The first major decision regarding HD computing is on
how to encode the features. We use linear and n-gram
encoding, as described below.

1) Linear encoding: There are two ways commonly used
for encoding values: orthogonal encoding [17] and linear
encoding [18]. Because our features are continuous values
for which is important to preserve the pairwise magnitude
and distance between each other, we decided on using linear
encoding. The algorithm, as applied to this application,
works as follows:

1) For each feature, identify the lowest, min(V), and
highest, max(V) values.

2) Generate a random 10k binary vector that are partially
dense (has an equal amount of 1s and 0s). This will
be our seed vector and used to represent every value
equal or lesser than min(V).

3) For all other values, flip an equal x number of 0 and
1 bits from the seed vector according to the following
formula:

x =
k(t−min(V ))

2(max(V )−min(V )))

Where k is the dimensionality of the vectors, t is the
target value, and V is all the values for a specific
feature. Note that the range is doubled so that the
highest value gets a vector orthogonal to the vector
for the lowest value.

Using the formula for dynamic creation of vectors means
that we don’t have to keep a vector dictionary in memory,
adding efficiency to our application.

2) n-gram encoding: Orthogonal encoding works well for
discrete values that hold no relationship to each other. Linear
encoding captures some of the relationship information from
values within a feature. n-gram encoding is used for when the
relationship is present between heavily correlated features,
such as in the case of sequences. The name for this type of
encoding comes from the n-gram model commonly used in
information retrieval [19]. The general algorithm for binary
vector n-gram encoding works as follows:

1) After encoding (using linear or orthogonal encoding)
all the features, identify those that are part of a
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sequence and order them in descending order. For
example, in a time sequence where each feature is a
measurement for a different hour, then the feature with
the oldest value goes first (feature 0).

2) Define the size of your n-gram. If three sequential
features are joined then it will be a 3-gram.

3) Starting with the first feature (feature 0), permute
(rotate the vectors by one bit) each vector n-i times
where i is the feature index within the sequence and n
the size of the n-gram.

4) Combine all the vectors in the n-gram using XOR.
This will produce a new hypervector that will be semi-
orthogonal to the individual vectors. This is key to
represent the sequence as a new feature.

This encoding will generate new vectors that are almost
geometrically orthogonal to the ones generated for the raw
values, with similar sparsity. When building the final vectors
that represent our data point (patient), we first add the raw
vectors and the sequential values separately, using majority
voting. This is necessary in order to keep sequential features
from overtaking the final vector.

B. One-Class Classification

OCC, also known as unary classification or class model-
ing, is a machine learning approach that focuses on identify-
ing members of a single class without modeling an opposite
(or negative) one [20]. The first published paper on OCC
was by Moya, et al. [21], and it is a useful approach when a
problem calls for finding a specific type of instance without
the need or awareness of all other types or classes represented
(for example, identifying spam documents among a body of
documents from different domains) or when data about the
complementary class is lacking or not available (a good use
for this is detecting system failure using data that only rep-
resents a stable system). Figure 1 shows a representation of
how an OCC model works. The model learns a single class,
the regular class. The task is for the model to discriminate
anomalies through elimination by inferring membership to
the regular class. OCC is usually accompanied by a boundary
threshold that determines how tolerant the model will be to
instances far from the learned data.

Due to it’s nature, OCC is by design closer than multi-class
classification to the neurological idea of core detection [22].
Even though plenty of research is available on multi-class
classification and artificial neural networks (including deep
learning algorithms), there are only a few examples where
neural networks are applied to OCC [23]. At the time of this
writing there was no method for building an artificial neural
network or its derivatives (Deep Artificial Neural Network,
Convolutions Neural Network, among others) for OCC. Most
works modify and adapt multi-class networks to generate an
OCC-like output [24]. OCC has been identified as a harder
problem than multi-class classification mainly due to the
challenge of tuning input parameters without looking at a
sample of the opposite class [22].

Using OCC with HD computing hasn’t, to our knowledge,
been explored yet. Our approach is similar to how OCC

Fig. 1. Graphical representation of OCC models applied to system stability.
Data points far from the center are considered unstable according to the
threshold chosen for the model.

works within classical ML. In the case of HD computing,
we encode the data that represents the stable or target class.
For an unclassified instance, we measure its distance with all
the members of the target class and choose the shortest one.
The higher this distance is, the higher the probability that the
instance is not a member of the target class. Alternatively,
we can choose a distance threshold where everything with a
distance equal or higher to it is considered a non-member.

Septic shock will progress differently, depending on vari-
ables such as which organs are failing. Septic shock can be
considered as a system failure. Therefore, we can define our
target or training class as stable or healthy patients, and the
farther a patient is from that class the higher the probability
of a system failure happening.

III. RESULTS

One of the most popular databases for health informatics
research is MIMIC-III [25]. However, MIMIC-III uses an
outdated definition of sepsis and its subsets. This has great
impact in how the class is represented. Instead, we use eICU
[26], a newer database from the same team behind MIMIC-
III that uses the updated definition of sepsis.

Since eICU has data from patients within the ICU, we
don’t have access to data from healthy patients. On the other
hand, the problem we are trying to solve is to detect patients
with confirmed sepsis that are at risk of going into shock.
Due to data constraints, we will focus on bacterial infection
related sepsis. We don’t consider fungal or virus related
sepsis due to lack of samples. We also omit sepsis in burn
and cancer patients due to different treatment interactions
and symptom overlap between the two.

The general population criteria is: patients admitted into
the ICU with confirmed sepsis (using Sepsis-3 criteria) who
were not in shock when admitted, underwent antibiotic treat-
ment, and have at least three hours worth of data. Using this
criteria, We obtained data from 1237 patients before applying
the data filters for the positive and negative classes. Table I
displays the value distribution of three relevant features for
each class.

A. Positive class

Before trying the one-class approach, we built a baseline
model that performs binary HD classification. Within the
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Feature Positive Negative
Age 63 (17-89) 61 (18-89)
WBC 11 (0.1-42) 10 (0.6-46)
MAP 83 (65-144) 94 (65-147)

TABLE I
DISTRIBUTION FOR THREE RELEVANT FEATURES WITHIN THE POSITIVE

(SEPTIC SHOCK) AND NEGATIVE (NOT SEPTIC SHOCK) CLASSES. THE

VALUE REPRESENTS THE AVERAGE AND THE RANGE (INSIDE THE

PARENTHESES).

context of binary classification, the positive class is built
with patients who, in addition to our population definition,
underwent sepsis related hypotension (MAP<65 mmHG)
and/or hypoperfusion (lactate>2 mmol/L), and were not
being treated with vasopressors previous to this event (387
patients). The timestamp for this event is denominated as
Hour Zero (H0).

B. Negative class

The complementary, or negative class, are patients from
the defined population who didn’t have a shock related event
during their stay, were not treated with vasopressors, and
were released from the hospital without dying (567 patients).

1) Features: We consider two types of features:
• Sequential or periodic: These are values that change

overtime and are available to build sequences. We
consider 4 sequential features:

– Mean Arterial Pressure (MAP)
– Respiration Rate
– Oxygen Saturation (SaO2)
– Heartrate

• Static: These are features that don’t change within the
observation window, we consider 6 features:

– White Blood Cell Count (WBC)
– Red Cell Distribution Width (RDW)
– Blood Urea Nitrogen (BUN)
– Creatinine
– Sodium
– Age

The criteria for feature selection is defined by availability of
the data, and relevance within related work that point towards
a correlation between the feature and sepsis/septic shock. For
example, temperature is a feature that is highly correlated
with sepsis and infection in general, but surprisingly, it isn’t
widely available for all patients in the database.

For the positive class, sequential features are collected at
1, 2 and 3 hours before H0, considering the hourly average.
For the negative class, collected features are from 1, 2 and 3
hours after sepsis is confirmed and antibiotic treatment has
started, or after admittance, whichever is later.

2) Synthetic data set: Since all the population in our
data is from septic ICU patients, we don’t have a reliable
baseline for our target class. Instead we created a synthetic
data set with feature values that are considered as healthy
by current medical standards. The feature values for the

synthetic patients are randomly generated within a healthy
range. Then the data is encoded using the same methodology
used for the real patients.

C. Binary Classification

The following models follow the classical HD computing
algorithm for binary classification as presented in [15]. The
purpose of these models is to understand the relationship
between the positive and negative classes.

1) Raw value encoding: We built three models that use
the static features plus sequential features for each respective
hour. Table II shows that there’s a slight increase in accuracy
from the majority class (in this case, the negative class) for
every hour. The last hour has the highest overall accuracy
but all three models are similarly distributed.

2) n-gram encoding: Table II also shows how using n-
gram encoding for sequential features performs. It is inter-
esting that n-gram models seem to have similar accuracy
numbers as the models that use raw values.

D. One-class Model

In Table III, we describe the specificity at different sen-
sitivity thresholds for the HD computing based one-class
classifier (HD-OCC). This is a more descriptive perspective
than reporting overall accuracy since the strength of this
approach is in its adaptability of prioritizing the detection of
positive cases or discarding false positives. While specificity
seems low at high sensitivity thresholds, we must consider
that the negative and positive classes are very similar before a
patient goes into shock. Furthermore, replacing the synthetic
dataset with real data or with a different generation approach
to synthetic patients, could improve these numbers.

1) Age multiplier: After further examination, we realized
that age was having a detrimental effect on the model’s
accuracy. A possible explanation is that while age is not
necessarily an indicator of sepsis, it has a semi-linear corre-
lation to poor outcomes. To represent the impact that age has
with sepsis patients, we decided to not add age to the final
vector through majority voting, but instead multiply the final
Hamming distance by an age ratio (age divided by 40). This
is in accordance with [27] that state that for patients older
than 50 years old, the probability of septic shock increases.
Therefore, distances for patients with an age close to 40 will
stay overall the same, whereas higher ages will increase the
final distance and lower ages will decrease them. While this
approach remains to be validated, it did improve accuracy
considerably.

Table IV shows the specificity numbers for the model
with age as a multiplier. Most are an improvement over the
previous model that encodes age as part of the patient vector.

To place this model into perspective, the best model
for binary classification (-1 hour) has a sensitivity of 0.58
and specificity of 0.69. The one-class model has similar
numbers at that threshold, but with the added benefit of being
adjustable to prioritize sensitivity (reduce false negatives) or
specificity (reduce false positives).
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Hour True
Positives

True
Negatives

False
Positives

False
Negatives

Overall
Accuracy

-3 214 394 173 173 0.64
-2 188 397 170 199 0.61
-1 217 412 155 170 0.66
2-gram
(-3+-2) 201 397 170 186 0.63

3-gram 208 406 161 179 0.64

TABLE II
THIS TABLE SHOWS ACCURACY NUMBERS FOR THE HD COMPUTING MODEL USING BINARY CLASSIFICATION. HOURS ARE IN THE PERSPECTIVE OF

THE POSITIVE CLASS, -3 HOURS MEANS 3 HOURS BEFORE HYPOTENSION IS REGISTERED. FOR THE NEGATIVE CLASS THIS WOULD BE THE FIRST

HOUR OF OBSERVATION.

Model Specificity at sensitivity:
0.9 0.7 0.5

-3 hours 0.16 0.45 0.61
-2 hours 0.16 0.47 0.66
-1 hour 0.19 0.51 0.66
2-gram
(-3+-2) 0.19 0.46 0.64

3-gram 0.19 0.48 0.65

TABLE III
SPECIFICITY NUMBERS FOR OCC MODEL USING A SYNTHETIC

DATASET. THE NUMBERS FOR SPECIFICITY REPRESENT SPECIFICITY AT

SENSITIVITY INTERVALS OF 0.9, 0.7 AND 0.5 RESPECTIVELY

Model Specificity at sensitivity:
0.9 0.7 0.5

-3 hours 0.17 0.46 0.63
-2 hours 0.18 0.48 0.69
-1 hour 0.21 0.53 0.69
2-gram
(-3+-2) 0.19 0.46 0.66

3-gram 0.19 0.50 0.68

TABLE IV
SPECIFICITY NUMBERS FOR OCC MODEL MULTIPLYING DISTANCE BY

AGE. THE NUMBERS FOR SPECIFICITY REPRESENT SPECIFICITY AT

SENSITIVITY INTERVALS OF 0.9, 0.7 AND 0.5 RESPECTIVELY

IV. DISCUSSION

This paper primarily shows that HD computing has the
potential of creating accurate models in both binary classifi-
cation and OCC. At the time of writing, this is the first effort
to apply HD computing to patient data.

However, the example application suffers from several
limitations. A major obstacle is inconsistency within the data.
There are features. such as temperature, that were missing
from most patients in the dataset. For the few that had it, the
value was measured outside the observation window, most
often coming from a different hospital unit. Furthermore, this
inconsistency has a negative effect on the granularity of the
observation window. The data for the sequential features is
continuous, however it was registered at different intervals.
Because of this, we used hourly average instead, but this
decision doesn’t allow us to use the full potential of n-gram
encoding.

With more control over data input, such as using live

data through an embedded solution, the models are bound
to improve. N-gram encoding amplifies the distance to the
synthetic dataset when there are abrupt changes in the
information, but averaging sequential data has a smoothing
effect. A similar conclusion was made by Van, et al. [28]
after observing that increasing the time intervals had a
negative effect on accuracy. For their model, increasing the
intervals beyond 15 minutes per measurement meant a drop
of classification accuracy down to 60% (from over 90%
with one minute intervals). Part of our future work for this
model is to gather data that provides sufficient granularity
for predicting septic shock.

1) Feature cost: Feature cost refers to the effort (time,
work, or in this specific case, intrusiveness of data collecting
methods) needed to obtain it. An expensive or costly feature
is one that requires more effort than the average or cheap
features. Our model uses 4 features that are captured from
the vital signs monitor.This monitor is commonly found as
a bedside monitoring tool and once connected to the patient,
commonly with supra-cutaneous diodes, measurements don’t
require any intervention. In this context the features are
considered to be cheap features. On the other hand, WBC,
Creatinine, Sodium and RDW are more expensive because
they require drawing blood from the patient and send it to a
lab for analysis. As expensive as these features are, they are
part of the same, standard protocol, blood screening. Since
the backbone of the model are the cheap features, having
new expensive data added can help the model’s accuracy but
is not critical to the model’s performance.

On the other hand, SOFA uses features that require direct
medical intervention or assessment and are mostly qualitative
in nature. In Table V we compare the types of features each
model uses,

MEWS and SOFA are expensive models in terms of
feature cost. SIRS and our model don’t rely on a qualitative
assessment.

A. Strengths and weaknesses of our approach

Unlike classical ML, our model allows us to use intuition
and expertise to improve the model and make it robust. This
model falls under a more specialized and tuned up approach
that is adaptable to domain constraints.

Compared to industry standards, OCC combined with HD
computing offers greater promise as an ever growing and
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Feature Group SIRS MEWS SOFA qSOFA HD-OCC
Temperature Yes Yes No No No (Pending)
Heart Rate Yes Yes No No Yes

Respiration Rate Yes Yes Yes Yes Yes
General Blood Test Yes (WBC) No Yes No Yes
Response evaluation No Yes (AVPU) Yes (GCS) Yes No

Blood Pressure No Yes Yes Yes Yes
Liver No No Yes No No
Urine No Yes Yes No No

TABLE V
FEATURE TABLE COMPARING OUR APPROACH (HD-OCC) WITH INDUSTRY STANDARDS. THE FIRST COLUMN IS NAMED FEATURE GROUP TO

CATEGORIZE FEATURES THAT ARE CLOSELY RELATED. RESPONSE EVALUATION ENCOMPASSES DIFFERENT TYPES OF TESTS PERFORMED BY MEDICAL

STAFF TO QUANTIFY THE PATIENT’S LEVEL OF CONSCIOUSNESS. GCS STANDS FOR GLASGOW COMMA SCALE AND AVPU STANDS FOR

UNRESPONSIVE, RESPONDS TO PAIN, RESPONDS TO VOICE, AND ALERT.

always improving model. The more patients are treated, and
more data is made available, the more opportunities for the
model to improve and be finely tuned. This is a desirable
property from an artificial intelligence approach.

This is not to say that there aren’t any drawbacks. Cur-
rently there isn’t a proven methodology for feature evaluation
within HD computing. This means that new features need
to be carefully evaluated with more conventional techniques
since we have little insight on how they interact with the
final class once added to the patient vector. HD computing
requires domain knowledge and this is true also if the feature
space is being expanded or the model is applied to a different
target that is not septic shock.

Another issue is how descriptive the model is. HD comput-
ing is easy to understand mathematically. We can derive how
features impact distance changes between patient vectors and
gain some understanding on their relevance for predicting
septic shock. In this sense it does a better job than most
ML approaches at providing an explainable model. But we
currently can’t provide a medically validated explanation to
why a specific combination of feature values and threshold
choice is considered close or far enough from the training
vectors to be classified as septic shock, nor can we, if
possible, translate the model into a non-dynamic criteria.

V. RELATED WORK

While HD computing was proposed more than a decade
ago, it is only in recent years that application oriented
research started to appear. To our knowledge, there is no
other project that has dealt with using HD computing to deal
with patient data. In this section, we describe HD computing
approaches inside the field of health informatics, but we also
describe some of the current approaches to septic shock.

A. HD computing in health informatics

One of the most prominent works in HD computing is that
of Rahimi, et al [29] and [18] where data from non-invasive
electrode’s is used to model brain activity and predict the
subject’s intentions. They achieve a 5% improvement in
accuracy over machine learning approaches. Similarly, in
Imani, et al [30] they use HD computing for DNA modeling,
achieving over 99% accuracy.

Though not within health informatics, Imani, et al [31]
proposes an FPGA architecture that achieves over 5X per-
formance when compared to other FPGA approaches. This is
achieved by emulating an associative memory module with
custom hardware configuration. Furthermore, Salamat, et al
[32] describes an architecture that is up to 11 times more
energy efficient than a GPU implementation. These findings
are key factors for justifying the use of HD computing,
specially when targeting constrained environments such as,
in our case, next to a patient’s bed.

B. Septic Shock modeling

The work of Giannini, et al. [13] solves a similar prob-
lem to the one presented in this chapter. However, they
target patients outside the ICU. While the feature burden
is equivalent to ours, they follow an old definition of sepsis.
Furthermore, their model prioritizes specificity (over 90%)
while sacrificing sensitivity (27%) without a way to modify
the model.

The work of Kim, et al. [12] uses an ML approach to
model septic shock. In this work they include chief patient
complaint as a feature and encode it into numerical values.
While their sensitivity (0.70) and specificity (0.90) are con-
siderably higher than our approach, their study is retroactive
to septic shock, with the observation window including
patients that underwent shock already. Furthermore, their
positive class is comprised of patients between 66 and 88
years old and the negative class age range is 51 to 79. Due
to the little overlap between classes, they confirm age being
a dominating feature in their model.

The challenge described in this chapter, however, is unique
in the way the classes are defined. In the case of binary
classification, the positive and negative classes are not lin-
early separable by any of the features and are similar to
each other from the point of view of patient state. I target a
critical observation window ensuring that patients have not
gone through septic shock before making a prediction.

VI. CONCLUSION

In this paper we described the application of a one-class
classifier using HD computing for the prediction of septic
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shock among sepsis patients. The model performs consis-
tently across use cases achieving up to 66% classification
accuracy when balancing specificity and sensitivity but can
be adjusted to prioritize one or the other. We argue that the
application of this model doesn’t pose an extra burden on
current hospital protocols and can provide an early alarm
for preparation or prevention of septic shock. HD computing
classification shows promise and allow for efficient models
tailored for the problem we are trying to solve. In this case,
HD computing enables us to use one-class classification for
greater accuracy and flexibility to changing conditions when
compared to binary classification.
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