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ABSTRACT

Background: The emergence of novel, potentially vaccine-resistant strains of SARS-CoV-2
poses a serious risk to public health. The interactions between passengers and drivers facilitated
by rideshare platforms such as Uber are, essentially, a series of partially standardized, random
experiments of SARS-CoV-2 transmission. Rideshare companies share data with government
health agencies, but no statistical method is available to aggregate these data for the systematic
study of the transmission dynamics of COVID-19.

Methods: We develop a proof-of-concept model for the analysis of data from rideshare
interactions merged with COVID-19 diagnosis records. Using simulated data with rideshare
volumes, disease prevalence, and diagnosis rates based on a large US city, we use the model to
test hypotheses about the emergence of viral strains and their transmission characteristics in the
presence of non-pharmaceutical interventions and superspreaders.

Findings: Data from 10 simulated trials of SARS-CoV-2 propagation within the Los Angeles
rideshare network resulted in an average of 190,387.1 potentially infectious rideshare
interactions. Assuming access to data on 25% of the total estimated infections (Partial
Reporting), these interactions resulted in an average of 409.0 diagnosed rideshare infections
given our transmission model assumptions. For each of the 10 simulated trials, analysis given
Partial Reporting could consistently differentiate between a baseline strain and an emergent,
more infectious viral strain, enabling hypothesis testing about transmission characteristics.

Interpretation: Simulated evaluation of a novel statistical model suggests that rideshare data
combined with COVID-19 diagnosis data have the potential to automate continued surveillance
of emergent novel strains of SARS-CoV-2 and their transmission characteristics.
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INTRODUCTION

The emergence of novel, potentially vaccine-resistant strains of SARS-CoV-2 poses a serious
threat to ongoing efforts to public health.' Policies to contain the spread of COVID-19 rely on
understanding what such strains mean for the risk of transmission and how they may impact
optimal strategies to contact trace, test, quarantine, and vaccinate.”® Important factors include the
infectivity of new viral strains, the onset of infectivity relative to symptom onset, the use and
effectiveness of non-pharmaceutical interventions (NPIs) such as facemasks and hand sanitizer,
and the prevalence of superspreaders in the population.>”* Beyond SARS-CoV-2, such
considerations will remain relevant for future pandemics.

The study of the transmission of SARS-CoV-2 has been constrained primarily to specialized
settings such as laboratory experimentation, by examining infections in ships, hospitals, and
military facilities, and through placebo-controlled vaccine clinical trials.”'* The usefulness of
these data is limited by the difficulty of translating the results to other settings and the emergence
of new viral strains. Practical and ethical limitations to clinical trials and the challenges of
drawing causal inference from observational data limit the understanding of the real-world
transmission dynamics of COVID-19. Mobile phone applications for contact tracing gather
real-world data, but with limited information about the setting in which the interaction took
place. Aerosolized viral dynamics within cars have been studied,"” and rideshare companies
already share data with government health agencies for contact tracing,' but to the best of our
knowledge no statistical method is available for the use of these data for the systematic study of
the transmission dynamics of COVID-19.

The interactions between passengers and drivers facilitated by rideshare platforms such as Uber
and Lyft are, essentially, a series of partially controlled, standardized, random experiments of
SARS-CoV-2 transmission. Rideshare trips are often the only connection between individuals;
are governed by mask-wearing policies implemented on specific dates; occur in a relatively
controlled environment with fairly consistent spatial dynamics; and are sporadic with respect to
time, location, and duration. Rideshare location and time data are stored in a machine-readable
format that could be linked to data such as diagnoses or self-reported symptoms (anonymized in
accordance with local legislation). Rideshare trip data may facilitate the automated identification
of the emergence of new viral strains and the study of their transmission dynamics, with and
without the presence of NPIs, and based on passenger and driver characteristics.

The unknown and potentially low “signal-to-noise” ratio of detected-to-undetected cases in a
rideshare network presents a challenge for the usefulness of a statistical method of rideshare data
merged with diagnoses data.'” The potential utility of such a method depends on its performance
detecting rideshare-acquired infections while accounting for “false positives” rideshare
interactions that appear to have resulted in transmission even though the potential infectee
contracted the virus elsewhere.

We develop Rideshare Infection Detection (RIDE), a probabilistic model of rideshare
transmissions designed to test hypotheses about the emergence of novel strains of SARS-CoV-2
and their transmission dynamics. Since such aggregated data are not available, we simulate viral
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transmission data in a hypothetical rideshare network based on empirical data from a large US
city. We use these simulated data to test hypotheses about transmission dynamics, while
assuming access to only the kinds of data that may be available in practice.
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METHODS

Overview:

We use an established mathematical model of viral transmission, adapted to rideshare
interactions, to estimate the probability of a rideshare trip resulting in infection. We use empirical
data from Los Angeles (LA) COVID-19 records and rideshare-use statistics during quarantine to
generate synthetic rideshare infection patterns by simulating the propagation of the virus through
a rideshare network. We use these synthetic data to evaluate the power of RIDE to test
hypotheses regarding the factors most influential for COVID-19 disease spread.

Mathematical model of transmission:

We estimate patient infectivity relative to symptom onset with a general mathematical model of
viral transmission adapted with SARS-CoV-2-specific parameter estimates from the
literature.”'®"® Probability-of-infection functions incorporating ride duration and ride timing
relative the infector’s symptom onset are derived for unique passenger-to-driver and
driver-to-passenger transmission dynamics. We define four hypothetical scenarios of
transmission (Table 1). Scenario viral variant A assumes facemasks are not used and that there
are no superspreaders. This serves as the baseline. In scenario viral variant A with masks, we
represent masking with a 50% reduction in viral particle exchange between infector and potential
infectee. In scenario viral variant A with superspreaders, we introduce infectivity asymmetry in
the population, with one in 20 infected individuals having a 5-fold higher probability of
transmitting SARS-CoV-2.% In scenario viral variant B, based on research detailing the emergent
D614G SARS-CoV-2 strain, we introduce a viral variant with 300% higher viral load relative to
the baseline viral variant A (Supplementary section II).’

Synthetic rideshare transmission data:

We generate synthetic data to represent the data that may become available if public health
agencies partner with rideshare companies. The characteristics of urban rideshare networks,
COVID-19 diagnoses, and estimates of the fraction of cases represented by the diagnoses from
March 17th to October 3rd (200 days) in Los Angeles county (LA) were derived from the
literature (Supplementary section II1).> > LA rideshare volume, with an estimated 75%
reduction during periods of quarantine, was simulated.” The total number of infections in LA
was assumed to be twice the number of infections reported over the period considered.**** The
number of infections as a fraction of the population of LA was used as the probability that each
person in the simulation was infected outside the rideshare network. Each network was
initialized by assigning a day of symptom onset to randomly selected passengers and drivers,
with the number of infections proportional to the estimated historical number of infections
reported 3 days later, to account for the average delay between symptom onset and testing.”® The
time of symptom onset was chosen from a normal distribution calibrated based on empirical LA
diagnoses data.

For each interaction involving an infected individual, the probability of infection,
passenger-to-driver or driver-to-passenger, was calculated using the parameter set corresponding
to the viral scenario being tested. The interaction results in an infection based on a draw from a
Bernoulli random variable with probability of success equal to the calculated probability of
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infection. For those infected, an incubation period was drawn from a probability distribution and
subsequent symptom onset time assigned (Supplementary section III).

From simulation, we derive data representative of the empirical data that would be available to
an epidemiologist. We consider a Partial Reporting scenario with access to diagnosis and
symptom onset data for 25% of infections and a Full Reporting scenario in which data are
available for all infections (Supplementary section III).

Hypothesis testing with RIDE:

Using only the data that would be available to an epidemiologist (neither undiagnosed infections
nor information on the origin of each diagnosed infection), we introduce Rideshare Infection
Detection (RIDE) to analyze the simulated rideshare infection patterns in order to calculate the
number of expected infections and the number of observed infections (Figure 1).

We use a simulation to generate data using the parameters for viral variant A and analyze the
results under the assumption that the data were generated with parameters corresponding to each
scenario considered.

Using the synthetic data produced via simulated propagation of viral variant A, we test
hypotheses about which scenario (viral variant A, viral variant A with masks, or viral variant B)
corresponds to the number of apparent rideshare infections in the network. For each scenario, we
use the parameter set corresponding to the scenario being tested and knowledge only of
diagnosed infections to calculate the Expected number of rideshare infections, equal to the sum
of the probabilities of infection across all potentially infectious rideshare interactions (i.e. the
sum of the expected values of the Bernoulli distributions). The observed number of infections is
determined by counting the number of interactions in which a diagnosed individual within their
infectious window shared a rideshare vehicle with a potential infectee who had a positive
diagnosis with symptom onset between 1.5 and 10 days following the rideshare trip. This
observed number is adjusted to account for the percentage of cases diagnosed (this diagnosis
percentage is assumed known) and for an estimation of the average number of “false
positives”—interactions that appeared to have resulted in an infection even though the infectee
was infected elsewhere—given the overall infection density in the network (Supplementary
section IV). For each respective level of reporting (Full vs. Partial Reporting), this simulated
propagation and analysis with RIDE was repeated 10 times to determine the impact of
transmission stochasticity and rideshare network variability. Across the 10 simulations, the
differences in the expected number of passenger-to-driver infections (given each set of
hypothesized parameters) and the observed number of passenger-to-driver infections are
compared with a pairwise Kruskal-Wallis test.

Separately, two synthetic rideshare infection patterns were simulated and compared: propagation
of viral variant A and propagation of viral variant A with superspreaders. For each round of
analysis, the difference was calculated between the number of observed passengers infected per
infectious driver in the superspreader scenario minus the non-superspreader scenario. This was
repeated 10 times each for Partial and Full Reporting and the resulting distributions were
compared with the Kruskal-Wallis test. All p-values were adjusted for multiple testing.
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All simulated viral propagation and analysis with RIDE were performed with R (Version 4.0.3,
2010; Vienna, Austria), and executed with Stanford’s Sherlock High-Performance Computing
Cluster.
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RESULTS:

Mathematical model:

Differences in viral strains and the alternative hypothetical propagation scenarios lead to
significant differences in the probability of rideshare SARS-CoV-2 infection. Relative to the
baseline scenario (viral variant A) probability of infection given a 20 minute ride with a
passenger one day before symptom onset, the probability of the driver being infected is 51%
lower when both driver and passenger are masked (scenario viral variant A with masks), 480%
higher if the passenger is one of the more infectious individuals from scenario viral variant A
with superspreaders, and 342% higher if the passenger has viral variant B (Figure 2).

Synthetic rideshare transmission data:

The simulation was initiated with a baseline infection probability of 528,828 out of 10 million,
twice the 264,414 reported infections in LA county during this period. Data from 10 simulated
trials of SARS-CoV-2 propagation within the Los Angeles rideshare network resulted in an
average of 190,387.1 (range 187,898 to 193,645) potentially infectious rideshare interactions,
encompassing possible passenger-to-driver and driver-to-passenger transmissions. When these
ten simulated trials were propagated assuming SARS-CoV-2 transmission parameters
corresponding to viral variant A, there were an average of 409.0 (range 384 to 424) rideshare
infections resulting in a diagnosis for the Partial Reporting scenario, and 1,666.4 (range 1614 to
1698) rideshare infections for the Full Reporting scenario.

Hypothesis testing with RIDE:

Across 10 trials of propagation with viral variant A followed by hypothesis testing with RIDE
given Partial Reporting, the difference between the number of expected minus observed
passenger-to-driver rideshare infections was 16.7 (range -54.4 to 78.8) for viral variant A
without masks or superspreaders; -61.0 (range -130.3 to 0.2) for viral variant A with masks
without superspreaders; and 294.9 (range 224.8 to 371.4) for viral variant B without NPIs or
superspreaders (all adjusted p-values < 0.001). The results were qualitatively similar in the Ful/
Reporting scenario, with greater differences, less variation, and a higher level of significance

(Figure 3).

For the secondary investigation comparing analytical results given simulated propagation of viral
variant A with superspreaders instead of viral variant A, the mean observed number of drivers
that infected exactly one passenger was 9.2 (range 29 to -6) lower than expected and the mean
number of drivers that infected exactly two passengers was 1.8 (range -8 to 7) higher than
expected for Partial Reporting. The results were qualitatively similar in the Full Reporting
scenario, with greater differences (Figure 4). In both the Full and Partial Reporting scenarios,
the combined data from the ten trials led to a significant difference in the distributions (Full
Reporting p <0.001, Partial Reporting p < 0.05).


https://doi.org/10.1101/2021.05.07.21256856

medRxiv preprint doi: https://doi.org/10.1101/2021.05.07.21256856; this version posted May 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Safranek 8

LIMITATIONS:

The primary limitation of this work is the use of synthetic data. We do not study potential
systematic infectivity differences between diagnosed and undiagnosed individuals, nor possible
non-uniform diagnostic testing and reporting rates between drivers and passengers, nor between
neighborhoods within cities. RIDE depends on estimates of the fraction of all cases that have
been diagnosed and requires infected individuals’ symptom onset time relative to diagnosis,
which may not be consistently recorded. However, this is a proof-of-concept whereas access to
data from multiple cities along with detailed participant characteristics may be sufficient to
overcome or mitigate these limitations.
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DISCUSSION:

Using synthetic data generated based on empirical data from Los Angeles ridesharing and
COVID-19 infections, we show that analyses of rideshare data may allow for the effective
identification of the emergence of new strains of SARS-CoV-2 and the study of their
transmission characteristics. Our analyses show that such an approach may be effective when as
few as 25% of infectious individuals have been identified and suggest that further investigation is
warranted for the development of such a system at the national scale and with access to more
detailed data.

We demonstrate that research-based estimates for the range of SARS-CoV-2 transmission
parameter values leave significant uncertainty in transmission modeling, leading to substantial
variability in probability-of-infection predictions for a typical rideshare interaction. We
demonstrate the ability of RIDE to differentiate between values within this estimated range,
thereby enabling measured appraisal of: the emergence of more infectious viral strains; the
effectiveness of Uber and Lyft’s nationwide mask mandates for all drivers and passengers; and
the presence of superspreaders in the population. Straightforward expansions of RIDE could be
used to evaluate the effectiveness of vaccines against newly emerging viral strains as well as to
estimate their transmission characteristics such as patient infectivity relative to symptom onset;
the effectiveness of other NPIs beyond simply masks; the prevalence and dynamics of
passenger-to-passenger infections due to shared surface contact and leftover aerosols in the
vehicle; and whether vaccinated individuals can still spread the virus. These models paired with
the communication features of rideshare platforms could facilitate a largely-automated “radar”
for contact tracing and targeted testing.’

Enhanced understanding of SARS-CoV-2 transmission dynamics through the use of mobile
technology enjoys wide public and private support. Tens of millions of people have adopted
technology developed by companies such as Apple and Google that use Bluetooth for a rapid
notification system of potentially exposed users based on anonymously collected proximity
data.’”** However, these systems depend on probability-of-infection interaction modeling that is
hindered by variable settings and uncertainty about SARS-CoV-2 transmission characteristics.*
Better estimates of SARS-CoV-2 parameters derived from interactions in more standardized
settings could inform such efforts.

The US Center for Disease Control and Prevention may have grounds to require rideshare dataset
access so that it can be merged with the list of positive COVID-19 cases, vaccination records,
and other relevant data. The case has been made for digital disease surveillance that maintains
considerations of ethics and patient privacy.’' Large rideshare companies such as Uber and Lyft
are already sharing data with public health officials for contributing tracing, but no standardized
analytics framework is available to aggregate and derive insights from these data.'® While
logistics—the details of which are beyond the scope of this article—for the merging of rideshare
and infection data are complex, it could be accomplished in an anonymous fashion given careful
data processing.
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CONCLUSION:

The rideshare network of exposure is unlike any other, with tens of millions of potentially
infectious connections between individuals worldwide. Unlike more general cellphone-based
contact data, rideshare contacts occur in relatively similar conditions, are sporadic and
demographically diverse, and are almost always the only node connecting potential transmission
between individuals. As demonstrated via simulations of COVID-19 propagation through Los
Angeles’ rideshare network, viral strains with differing SARS-CoV-2 transmission parameters
lead to detectably different patterns of infections, even in the presence of limited diagnostic
information. Analyses of rideshare data combined with diagnoses records could facilitate an
automated, local approach for the detection and investigation of emergent novel strains and the
transmission characteristics of SARS-CoV-2 and future pandemics.
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Table 1. Hypothesized sets of SARS-CoV-2 transmission parameters and
probability of infection for populations with differing transmission

characteristics.

Estimates from Viral variant A Viral ‘éa”.ant
literature
Parameters —mean[95% | Nomasks, | Masks,no | Nomasks, | No masks,
C‘_)”ﬁdence no super- super- 5% super- | nosuper-
intervall spreaders |spreaderst | spreaderst | spreaders
Viral expulsion relative to viral variant A— % Not available 100% - - 300%
Viral exchange reduction due to NPIs — % Not available - 50% - -
Infectivity of superspreader relative to .
v . p - . Not available - - 500% -
baseline viral variant A — %
Days infectious before symptom onset —
Y ymp 2.3[0.8-3.0] 23 23 23 3
days
Peak infectivity relative to symptom onset—
y SOl 07[-2002]  -07 0.7 0.7 -2
days
probqbility of passenger-to-driver infection from 200 min ) 15% 0.7% 7 40% 2.8%
ride w/ passenger on day of symptom onset — %
probability of driver-to-passenger infection from 20 min ) . 5 3 "
ride w/ driver on day of symptom onset — % 2.9% 1.5% 14.70% 5.6%

*Adjusted for via gamma infectivity distribution shape and scale parameters. TPassenger and driver both

wearing masks, blocking 50% of viral particle exchange. $Assumes 5% of infected individuals are
superspreaders and 95% of infected individuals are non-superspreaders; non-superspreaders are 78.9% as

infectious as baseline individuals with viral variant A.
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Figure 1. Simplified schematic of RIDE analytical method to identify potential and
observed infections. Observed infections are tabulated by counting individuals with
symptom onset following a potentially infectious rideshare interaction. The expected
number of infections is the sum of all potential infections, each weighted by its
probability. Arrow thickness for each potential infection corresponds to the
probability-of-infection magnitude, which is calculated given a mathematical model of
rideshare transmission that depends on ride duration, the timing of the ride relative to
the potential infector’s symptom onset, and the assumed SARS-CoV-2 transmission
parameters given the hypothesized scenario and viral variant.
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Figure 2. Modeled probability of transmission from passenger to driver. Probability
of infection changes significantly depending upon interaction dynamics (time of ride
relative to passenger’s symptom onset, and ride duration) and upon assumptions
defining the hypothetical SARS-CoV-2 transmission parameters (representing the
passenger’s viral variant, whether the passenger is a superspreader, and whether face

masks are used).

Probability of passenger-to-

driver transmission™®

8% "

6% 1

a
S

2%/

0% -

Superspreader,
viral variant A §

Viral variant B

Viral variant AT

Viral variant A, with masks+

' ' 1 6 i
Days relative to passenger’s
symptom onset

*Probability of driver infection given 20 min ride with infected passenger. TBaseline viral variant.

}Passenger and driver wearing masks, blocking 50% of viral particle exchange. §Superspreaders with viral
variant A are 500% more infectious than baseline individuals with viral variant A. TTAlternative viral variant B
is 300% more infectious than baseline and has different infectivity parameters within the previously

estimated 95% confidence intervals.
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Figure 3. Differences given 10 trials in the number of passenger-to-driver
infections expected and observed in the simulation based on analysis with
different hypotheses of SARS-CoV-2 transmission, according to the percent of
infections reported. Variability in results given analyses of 10 simulated synthetic
datasets resulting from SARS-CoV-2 propagation in Los Angeles when true propagation
conditions correspond to viral variant A with no masks and no superspreaders. For each
simulated dataset, and with access to only diagnosed infections, the epidemiologist
assesses the difference in the expected number of passenger-to-driver infections given
analysis with hypothesized parameters (assuming either viral variant A, viral variant A
with masks, or viral variant B) minus the adjusted number of observed rideshare
infections in the network. Each dot within a box-plot represents analysis results with the
given hypothesis for one round of Los Angeles simulation and analysis. Box-plot midline
represents the median of analysis results across the 10 trials, box edges show
interquartile range, and whisker tips show the minimum and maximum result values.
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*Observed infections adjusted to account for undiagnosed infections and baseline "false positive"
transmissions (Supplementary V).
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Figure 4. Differences in the number of passenger infections per driver in simulations with
and without occasional superspreaders, according to the percent of infections reported.
Variability in the differences between results given analyses of 10 simulated synthetic

datasets resulting from SARS-CoV-2 propagation of viral variant A in Los Angeles given

either a population with homogeneous infectivity (baseline, non-superspreader

scenario) or asymmetric infectivity (superspreader scenario, where 5% of infected

individuals are superspreaders).

A Differences in the number of passenger infections
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Box-plot midline represents the median of analysis results across the 10 trials; box edges show
interquartile range; whisker tips are minimum and maximum values; and black dot shows outliers, as

specified by Tukey.
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