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2 

 

Abstract 1 

 2 

Background context. Traumatic thoracolumbar (TL) fractures are frequently encountered in 3 

emergency rooms. Sagittal and anteroposterior radiographs are the first step in the trauma routine 4 

imaging. Up to 30% of TL fractures are missed in this imaging modality, thus requiring a CT and/or 5 

MRI to confirm the diagnosis. A delay in treatment leads to increased morbidity, mortality, 6 

exposure to ionizing radiation and financial burden. Fracture detection with Machine Learning 7 

models has achieved expert level performance in previous studies. Reliably detecting vertebral 8 

fractures in simple radiographic projections would have a significant clinical and financial impact.  9 

Purpose. To develop a deep learning model that detects traumatic fractures on sagittal 10 

radiographs of the TL spine.  11 

Study design/setting. Retrospective Cohort study. 12 

Methods. We collected sagittal radiographs, CT and MRI scans of the TL spine of 362 patients 13 

exhibiting traumatic vertebral fractures. Cases were excluded when CT and/or MRI where not 14 

available. The reference standard was set by an expert group of three spine surgeons who 15 

conjointly annotated the sagittal radiographs of 171 cases. CT and/or MRI were reviewed to 16 

confirm the presence and type of the fracture in all cases. 302 cropped vertebral images were 17 

labelled ‘fracture’ and 328 ‘no fracture’. After augmentation, this dataset was then used to train, 18 

validate, and test deep learning classifiers based on ResNet18 and VGG16 architectures. To 19 

ensure that the model’s prediction was based on the correct identification of the fracture zone, an 20 

Activation Map analysis was conducted. 21 

Results: Vertebras T12 to L2 were the most frequently involved, accounting for 48% of the 22 

fractures. A4, A3 and A1 were the most frequent AO Spine fracture types. Accuracies of 88% and 23 

84% were obtained with ResNet18 and VGG16 respectively. The sensitivity was 89% with both 24 

architectures but ResNet18 showed a higher specificity (88%) compared to VGG16 (79%). The 25 

fracture zone was precisely identified in 81% of the heatmaps. 26 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.09.21256762doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.09.21256762
http://creativecommons.org/licenses/by/4.0/


3 

 

Conclusions. Our AI model can accurately identify anomalies suggestive of vertebral fractures in 1 

sagittal radiographs by precisely identifying the fracture zone within the vertebral body. 2 

Clinical significance. Clinical implementation of a diagnosis aid tool specifically trained for TL 3 

fracture identification is anticipated to reduce the rate of missed vertebral fractures in emergency 4 

rooms. 5 

 6 

Keywords 7 

Thoracolumbar fractures; spinal fracture; vertebral fracture; bone fracture detection; heatmap; 8 

machine learning; deep learning; artificial intelligence  9 

 10 

Introduction 11 

The thoracolumbar (TL) spine is one of the most common site of traumatic fracture occurrence, 12 

with an incidence that ranges from 32 to 64/100.000 per year; furthermore, traumatic TL fractures 13 

have a rate of associated neurological injuries from 22% to 51% depending on the fracture type, 14 

and a require surgical treatment in 38% of the cases. (1–3) Traumatic TL fractures are associated 15 

with decreased physical function, severe reduction of quality of life and the lowest rate of return to 16 

work among all major organ injuries. (4) Additionally, the overall mortality associated to spinal 17 

injuries is 17%. (5) Besides this elevated disease burden and prevalence, the treatment of 18 

vertebral fractures is costly. The annual estimated economic cost, in the United States alone, 19 

surpassed the billion dollar figure already in 2011. (6) 20 

The severity of traumatic TL fractures can range from a simple apophyseal fracture without 21 

structural impairment to a complete dislocation of the spine.  Sagittal and anteroposterior 22 

radiographs are the first step in the trauma routine imaging. However, they are not a very reliable 23 

diagnosis aid when suspecting TL fractures: the worldwide reported false-negative rate is as high 24 

as 30%. (7) Moreover, the current classification systems such as the AOSpine Classification and 25 

the Thoracolumbar Injury Classification and Severity score (TLICS) stratify fracture severity on 26 
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parameters such as anterior failure of the vertebral disc under compression and posterior integrity 1 

of ligamentous structures (8), which are not readily identifiable in radiographs. The severity and 2 

instability of the fracture will determine the need for conservative or surgical treatment. Thus, 3 

surgeons must resort to second level imaging such as Computer Tomography (CT) or Magnetic 4 

Resonance Imaging (MRI) to determine the treatment strategy. (9)  The need for second level 5 

imaging inevitably leads to a delay in diagnosis, ranging from hours to even months, frequently 6 

resulting in poorer clinical outcomes. (10,11) 7 

The recent explosion of labeled data, namely 'big data', has brought upon the era of artificial 8 

intelligence (AI). Within the healthcare sector, AI is being now used for several applications 9 

including drug discovery, remote patient monitoring, risk management, wearables, virtual 10 

assistants, and hospital management. Regarding medical diagnostics and imaging, the field of 11 

radiology has been particularly benefited. (12) The management of patients with musculoskeletal 12 

diseases could be improved by these innovations, provided that optimal accuracies are preserved. 13 

(13–15) By supporting the treating physician in identifying anomalies on patients imaging studies, 14 

AI is posed to considerably reduce diagnostic errors (16), therefore improving clinical outcomes in 15 

the treatment of vertebral fractures. 16 

Deep learning (DL) is a supervised machine learning method that uses an algorithmic structure 17 

based on neural networks, such as Convolutional Neural Networks (CNN) (17). This method has 18 

been reported to perform as good or even better than humans in image classification (18). The 19 

power of this technique lies int the ability to identify and extract relevant features from labeled data 20 

at a grand scale. (19) 21 

Recently, several proof of concept papers were published showing the application of AI and DL in 22 

spine imaging, showing promising results in the evaluation of degenerative disorders (20), adult 23 

deformities (21), adolescent idiopathic scoliosis (22), detection of primary and secondary bone 24 

tumors (23,24), and vertebral fractures (25).  25 

Implementing a diagnosis aid tool specially trained for fracture identification in the clinical practice 26 

is anticipated to reduce the rate of missed vertebral fractures in emergency rooms. Murata et al 27 
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have recently published a model capable of detecting vertebral fractures in plain radiographs. (26) 1 

However, Murata’s study is limited to radiographs displaying only one vertebral fracture, therefore 2 

invalidating its application in a scenario where multiple are present. Of note, the annotation of each 3 

image subgroup was done by a single spine surgeon, which could result in the introduction of 4 

confirmation bias in the standard of reference.  5 

The main aim of this study was to develop an AI-based algorithm capable of accurately detecting 6 

vertebral fractures in sagittal radiographs of the TL spine. The secondary aim was to gain a deeper 7 

understanding of the model’s interpretation of the ‘fracture zone’ through a heatmap 8 

representation.  9 

 10 

Methods 11 

This work utilized a CNN-based supervised learning approach.(17) The model was trained on 12 

cropped single vertebrae. The standard of reference was set by three expert spine surgeons, who 13 

evaluated the plain sagittal radiograph together with second level imaging, namely CT and/or MRI 14 

and annotated the single vertebra image as ‘fracture’ or ‘non-fracture’. 15 

Image acquisition and standard of reference 16 

Sagittal radiographs, CT and MRI scans from the TL spine of 362 patients of more than 12 years of 17 

age and exhibiting traumatic vertebral fractures were retrospectively collected from a Spine 18 

Surgery reference Center (ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy). The 19 

Ethical Committee approval was granted via the Comitato Etico Milano Area 3 under the Ref. No. 20 

359-24062020. To ensure accuracy of the diagnoses, only cases with an initial radiograph and a 21 

subsequent CT or MRI were included. Fractures resulting from mechanisms other than trauma, 22 

such as osteoporosis or pathologic fractures were excluded.  Sagittal radiographs and second level 23 

imaging of 151 patients were selected for the final analysis. An expert group of three spine 24 

surgeons with more than 30 years of accumulated experience reviewed each case individually to 25 

identify the presence of a fracture, and then classified them according to the AO Spine 26 
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Classification. Finally, in the cases where disagreement existed, meetings were held to reach 1 

unanimous consensus for each case.  2 

A total of 630 single vertebra images, obtained from in 222 sagittal radiographs of the TL spine 3 

were annotated. Of these, 302 were annotated as ‘fracture’ and 328 as ‘non-fracture’. The 4 

annotation process was performed using a C++ software specifically developed for this project. 5 

The annotator indicated the Region of Interest (ROI) with a bounding box around a vertebra, and 6 

assigned the class, ‘fracture’ or ‘non-fracture’, the level and the corresponding AO Spine 7 

Classification.  8 

Training and Test Sets: 9 

The image dataset was split into a training set (N = 578) and a test set (N = 52). To increase the 10 

generalization capability of the model, we used augmentation techniques such as random rotation, 11 

flipping, and shifting. In this way the model was trained on different versions of the same image 12 

during the training epochs. 13 

Classification with Deep Learning 14 

We compared the performances of VGG16 (27) and ResNet18 (28) DL architectures, which were 15 

in the top three of the ImageNet challenge (29) in 2014 and 2015 respectively. These CNNs 16 

achieved state-of-the-art performances on computer vision tasks such as image classification, 17 

object detection, and landmark localization. (25) The difference between these CNNs is that 18 

VGG16 is a plain neural network with a deep sequence of convolutional layers followed by max-19 

pooling, while ResNet functions with the so-called residual blocks, where the input of each block is 20 

summed to the output of the same block creating a skip connection (Fig. 1). The motivation behind 21 

the skipping connection is the vanishing gradient problem that arises during the training of very 22 

deep CNNs. (27)  The images were resized to 512x512 pixels and normalized to have zero mean 23 

and unit variance, according to the image guidelines used in the ImageNet challenge.  24 
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 1 

Figure 1: DL network architectures used in this study. The VGG16 is a sequence of convolution 2 

and max-pooling operations. The number of parameters to learn is remarkably high (about 138 3 

million). ResNet18 presents the so-called Residual Blocks that represent the blocks of convolution 4 

operation between the skipping connections represented by the arrows, reducing the number of 5 

parameters to approximately 11 million. 6 

 7 

Since the number of available images was not high, we used a technique called Transfer Learning 8 

(30,31) that consists of exploiting parameters of the 2 models that obtained state-of-the-art 9 

performances on the ImageNet challenge and retrained only the last few layers, the 2 last residual 10 

blocks in the present study, on the new task of vertebral fracture classification. We replaced the 11 

last fully connected layers of both networks (with 1000 neurons each) with a fully connected layer 12 

with 2 neurons representing the 2 classes. For the fully connected layer we used the softmax 13 

activation function that returns a probability distribution that assigns to each sample a probability of 14 

belonging to a class. The objective function is the negative log-likelihood loss used together with 15 

the softmax. 16 
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To find the best hyperparameters to train the network, in particular the learning rate and the batch 1 

size, we performed cross-validation with 10 folds where the training set is split into 10 parts, 9 of 2 

which are used to train the model and 1 for validation. This process was repeated 10 times 3 

iteratively until all the combinations of the folds have been used for the training/validation process. 4 

Finally, the entire training set was used for training with the best hyperparameters found in the 5 

cross-validation and we evaluated the performances of the model on the test set. 6 

The model was implemented in Python language using PyTorch (34), a deep learning framework 7 

developed by Facebook. For the training and the evaluation, we used a Linux workstation with a 8 

NVIDIA QUADRO RTX 5000. The models ran for 200 epochs using a batch size of 32 and a 9 

learning rate of 0.00016, which resulted as the best hyperparameters in the cross-validation step. 10 

We used the Adam optimizer for model optimization and a method that reduced the learning rate 11 

by a factor of 0.1 if the accuracy did not improve for 10 epochs in a row (ReduceLROnPlateau in 12 

PyTorch). 13 

Evaluation 14 

Model’s Performance Parameters 15 

The models' performance was assessed quantitatively by calculating the accuracy, sensitivity, and 16 

specificity in fracture identification. Accuracy represents the ability of the model to assign the 17 

images to the correct class, described by the AUC (Fig. 5); the AUC outputs a value that displays 18 

the probability of a random sample being correctly classified by the algorithm, thus indicating the 19 

capacity of a classifier to distinguish between two classes. (32) Sensitivity describes the ability to 20 

detect the fractures, and specificity is the ability to detect the lack of a fracture. 21 

Understanding the Model’s Prediction 22 

To ensure that the model´s prediction was based on the correct identification of the fracture zone, 23 

we implemented Activation Maps on the single vertebral images to highlight the image regions that 24 

lead the model to classify an image into a specific class. The activation maps were obtained by 25 

multiplying the second last layer of the neural network (the last feature maps) by the weights that 26 

point to the neuron of the class predicted by the model. This way, all pixels of the feature maps 27 
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were weighted according to the model prediction highlighting the most important parts of the 1 

images that determined the prediction. The heatmaps were evaluated by the same surgeons that 2 

set the standard of reference, judging whether the “warm zones” seen in the Activation Maps 3 

correlated to the fracture zones seen the CT or MRI images.   4 

 5 

Results 6 

Clinical Dataset 7 

For the final analysis, a total of 151 cases of patients with TL fracture with availability of the initial 8 

radiograph and subsequent CT or MRI were selected. A total of 222 TL sagittal radiographs were 9 

analyzed and classified by the expert group of spine surgeons. Vertebras T12 to L2 were the most 10 

frequently involved, accounting for 48% of the fractures (Fig. 2). Axial compression fractures, 11 

namely the AO Spine types A4, A3 and A1, were the most frequent injury mechanisms (Fig. 3).  12 

 13 

 14 

Figure 2: Epidemiological distribution of TL 15 

fractures. 16 

Figure 3: TL fracture type per AO 17 

Classification. 18 
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  1 

Deep Learning Model 2 

Both DL architectures achieved high accuracy, sensitivity, and specificity after hyperparameter 3 

optimization, but ResNet18 performed better in all these aspects compared to VGG16. Both 4 

models predicted three false negatives (5.8%) by misclassifying three ‘fracture’ images as ‘no 5 

fracture’. ResNet18 showed increased specificity, predicting three false positives in comparison to 6 

the 5 of the VGG16, namely classifying ‘no fracture’ images as ‘fracture’. (Fig. 4). 7 

 8 

 9 

Figure 4: Confusion matrices obtained with the two DL architectures. The ResNet18 model made 10 

6 misclassifications, whereas VGG16 made 8.TN: True negative; FN: false negative; TP: true 11 

positive; FP; false positive 12 

 13 

In terms of area under the ROC (Fig. 5) the ResNet18 performed better than the VGG16, with 0.88 14 

and 0.86 respectively for both classes. 15 

 16 
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 1 

Figure 5: Comparison of the ROC curve obtained with ResNet18 and VGG16. 2 

 3 

To ensure that the model’s prediction was based on the correct identification of the fracture zone, 4 

we conducted an Activation Map analysis. The resulting heatmaps depict which areas of the 5 

images led the model to classify the vertebra as ‘fracture’ or ‘no fracture’ (Fig. 6). In 81% of the 6 

single vertebrae, the “warm zone” correlated to the fracture zone observed in the corresponding 7 

CT or MRI. Interestingly, in two occasions, the model’s prediction made the surgeons question the 8 

correctness of the ground truth. After verification via MRI and CT, the two images had to be 9 

reassigned to the opposite class.  The model’s prediction effectively amended human errors made 10 

during the annotation process. Accounting for this reassignment, the number of false negatives 11 

would be reduced from 3 to 1, thus increasing the sensitivity from 89% to 96%. 12 

 13 
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 1 

Figure 6: Heatmap analysis of the fracture zone. In Panel a, the heatmap correlates to the fracture 2 

zone identified in MRI. Panel b shows a true negative where the heatmap did not highlight a critical 3 

zone on the vertebra. Panel c incorrectly indicates presence of a fracture. Panel d was originally 4 

classified as ‘fracture’ and thus accounted for as a false negative, but it was then reclassified as 5 

‘no-fracture’ after the evaluation of the heatmap.  6 

 7 

Discussion 8 

This study demonstrated that AI-based techniques can detect vertebral fractures on radiographs 9 

with very high accuracy. Both models achieved similar sensitivity and specificity to that achieved by 10 

expert surgeons and radiologists (26,33–37) and the average sensitivity reported in a recent 11 

review.(38) ResNet18 showed better performance in identifying vertebral fractures compared to 12 

VGG16. Additionally, ResNet18 was less resource intensive in terms of memory used by the 13 

network parameters (43 MB vs 524 MB) and faster in the inference. To our knowledge, this is the 14 

first time that ResNet18 has been adapted for fracture identification purposes. Furthermore,15 
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ResNet18 predictions were based in most cases, on the regions of vertebrae corresponding to the 1 

fracture zone observed in the CT and MRI. To ensure the quality of the diagnostic trial, the 2 

reference standard was established only after confirmation on CT and/or MRI by three different 3 

experts, as suggested by a recent meta-analysis of the diagnostic accuracy of deep learning in 4 

orthopedic fractures (38) and the expert panel recommendations from the Radiological Society of 5 

North America. (39) 6 

Comparison of Model´s Performance  7 

Only recently have AI-based models been used to attempt fracture detection on radiographs. 8 

Presumably the first proof-of-concept paper using CNNs for fracture identification was published by 9 

Olczak in 2017. They compared the fracture identification capability of 5 existing CNNs. Fracture 10 

presence was deduced by extracting a combination of expressions and keywords from the 11 

radiologist’s report, namely metadata. Contrasting to our results, VGG16 showed the best 12 

performance in their study, achieving 83%  fracture identification accuracy. (33)   13 

Other authors have also adapted CNNs to the problem of fracture detection, focusing exclusively 14 

on image interpretation, namely the information within the image file. Kim and MacKinnon used an 15 

adapted version of the Inception V3 model to identify distal radius fractures on sagittal radiographs, 16 

achieving  an AUC of 0.954. (36)  Although a significant limitation of this previous study was the 17 

exclusion of radiographs if the single lateral projection was inconclusive for the presence of 18 

fracture, their model analyzed the complete radiograph image instead of a cropped region of 19 

interest, as we and most other researchers have done. Chung et al used an adapted ResNet-152 20 

on cropped anteroposterior radiographs of the shoulder to distinguish fractured from normal 21 

humeri, achieving an accuracy of 95%, AUC of 0.996, sensitivity of 99% and specificity of 97% in 22 

the optimal cutoff point. (40)  Adams et al. used cropped radiographs of surgically confirmed 23 

femoral neck fractures to compare the performances between AlexNet and GoogLeNet. 24 

GoogLeNet outperformed AlexNet, achieving an overall accuracy of 90.6%. Given that the 25 

reference standard was established surgically, the probability of bias introduction into the model 26 

was cleverly minimized. (34)  Similarly, we minimized annotation bias by training the model 27 
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exclusively with radiographs where the presence of the fracture was confirmed via CT or MRI. 1 

Urakawa et al also evaluated cropped radiographs of femoral neck fractures and achieved an 2 

accuracy of 95.5%, AUC 0.984, sensitivity of 93.9% and specificity of 97.4% using an adapted 3 

version of VGG16. (37) 4 

Recently, a model based on Visual Recognition V3 (IBM, Armonk, NY, USA) was used to identify 5 

vertebral fractures by Murata et al, achieving an accuracy, sensitivity, and specificity of 86.0%, 6 

84.7%, and 87.3% respectively. (26) While their results are similar to ours, there are important 7 

methodological differences to consider. To avoid introduction of systematic errors while training the 8 

model, all the fractures included in our study were evaluated individually by expert spine surgeons 9 

before annotation, and then discussed in consensus meetings where discrepancy occurred. In 10 

contrast, each classifying surgeon in the study of Murata et al. seemingly evaluated a single 11 

subgroup of images. While our model was trained to identify anomalies in single vertebrae to 12 

eliminate confounding factors and ensure a future clinical applicability, as shown in the heatmap 13 

analyses (Fig. 5), Murata´s group analyzed the entire radiograph. The exclusion of cases with 14 

multiple traumatic fractures impairs the application of their model in the clinical practice. However, 15 

the inclusion of anteroposterior radiographs approaches a regular clinical scenario where both 16 

projections would be evaluated. In addition to the use of a different model, these factors might 17 

have contributed to the marginally better performance achieved in our study.   18 

Heatmap Analysis 19 

In 81% of the cases, our model´s prediction of ‘fracture’ or ‘no fracture’ was based on a precise 20 

identification of the anomalies in single vertebrae, confirmed by correlating the “warmer zones” with 21 

the findings in CT and/or MRI (Fig. 6). Interestingly, two images which the model predicted as ‘no 22 

fracture’ by the model were originally classified as ‘fracture’ by the surgeons. A reassessment of 23 

the images supported the model’s prediction and increased the model’s sensitivity to 96%. 24 

Although this finding should be cautiously considered due to its exemplary nature, it illustrates the 25 

potential of AI to contribute to physicians’ decisions in the clinical workflow.  26 
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Limitations 1 

The present study has limitations. First, the dataset had a relatively small size. Traumatic vertebral 2 

fractures are commonly diagnosed based on CT or MRI only, obviating the need for radiographs in 3 

most cases. Although a larger database would arguably have enhanced the performance of the 4 

CNNs, we mitigated the impact of this limitation by performing aggressive image augmentation and 5 

taking advantage of models pre-trained on the ImageNet dataset. Since in the clinical workflow, a 6 

surgeon or physician would mostly rely on CT and MRI to confirm the presence of a fracture, a 7 

comparison with a model trained only with sagittal radiographs seemed unbalanced for this study’s 8 

purpose. A comparative evaluation of the performance of the classifier and that of surgeons who 9 

are naïve to the clinical images will be reported in a future study. Regarding the heatmaps, it 10 

should be noted that the activation maps do not necessarily show the fracture zone but rather the 11 

zones that are more important in determining the output of the classifier, which may not correspond 12 

to the fracture itself.  13 

Clinical Relevance of AI for automated traumatic lesion detection  14 

Introducing systems of radiograph interpretation can reduce the frequency of misdiagnosis to 15 

below 0.3%.(41) Failures in fracture identification can be considerably reduced by implementing a 16 

second-stage verification algorithm at the end of the normal workflow to complement the 17 

interpretation of the physician. This way, introduction of bias or distractions would be avoided.  18 

Contrary to common belief, computer-aided diagnostic tools are not necessarily aimed to replace 19 

expert human interpretation of medical imaging. In the authors view, the goal is minimization of 20 

Diagnostic Errors.  Currently up to 30% vertebral fractures in radiographs are missed (1–3), 21 

resulting in either delayed or missed diagnosis. Both outcomes are qualified as Diagnostic Errors 22 

by the Institute of Medicine (42) and carry important legal and clinical implications:  23 

- Legally, misdiagnoses are the most common source of malpractice claims or litigation.(43)  24 

- Clinically, missed fractures in radiographs have consequences such as malunion with restricted 25 

range of motion, posttraumatic osteoarthritis, and joint collapse (44)  26 
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Physicians commonly tackle these implications by performing confirmative CT and/or MR studies, 1 

inevitably resulting in a delay in diagnosis, increase in costs and potentially also higher exposure to 2 

radiation. The delays can range from hours to months, resulting in poorer clinical outcomes. 3 

(10,11)  4 

A commonly mentioned rebuttal for the implementation of AI based algorithms is the so called 5 

“black box” problem, where the clinician is blinded to the “reasoning” behind the model’s prediction. 6 

(45) Visualization techniques such as heatmaps could improve the acceptance of fracture 7 

detection systems in the clinical practice.  8 

 9 

Conclusion 10 

This study found that our AI model can accurately identify anomalies suggestive of thoracolumbar 11 

vertebral fractures in sagittal radiographs. Specifically, an adapted version based on ResNet18 12 

achieved a similar performance compared to other models, and those reported of expert surgeons 13 

and radiologists. Additionally, it also highlighted a human error made during the annotation 14 

process. Applying this AI model to minimize diagnostic errors in fracture detection in sagittal 15 

radiographs of the TL vertebra seems plausible.   16 
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