
Optimal control of the spatial allocation of COVID-19 vaccines: Italy
as a case study

Joseph C. Lemaitre1,2*, Damiano Pasetto2, Mario Zanon3, Enrico Bertuzzo2, Lorenzo Mari4, Stefano
Miccoli5, Renato Casagrandi4, Marino Gatto4, Andrea Rinaldo1,6
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Abstract

While SARS-CoV-2 vaccine distribution campaigns are underway across the world, communities face
the challenge of a fair and effective distribution of limited supplies. We wonder whether suitable
spatial allocation strategies might significantly improve a campaign’s efficacy in averting damaging
outcomes. To that end, we address the problem of optimal control of COVID-19 vaccinations in a
country-wide geographic and epidemiological context characterized by strong spatial heterogeneities
in transmission rate and disease history. We seek the vaccine allocation strategies in space and time
that minimize the number of infections in a prescribed time horizon. We examine scenarios of
unfolding disease transmission across the 107 provinces of Italy, from January to April 2021,
generated by a spatially explicit compartmental COVID-19 model tailored to the Italian geographic
and epidemiological context. We propose a novel optimal control framework to derive optimal
vaccination strategies given the epidemiological projections and constraints on vaccine supply and
distribution logistic. Optimal schemes significantly outperform the explored alternative allocation
strategies based on incidence, population distribution, or prevalence of susceptibles in each province.
Our results suggest that the complex interplay between the mobility network and the spatial
heterogeneities imply highly non-trivial prioritization of local vaccination campaigns. The extent of
the overall improvements in the objectives grants further inquiry aimed at refining other possibly
relevant factors so far neglected. Our work thus provides a proof-of-concept of the potential of
optimal control for complex and heterogeneous epidemiological contexts at country, and possibly
global, scales.

Author summary

The development of vaccines has sparked high hopes towards the control of SARS-CoV-2 1

transmission without resorting to extensive community-wide restrictions. A fundamental unanswered 2

question concerns the best possible allocation of a limited vaccine stock in space and time given a 3

specific goal. We address this through an optimal control framework based on a reliable spatially 4

explicit COVID-19 epidemiological model, where vaccine distribution is optimized under supply and 5

deployment capacity constraints. This tool provides strategies for optimal allocations in different 6

scenarios, yielding important improvements over considered alternatives. By accounting for spatial 7
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heterogeneities and human mobility networks, the presented approach complements currently used 8

allocation methods based on criteria such as age or risk. 9

Introduction 10

Supply- or deployment-limited SARS-CoV-2 vaccines [1] pose the urgent question of a fair 11

distribution of the available doses [2]. Current prioritization approaches typically target groups at 12

higher risk of severe outcomes [3, 4], or their indirect protection by vaccinating those with higher 13

disease transmission [3, 5, 6]. Our main hypothesis is that taking into account spatial heterogeneities 14

in disease transmission when designing prioritization strategies significantly improves the 15

effectiveness of vaccination campaigns. However, the distribution of doses inside each country is 16

limited by the logistic capabilities of the healthcare network and the rate at which the vaccine stock 17

is replenished. Decisions concerning the best allocation strategies are to be taken under these 18

constraints. Moreover, both the complex coupling between regions due to human mobility and the 19

spatial heterogeneities in disease history and control interventions make the discovery of such 20

optimal allocation strategies an arduous task. 21

We propose an optimal control framework to explore COVID-19 vaccine distribution in space and 22

time. We study the SARS-CoV-2 epidemic in Italy, where strong spatial effects arise from the 23

geography of the disease, heterogeneous lockdown exit strategies, and post-lockdown control 24

measures [7]. The optimal control framework is applied to a spatial model that has proved its 25

reliability for Italy [8, 9], whose parameters are here sequentially updated through the assimilation of 26

a year-long epidemiological record. This allows us to unravel the best possible vaccination strategy 27

and probe the impact of vaccine allocations over the 107 Italian provinces. 28

The problem of vaccine allocation is of primary importance for public-health officials, 29

epidemiologists, and economists [10,11]. Roll-out strategies are conventionally based on the 30

prioritization of individuals at risk, such as health workers and elderly people [12–15]. However, the 31

heterogeneous ways in which different regions may be affected by each successive wave raise 32

questions about spatial prioritization strategies. What is the best feasible spatial allocation, given 33

supply and logistic constraints? Would that differ significantly from current non 34

geographically-optimized plans? Should vaccines be distributed on the basis of demography or would 35

it be better to prioritize areas currently subject to an outbreak? How relevant are the susceptibility 36

profile and modelled future transmission in each region? 37

Epidemiological modeling has long been used to answer questions about the impact of 38

vaccination campaigns, often by comparing outcomes under different scenarios [16,17]. Optimization, 39

i.e, the search for the best possible course of action that maximizes or minimizes an objective metric, 40

has been carried out theoretically since the seventies [18–20]. Recent dramatic improvements of both 41

algorithms [21] and computational power prompted applied studies using different methods to 42

rigorously find optimal mitigation strategies [22–24]: most of the time trough iterative parameter 43

search [25,26], but also using genetic algorithms [27], greedy algorithms [28] or solving the 44

Hamilton-Jacobi-Bellman equations [29,30]. 45

Interesting developments have recently arose during the ongoing SARS-CoV-2 46

pandemic [13,31,32]. The urgency of effective vaccination campaigns led to the development of 47

modeling frameworks for the optimization of vaccine allocation, based on age or risk [3, 4, 12,13], 48

space [33], dose timing [34,35], and the deployment of testing resources, using optimal control [36] or 49

Bayesian experimental design [37], along with prioritization based on social contact networks [38]. 50

To our knowledge, optimal spatial allocation of COVID-19 vaccines at a country scale has never 51

been performed yet. This question is distinct from, and complementary to, risk-based prioritization. 52

Spatial heterogeneities in disease transmission are complex, as seen during the initial 53

outbreaks [8, 9, 39], supporting the significance of the posed problem towards an effective control of 54

the epidemic. However, the connectivity network underlying spatial epidemiological models may 55

generate complex large-scale control problems whose solution requires tailored formulations and 56

efficient algorithms. 57
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This work aims to find optimal strategies for this problem through modern optimization methods 58

based on distributed direct multiple shooting, automatic-differentiation, and large-scale nonlinear 59

programming [40–43]. This allows us to solve the large-scale optimization problems arising from 60

epidemiological models, even when considering hundreds of spatial nodes. 61

Materials and methods 62

The formulation of the optimal control problem has three main components: 1) an objective function 63

to be minimized, here the number of new infections; 2) the spatial epidemiological model [8, 9] 64

governing the transmission dynamics with the daily vaccination rates in each province as control 65

variables; and 3) the set of constraints that the control must satisfy, in our case the limitations on 66

vaccine administration rate in each province and the total vaccine stock in Italy. 67

1) Objective function. Optimizing calls for a metric, whose selection is critical in determining 68

the optimal solution and its outcome. The choice of an objective function relates health, economy, 69

and ethics. Possible candidates are the minimization of e.g. DALYs (the Disability-Adjusted Life 70

Years), the number of deaths, disease exposure, and economic loss [44]. All these objectives are 71

linked and may be combined together. As the model considered for this work does not have 72

risk-classes, we optimize for the minimization of the incident infections in Italy from January 4, 2021 73

to April 4, 2021. Minimization of the deaths would yield the same results under the assumptions the 74

model used. 75

2) Epidemiological model. Incidence and deaths are projected using the spatially distributed 76

epidemiological model devised by Gatto et al. [8] and further improved by Bertuzzo et al. [9]. The 77

model subdivides the Italian population into its 107 provinces represented as a network of connected 78

nodes. Each province has local dynamics describing the number of individuals present in each of the 79

model compartments: susceptible S, exposed E, pre-symptomatic P (incubating infectious), 80

symptomatic infectious I, asymptomatic infectious A, hospitalized H, quarantined Q, recovered R, 81

and dead D. A tenth compartment, vaccinated individuals V , is added to the original nine, as shown 82

in Figure 1A. 83

Except those in H, Q, D or I states, a fraction of individuals commutes between provinces along 84

the mobility network, thus we introduce node-to-node disease transmission along the network shown 85

in Figure 1B. 86

Compartments P , A, and I have different degrees of infectiousness and contribute to the force of 87

infection (Equation SI (S3) and SI (S4)), which represents the rate at which susceptibles S become 88

infected and, thus, enter the exposed compartment E. The force of infection in each province has a 89

local and a mobile component. The local component describes transmission among the individuals 90

that do not leave the node. The mobile component considers that local susceptibles may enter in 91

contact with infected individuals that are traveling, and oppositely, susceptible commuters may 92

become infected through contact with local infected. Connected provinces contribute to this process 93

depending on the strength of the mobility fluxes from and to the node of interest. These mobility 94

fluxes change in time due to the governmental policies introduced to reduce transmission among 95

regions (more details about the data used to construct the mobility network and its use in the model 96

are presented in the SI and in [8]). 97

The epidemiological model, previously calibrated during the first wave of COVID-19 in 98

Italy [8, 9], is updated up to January 4, 2021 using an iterative particle filtering, which infers the 99

regional transmission on a moving temporal window of two weeks. This data assimilation scheme 100

allows us to capture the second wave of infections that hit Italy in the Fall of 2020, a necessary 101

requirement to generate model projections that take into account the whole epidemic history, as 102

shown in Figure 2. In our approach, model projections are described by an ensemble of a hundred 103

trajectories associated with different parameters, whose distributions quantify the model uncertainty. 104

We consider two projection scenarios characterized by two possible rates of epidemic transmission, 105
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Fig 1. Model setup. (A) Diagram representing the compartments of the epidemiological model and the possible
transitions in a single province. We control for the vaccination rate (teal arrows), aiming at minimizing incident
infections (pink arrow). Individuals in compartments outside of the yellow block are able to move along the mobility
network shown in (B), hence the force of infection in a province is coupled to the dynamics of other connected
provinces. To reduce the problem to a tractable size, we only consider the most important connections (red edges)
when optimizing, but we use the full network (red and grey edges) to assess our strategies. A discussion on the effect
of this simplification is provided in SI. Nodes size and color display each province’s population, and edges width shows
the straight of the coupling between each pair of province.

see Figure 2. The ”Optimistic” scenario assumes a constant lowering of transmission from January 4, 106

2021 to April 4, 2021; the ”Pessimistic” scenario considers a gradual increase in transmission until 107

mid February 2021, which results in a third wave. 108

The control variable is the vaccination rate in each province. We assume one-dose vaccines with 109

instantaneous 100% efficacy while in reality the vaccine efficacy and immunity duration depends on 110

the vaccine type. As we focus on spatial patterns and differences among vaccination strategies for a 111

given supply, this assumption does not affects the conclusion of our work. Finally, we impose that 112
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Fig 2. Data assimilation and scenarios for optimization. Comparison between the model outputs (95%
confidence interval (CI) of the ensemble, blue shaded area) and the corresponding epidemiological data (red circles,
obtained from the bulletins of the Dipartimento della Protezione Civile, https://github.com/pcm-dpc/COVID-19)
from March 2020 to January 2021. The orange and green shaded area respectively show the ensemble dynamics (95%
CI) of what we called pessimistic and optimistic transmission scenarios from January to April. The optimal vaccination
strategy in the optimistic (or pessimistic) scenario is computed with respect to the the continuous green (or orange)
line, representing the model trajectory obtained using the median of each ensemble parameter. (A) The data on the
daily hospitalizations is estimated as described in [9]; this data at the regional level is assimilated on a moving window
of 14 days to update the model parameters describing the local transmission rates (see SI). (B) Daily number of newly
exposed individuals versus the reported positive cases. Note that the large discrepancy between model and data
during the first wave is due to the low testing capacity at the beginning of the epidemic (C) Daily number of deaths.

vaccine protection persists during the three months of projection considered. 113

For each scenario, the optimal control problem is solved for one reference model trajectory, whose 114

parameters and state on January 4, 2021 are obtained as the median values of the 100 model 115

realizations. In this way, the reference trajectory approximately represents the ensemble median in 116

each province. Then, we assess the effectiveness of the optimal allocation on the full ensemble of 117

trajectories. 118

3) Constraints We define two types of constraints: supply constraints, which determine the 119

weekly delivery to the national stockpile; and logistic constraints, which limits the maximum rate of 120

local vaccine distribution in each province. 121

The supply constraints ensure that the model does not distribute more vaccine than what is 122

actually available in stock. We assume that the national supply of vaccine doses is empty on January 123

4, 2021 and is replenished every Monday. We consider four scenarios with weekly deliveries of 125’00, 124

250’000, 479’700 (realistic, baseline value) and 1M vaccine doses (additional scenarios with 1.5M and 125

2M doses delivered are shown in SI). 126
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From the national stockpile, doses may be allocated to any of the 107 Italian provinces, but the 127

logistic constraints limit the rate at which it is possible to distribute the vaccines in each province. 128

We assume that the maximum number of individuals who can be vaccinated in a province per day is 129

proportional to the province’s population, such that the national maximum distribution capacity 130

equals 500,000 doses per day, i.e., 3.5M per week if every province vaccinates at its maximum rate 131

(which in retrospect is close to Italy’s vaccination rate as of May 1st). 132

The objective, the model, and the constraints may be tailored to specific applications within the 133

proposed framework. 134

Using state-of-the-art linear algebra solvers and automatic differentiation, we solve each scenario 135

(optimistic and pessimistic, with different weekly stockpile deliveries) for the optimal vaccination 136

allocation. 137

Optimal control problem formulation 138

We provide a brief methodological description of the optimal control framework. The full equations 139

are derived in the SI, along with implementation details and the source code. 140

We denote n the number of spatial nodes (n = 107 provinces in Italy) and m the number of 141

epidemic states in our model (m = 9 states). We denote as x(t) ∈ Rn×m
+ the state of the system, i.e., 142

x(t) is a vector containing the epidemic variables Si(t), Ei(t), Pi(t), Ii(t), Ai(t), Qi(t), Hi(t), Ri(t), 143

Vi(t) for every province i = 1, ..., n. We define v(t) = (v1(t), ..., vn(t)) ∈ Rn
+, representing the rate of 144

vaccine rollout for every node i at time t, as our control variable. The epidemiological model can be 145

described by the following system of ordinary differential equations coupling disease transmission 146

among all provinces: 147

ẋ(t) = F (x(t), v(t)) (1) 148
149

The national incidence, i.e., the sum of new infections in all provinces at time t, is selected as the 150

cost function, L(x(t), v(t)). Given our system with states x subject to the dynamics (1) and controls 151

v, the optimal control problem is formalized as: 152

min
v(·)

∫ T

0

L(x(t), v(t)) dt (2a) 153

s.t. x(0) = x̂0, (2b) 154

ẋ(t) = F (x(t), v(t)), ∀ t ∈ [0, T ], (2c) 155

H(x(t), v(t)) ≤ 0, ∀ t ∈ [0, T ], (2d) 156
157

where we aim at minimizing the cost function over the control horizon T , while enforcing the 158

modeled SARS-CoV-2 transmission dynamics (Equations (2b) and (2c)). Moreover, the constraints 159

imposed by vaccine availability and the maximum vaccination rate are lumped in function H that 160

expands to 161

vi(t) ≥ 0, i ∈ In1 , (3a) 162∫ td+1

td

vi(t) dt ≤ vmax
i ∝ Ni, i ∈ In1 , td ∈ IT0 , (3b) 163∫ t

0

n∑
i=1

vi(t) dt ≤ D(t), ∀ t ∈ [0, T ], (3c) 164

165

where time is measured in days, and Iba is the set of all integers a ≤ k ≤ b. Equation (3a) enforces 166

that one can only distribute a non-negative amount of vaccine doses. Equation (3b) states the 167

logistic constraints, which limit to vmax
i the amount of individuals that can be vaccinated each day 168

in each node; here td is the time at which each day starts. We impose that the daily vaccination 169

capacity of each province is proportional to its population size Ni, assuming a fair distribution of the 170
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sanitary infrastructure among provinces, as shown in SI (Figure S2). The constraint on the national 171

stockpile is materialized by Equation (3c), which ensures that the total vaccine allocation across all 172

nodes does not exceed the stockpile D(t). The stockpile is replenished every Monday by the delivery 173

of new vaccines, hence D(t) is a staircase function. For an overview of the possible solution 174

approaches for optimal control problems we refer the interested reader to [45,46]. In particular, in 175

this work, we use a variant of direct multiple shooting [40] tailored to distributed systems [41]. We 176

solve the optimal control problem in Equation (2) by a direct method, also called first discretize, 177

then optimize, which transforms the control problem into a nonlinear programming problem. We 178

split our time window [0, T ] into N intervals [tk, tk+1], and we denote as xk = x(tk) the states at 179

time tk, and as vk the controls in interval [tk, tk+1]. The continuous-time dynamics F in Equation 180

(1) are transformed by numerical integration into the discrete-time operator f by numerical 181

integration. This discretization requires some care, and details are provided in the SI. We thus 182

obtain the following nonlinear programming problem: 183

min
x,v

N−1∑
k=0

l(xk, vk) (4a) 184

s.t. x0 = x̂0, (4b) 185

xk+1 = f(xk, vk), k ∈ IN−1
0 , (4c) 186

H(xk, vk) ≤ 0, k ∈ IN−1
0 . (4d) 187

188

189

Nonlinear programming problems may be solved by readily available solvers using the primal-dual 190

interior point method. The main difficulty in solving the proposed nonlinear programming problem 191

(4) is the large dimension of the system and the non-linearity of the model. In order to bring the 192

problem to a tractable form, we introduce three simplifications: (a) vaccines are administered 193

instantaneously at the beginning of each day, rather than with a constant rate over the whole day; 194

(b) the component of the force of infection taking into consideration the mobility of individuals across 195

provinces is evaluated at the beginning of each day and remains constant through the day; and, (c) 196

the mobility network is simplified, by keeping only the most important connections (see Figure 1), 197

thus increasing the sparsity of the underlying spatial connectivity matrix. These simplifications 198

deliver a significant computational advantage, and we verified that the impact on the model accuracy 199

is limited. Note that, even if the optimal strategy is computed using the simplified model, its impact 200

in terms of averted infections (shown in Results) is evaluated using the full epidemiological model 201

without any of these simplifications. A more detailed discussion on this subject is provided in the SI. 202

The nonlinear programming problem arising from the simplified epidemiological model is 203

non-convex, and involves approximately 105 variables and 105 constraints. We formulate the 204

problem using CasADi [42] and solve it using Ipopt [43] with sparsity-exploiting linear algebra 205

solvers. In practice, solving the optimal control problem takes between two to four days on a 206

36-cores 2.3 GHz CPU. 207

Results 208

We obtain the optimal vaccination strategies for a set of eight scenarios drawn from the spatial 209

model from January 4, 2021 to April 4, 2021. These scenarios are a combination of two projection 210

scenarios (pessimistic vs optimistic) and four assumptions on the weekly stockpile delivery (125’000, 211

250’000, 479’700 or 1M doses delivered per week). In each scenario, the optimal solution is a 212

spatially explicit vaccine roll-out policy, i.e. an indication of the number of vaccine doses to be 213

deployed in each province each day. 214
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Comparison of vaccination strategies 215

Spatial prioritization based on epidemiological criteria, such as past [16] or future [17] incidence, has 216

been thoroughly used in real campaigns and prospective studies. 217

In order to measure the potential impact of the optimal allocation strategy, we compare it against 218

12 alternative approaches which distribute the available weekly vaccine doses among provinces. 219

These strategies uses an indicator variable to rank provinces, either i) their population; ii) the 220

number of susceptible (per inhabitant or absolute) individuals at the beginning of the projection; iii) 221

the future incidence (per inhabitant or absolute) as projected by the epidemiological model or iv) 222

constant, equal for all province. The incidence indicator ranking is updated to reflect the change of 223

each past decision. Then these strategies either focus on the provinces where the indicator is the 224

highest or allocate to all provinces proportionally to the indicator. Additionally, a greedy strategy 225

from the literature is presented [28]. In the main text, we present the results of optimal strategy, the 226

second best strategy overall (with indicator incidence per inhabitant and focused allocation) and 227

proportional strategy for incidence, susceptibility and population; the other analysis are left in the SI. 228

For each of the eight scenarios considered, we compute the number of averted infections with 229

respect to a zero-vaccination baseline, and the number of averted infections per vaccination dose (see 230

Table 1). In the optimistic transmission scenario, characterized by a recess of the epidemic, the 231

vaccination campaign has a lower impact on the averted infections per dose as only a small 232

percentage of the vaccinated individuals would have been at risk of transmission. As expected the 233

impact of the vaccination campaign is more evident in the pessimistic scenario where the optimal 234

strategy averts up to 2.54 million infections given a weekly stockpile deliveries of one million doses. 235

By virtue of the law of diminishing returns, the number of averted infections per dose decreases 236

(from 0.413 to 0.196) when increasing the weekly stockpile. 237

The optimal solution always outperforms all the explored alternative strategies in terms of the 238

number of averted infections and in terms of averted infections per dose allocated (see Tables 1, 1, 239

and 2). The alternative strategy focusing on the provinces with the largest incidence has results 240

close to the optimal strategy, with a difference of less than 10% in each scenario. Instead, other 241

strategies are significantly less effective. The improvement between optimal and incidence-based 242

(proportional) allocation is significant, ranging from 9.0% (pessimistic, 1M doses/week) to 27.4% 243

(optimistic, 125’000 doses/week). In Figure 3, the black diamonds represent the percentage of 244

averted infections obtained using each strategy for the reference trajectory, with respect to the 245

averted infections resulting from the optimal strategy. We observe that, in both the optimistic and 246

pessimistic scenarios, the optimal strategy has the largest relative benefits for the smallest stockpile. 247

In the pessimistic scenario (see Figure 3A), when 479’700 doses are available each week, the 248

averted infections associated with the optimal strategy in the reference projection are 0.272 per dose: 249

24.6 % more compared to the strategies based on population or susceptible distributions (0.205 250

averted infections per dose), and more than 14 % higher compared to the strategy based on the 251

projected incidence per inhabitant (0.232 averted infections per dose), while only 4% higher than the 252

focused incidence strategy. These differences are smaller but still significant when increasing the 253

weekly stockpile deliveries up to 1M doses; similar results are obtained also for the optimistic 254

transmission scenario (Figure 3B). 255

We recall that the optimal control strategy considered here is computed for a reference model 256

trajectory, which is the median of an ensemble of 100 realizations. To further investigate the 257

effectiveness of the optimal solution, we apply it to a subset of trajectories randomly sampled from 258

the ensemble. The box plots in Figure 3 display the main quantiles of the averted infections 259

computed for the ensemble of trajectories. We observe that the optimal strategy still yields better 260

results than the ensemble of projections related to the other strategies, thus suggesting that the 261

computed solution is robust even under the presence of perturbations in the forecasts of the epidemic 262

dynamics. More importantly, for each realization of the ensemble and for each projection scenario, 263

the optimal strategy systematically averts more infections than any of the other control strategies. 264

Our results suggest that it is possible to considerably increase the impact of vaccination 265

campaigns by optimizing the vaccine allocation in space and time. For this task, optimal control 266
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Weekly stockpile Vaccination Averted infections Averted infections
delivery strategy (Millions) per dose

Optimistic Pessimistic Optimistic Pessimistic

125’000 Optimal 0.146 0.672 0.0897 0.413
Incidence per hab.

(focused)
0.137 0.626 0.085 0.389

Incidence per hab.
(proportional)

0.106 0.509 0.0653 0.313

Susceptible per hab.
(proportional)

0.074 0.393 0.0456 0.242

Population
(proportional)

0.0691 0.387 0.0425 0.238

250’000 Optimal 0.228 1.1 0.0701 0.34
Incidence per hab.

(focused)
0.214 1.03 0.0666 0.321

Incidence per hab.
(proportional)

0.18 0.893 0.0554 0.275

Susceptible per hab.
(proportional)

0.139 0.734 0.0428 0.226

Population
(proportional)

0.132 0.735 0.0407 0.226

479’700 Optimal 0.334 1.7 0.0535 0.272
Incidence per hab.

(focused)
0.318 1.6 0.0515 0.259

Incidence per hab.
(proportional)

0.282 1.45 0.0452 0.232

Susceptible per hab.
(proportional)

0.24 1.28 0.0384 0.205

Population
(proportional)

0.232 1.29 0.0373 0.206

1M Optimal 0.484 2.54 0.0372 0.196
Incidence per hab.

(focused)
0.467 2.44 0.0363 0.19

Incidence per hab.
(proportional)

0.437 2.31 0.0336 0.177

Susceptible per hab.
(proportional)

0.401 2.15 0.0309 0.165

Population
(proportional)

0.399 2.18 0.0307 0.168

Table 1. Averted infections. Absolute number of averted infections and averted infections per dose during the
first three months of 2021 as evaluated for the reference trajectory (see Figure 2). The first column represents the
considered scenarios of weekly stockpile replenishment, i.e. the number of doses delivered to Italy every week, ranging
from 125’000 to one million.

provides the best possible strategy and sets a benchmark for the theoretical potential of a 267

vaccination campaign. 268

Analysis of the optimal vaccine allocation 269

The optimal vaccine allocation obtained as the solution of the optimal control framework is complex 270

to analyze, and we ought to do that by unraveling the mechanism behind its performance. The 271

strategy must obey the imposed logistic and supply constraints: 1) The vaccine stockpile is 272

replenished every Monday by a fixed amount of doses (e.g., 479’700 doses in the baseline scenario), 273

and 2) the maximum possible distribution capacity per province is limited, proportionally to the 274
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Fig 3. Comparison between different vaccine allocation strategies. Percentage of averted infections per
vaccine doses from January 4, 2021 to April 4, 2021 resulting from province-scale vaccine allocation strategies for both
the pessimistic (A) and the optimistic (B) scenarios based on the following vaccination strategies: the optimal solution,
proportional to the province population, proportional to the susceptible individuals, proportional to the projected
incidence, and focused on the provinces with the largest weekly incidence (see color codes in the legend). We optimize
the vaccine allocation for the reference trajectory (the median trajectory in the model projections, indicated as
diamonds in the figure), and assess the performance of the computed vaccination strategy over the whole posterior of
trajectories (boxen plots). For each projection scenario, results are normalized by the number of averted infections in
the reference solution (see Table 1 for the absolute values). Results for alternative scenarios and vaccination strategies
are shown in SI, Figure S9.

node population, so that the number of doses distributed across the country can be of 0.5M per day 275

at maximum (more details in SI Figure S2). 276

We display the optimal vaccination course in time for the pessimistic, 479’700 doses/week scenario 277

in Figure 4. We observe that the optimal allocation respects the two constraints on distribution 278

(Figure 4, A) and supply (Figure 4, B). We observe that no province is vaccinated at the maximum 279

possible rate during the whole campaign, and that provinces display a variety of vaccination 280

patterns. We also note that the vaccines received every Monday are always distributed during the 281

following week, but that the rate of delivery on a national level increases with time (Figure 4, B). 282

Surprisingly, the optimal solution favors precise targeting over speed of delivery, in order to allocate 283

more doses to those provinces where the impact of vaccines on the whole system is projected to be 284

higher. Hence, in order to control infections, precise targeting may trump delivery speed. 285

Furthermore, we observe in the optimal solution that every time a province is vaccinated, the 286

rate of vaccination is equal to the maximum rate allowed by the local logistic constraint, as it is the 287

case for any focused alternative vaccination strategies. In Figure 5, one can already see by visual 288
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Fig 4. Optimal vaccine allocation for the baseline, pessimistic scenario. (A) Cumulative proportion of vaccine
doses administered in the 107 provinces, (some of which are highlighted) . The local distribution rate is limited by a
rate that is proportional to population. This logistic constraint is visualized here as the maximum slope, equal for
every province. (B) Stacked cumulative absolute number of vaccines in the 107 provinces of Italy. The national
stockpile is shown in black, and is replenished every week (say on Mondays) with 479’700 doses. We display the name
of the provinces with a final allocation of more than 150’000 doses.

inspection that the optimal allocation distributes most of the available doses on a few provinces with 289

high incidence. These provinces are neither the most connected nor the most populous in Italy. The 290
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Fig 5. Spatial distribution patterns for the optimal allocation (left) and alternative strategies based on
population, incidence and susceptibility (additional alternative strategies are presented in SI). We show, for each
province and strategy, the proportion of vaccinated individuals (top), the number of averted infections per inhabitant
with respect to a no vaccination baseline (middle), and the proportion of individuals who are still susceptible at the
end of the control horizon (bottom).

optimal strategy makes then use of the information on the network connectivity to fine-tune the 291

allocation, and deploys the vaccination on more provinces than the incidence-based strategy. 292

To further investigate these patterns, in Figure 6A we display the number of administered doses 293

vs the incidence projected without vaccines (the proxy variables leading to the second-best control 294

performance), both normalized according to the resident population in each province. We observe an 295

allocation pattern whereby provinces with a higher incidence receive more vaccines. However, the 296

allocation is non-linear with respect to the projected incidence, suggesting that to better control the 297

epidemic, the optimal allocation strategy takes into account other factors such as the importance of 298

each province within the mobility network, as well as the proportion of susceptibles. When the 299

weekly stockpile delivery is increased, as shown in Figure 6B, this pattern shifts to the right while 300

remaining qualitatively consistent. Hence, the optimal allocation strategy is robust with respect to 301

the overall vaccine availability constraint, and the same nodes are prioritized. We provide scatter 302

plots with other covariates in SI (Figures S10–S11). 303

Discussion and Conclusion 304

Without any constraint on supply, each country would vaccinate its population as fast as possible 305

according to the available infrastructure. However limitations in vaccine supply and rate of delivery 306

are a reality for every country, hence the available doses should be deployed in space and time 307

following a fair and effective strategy. 308
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Fig 6. Analysis of the optimal solution (A) Vaccinated population according to the optimal strategy against
the projected incidence without vaccination, both normalized by provincial population size and considering the
scenario with a weekly stockpile delivery of 479’700 doses. (B) Same as in A, but considering all four scenarios of
weekly stockpile replenishment. Each dot represents a province, and the dot size is proportional to the population.

In stockpile-limited settings, like most current vaccination campaigns worldwide, careful 309

allocation may significantly increase the number of averted infections and deaths. The goal is to 310

distribute the vaccines where they have the strongest beneficial impact on the dynamics of the 311

epidemic. However, deriving an algorithm capable of computing spatially optimal allocation 312

strategies in real, heterogeneous settings is far from trivial and our approach is, to the best of our 313

knowledge, the first attempt in this direction. 314

We developed a novel optimal control framework that delivers the best vaccination strategy under 315

constraints on supply and logistics. This allows us to compute the allocation strategy that maximizes 316

the number of averted infections during a projection of the COVID-19 epidemic in Italy from 317

January 4, 2021 to April 4, 2021. Our results show that the optimal strategy has a complex structure 318

that mainly reflects the projected incidence of each province, but also takes into account the spatial 319

connectivity provided by the mobility network and the landscape of acquired population immunity. 320

Although the reason why this strategy is optimal is not immediately intuitive, our simulations clearly 321

outline its better overall performances over other, more straightforward strategies. This comparison 322

suggests that the simplicity underlying intuitive vaccination strategies may undermine their 323

effectiveness, and calls for complementing these simple approaches with rigorous and objective 324

mathematical tools, like optimal control, that allow a full account of the complexity of the problem. 325

With the present work, we show that it is possible to solve optimal control problems for spatially 326
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explicit dynamical models of infectious diseases at a national scale, thus overcoming the 327

computational limitations that, up to now, precluded this kind of applications. The proposed 328

framework can account for any compartmental epidemic model, with up to hundreds of connected 329

spatial nodes. Supply and logistic constraints can be adapted to the actual landscape of decisions 330

faced by the stakeholders, such as no/reduced vaccine delivery on weekends, or the need for fairness 331

in vaccine distribution, e.g. by ensuring that each region receives at least a fixed fraction of the 332

available vaccines. This is especially important as in our optimal allocation scenarios some provinces 333

receive no vaccine at all. Moreover, the optimization can be carried for single-dose vaccines, as done 334

here, or for two-dose vaccines, where one could potentially optimize the time between the first and 335

second dose (and if a second dose should be administered at all), clearly also considering the 336

intervals recommended by the health authorities. 337

Our method is obviously not devoid of limitations. The main one is that the optimal vaccination 338

strategy strongly depends on the projection of the underlying epidemiological model. These 339

projections are subject to several sources of uncertainty, especially for long term horizons, for 340

example due to model design and calibration [47], the generation of baseline transmission scenarios, 341

and unforeseen events that may change the course of the epidemic (such as the importation of cases, 342

the emergence of new virus variants, changes in disease awareness or social distancing policies). The 343

optimal vaccination strategy is thus reliable only if the projections given by the underlying model 344

dynamics are sufficiently accurate. A successful approach developed by the automatic control 345

community to tackle that issue, named Model Predictive Control [48], consists in compensating the 346

performance losses expected over long horizons by constantly adapting the optimal strategy. In this 347

context, Model Predictive Control might be implemented using the following steps: (a) at the 348

beginning of each week, the state of the system is estimated by using newly acquired epidemiological 349

data; (b) the optimization problem is solved over a fixed prediction horizon using the estimated state 350

as initial condition; (c) the optimal strategy for the first week is applied and, as soon as the next 351

week starts, these steps are repeated starting from (a). This method corrects the model inaccuracies 352

by constantly resetting the initial state to the estimated one. Additionally, constraints may be 353

updated to account for unexpected deliveries or new orders. Future work will aim at further 354

evaluating the benefits of implementing this scheme for the design of optimal vaccination strategies. 355

Further refinement could be obtained accounting for the whole uncertainty range while optimizing 356

instead of only median evolution of the epidemic using methods from robust or stochastic model 357

predictive control. This would improved the proposed framework to provide reasonable performance 358

in every case. At the moment, this is not computationally tractable. The sensitivity analysis 359

provided in SI at least shows that the optimal allocation strategy does not perform comparatively 360

poorly if the model projections are inaccurate. 361

The epidemiological model underlying our control optimization has known validity and 362

limitations [8, 9]. An additional limitation of the model for the specific scopes of this work is that it 363

does not account explicitly for risk-based classes, and thus does not account for the heterogeneities 364

that may result from the demography of the population, as well as from the age-related transmission 365

and clinical characteristics associated with COVID-19. While surely limiting for operational use of 366

the tools, we note that the scope of this paper is to provide a proof-of-concept of the relevance of 367

spatial effects, which have not been addressed so far in the literature. To that end, we are confident 368

that our results support the relevance of the research question posed. Our framework can anyway be 369

extended to optimize across both spatial and risk heterogeneities, provided the accessibility to the 370

computational and storage capacities that the solution of such optimal problem requires. 371

A counter-factual assumption in this work is that we consider a one-dose vaccine with full and 372

instantaneous efficacy against transmission. At the time of development, the details about 373

COVID-19 vaccines were not released, and this hypothesis allowed us to demonstrate our framework 374

in a simple setting. Our framework can be further extended to account also for the simultaneous 375

deployment of different vaccine types, some of which may require the administration of two doses. 376

This extension too is subject of ongoing research, in particular to extend the modeling tools 377

described here to accommodate the peculiarities of each authorized vaccine candidate while 378
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designing effective spatiotemporal deployment strategies. 379

In conclusion, in this work we have optimized vaccine allocation at country scale on different 380

scenarios of epidemic transmission and vaccine availability. Using a data assimilation scheme, we 381

updated a spatially explicit compartmental model that had already been successfully used to 382

describe the COVID-19 pandemic in Italy. To this aim, we have discretized, transformed and 383

simplified the model and constructed a pipeline to perform large-scale nonlinear optimization on 384

vaccine allocation, subject to stockpile and logistic constraints. Solving this problem yielded a 385

complex solution that outperforms other strategies by a significant margin and proves robust across 386

posterior realizations of the underlying model. As such, beside inherent limitations, it provides a 387

benchmark against which other, possibly simpler vaccine rollout strategies can be usefully compared. 388
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