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Abstract 
 
COVID-19 is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). 
The severity of COVID-19 is highly variable and related to known (e.g., age, obesity, immune 
deficiency) and unknown risk factors. Since innate and adaptive immune responses are 
elicited in COVID-19 patients, we genotyped 94 Florida patients with confirmed COVID-19 
and 89 healthy controls. We identified an HLA gene, HLA-DPA1, in which specific alleles 
were associated with the risk of SARS-CoV-2 positivity and COVID-19 disease. 
HLA-DPA1*01:03 was associated with reduced incidence of SARS-CoV-2 positivity, whereas 
HLA-DPA1*03:01 was associated with increased risk of SARS-CoV-2 positivity. These data 
suggest a model in which COVID-19 severity is influenced by immunodominant peptides 
derived from SARS-CoV-2 preferentially presented by specific HLA-DP molecules to either 
protective (for asymptomatic COVID-19) or pathogenic T cells (in severe COVID-19). 
Although this study is limited to comparing SARS-CoV-2 positive and negative subjects, 
these data suggest that HLA typing of COVID-19 patients stratified for disease severity may 
be informative for identifying biomarkers and disease mechanisms in high-risk individuals. 
 
Keywords 
 
COVID-19, SARS-CoV-2, Human leukocyte antigens, Genotyping, Structural modeling  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 8, 2021. ; https://doi.org/10.1101/2021.05.04.21256636doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256636


Introduction 
 
 Classical human leukocyte antigen (HLA) genes (HLA-A, -B, -C, -DR, -DQ, -DP) exhibit a 
high degree of polymorphism and play critical roles in the immune response to viral infections. 
CD4+ T cells and CD8+ T cells respond to pathogens by recognizing different classes of HLA 
molecules (I or II, respectively) on the cell surface. Specific HLA genotypes have been 
associated with T-cell mediated immunity and viral clearance, while low-affinity peptide 
binding and antigen presentation may also make specific genotypes a risk factor for 
infectious disease. For example, HLA-A*02:01, -A*03:01, -B*08:01, -B*18:01, -B*37:01, 
-B*57:01, and -DRB1*09 alleles are involved in general protective CD8+ or CD4+ T 
cell-mediated immunity through presentation of conserved influenza peptides1–4.  In contrast, 
HLA‐A*11, -A*24, -A*68, ‐B*35, and ‐DRB1*10 alleles may be the associated risk factor for 
severe pandemic influenza A (H1N1) infection and another common circulating influenza 
strains5–7. Studies of SARS-CoV demonstrated that HLA-B*46:01, -B*07:03, -Cw*08:01, 
-DRB1*12,:02 and -DRB4*01 alleles were associated with disease susceptibility or severity in 
various populations8–12. Similarly, HLA-DRB1*11:01 and -DQB1*02:02 alleles were 
associated with the risk of Middle East Respiratory Syndrome (MERS). HLA-associated 
adaptive immune responses were less efficient against human immunodeficiency virus 
(HIV)-1 than respiratory viruses13, but HLA-B*27, -B*57, -B*58:01 and -B*81:01 alleles were 
found to present multiple p24 Gag-specific epitopes in different ethnicities and confer 
protective effects against HIV disease progression, whereas HLA-B*42:02 and -B*58:02 
alleles were associated with susceptibility and rapid disease progression14. 
 
 Predictions of binding affinity between HLA class I and II molecules and peptides of 
SARS-CoV-2 proteins showed that specific alleles might be associated with disease 
morbidity and mortality. For example, consistent with a previous study of SARS-CoV, 
HLA-B*46:01 allele was predicted to be associated with SARS-CoV-2 susceptibility using 
silico analysis of viral peptide-MHC class I binding affinity to HLA -A, -B, and -C genotypes for 
all SARS-CoV-2 peptides 15

.  HLA-C*05 alleles were associated with risk of death from 
COVID-1916. Conversely, HLA-A*02:11, -A*02:22, -B*15:03, -DRB1*01:01, and -DRB1*10:01 
alleles were predicted to be protective due to their enhanced ability to present SARS-CoV-2 
peptides13,15,17. Using whole-genome sequencing, a recent study with 332 patients 
demonstrated that HLA-A*11:01, -B*51:01, and -C*14:02 alleles were correlated with disease 
severity18. These early studies suggest that HLA alleles are related to susceptibility and 
disease prognosis. Thus, identifying the association with SARS-CoV-2 positivity will help 
clarify the heterogeneity of responses to the disease, potentially guiding personalized 
treatments and developing epitope-based peptide vaccines against SARS-CoV-2. In this 
study, we sought to determine if specific HLA alleles were associated with susceptibility to 
SARS-CoV-2 infection/COVID-19 disease by comparing SARS-CoV-2 positive subjects in a 
Florida population with SARS-CoV-2 negative subjects from the same population. 
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Materials and Methods 
 
Study population 
 
 Ninety-four confirmed COVID-19 samples were obtained from Boca Biolistics (Pompano 
Beach, FL) and CTSI Biorepository at the University of Florida (Gainesville, FL). The median 
age of the patients was 55.7�years (range: 3-94�years). Patients had positive test results for 
SARS-CoV-2 by RT-PCR from nasopharyngeal swabs or tracheal aspirates. Eighty-nine 
healthy individuals who had negative test results at the same sites and time were included as 
controls. The median age of the control group was 60 years (range: 0‐101 years). In the 
SARS-CoV-2 positive cohort, there were 50 females, 43 males, and 1 undisclosed, in which 
there were 17 white, 21 black, 1 Asian, 1 Non-Hispanic, and 55 undisclosed.  In control 
SARS-CoV-2 negative cohort, there were 47 females and 42 males, in which there were 44 
white, 10 black, 1 Non-Hispanic, and 34 undisclosed enrolled. The study was approved by 
the Institutional Review Board of the University of Florida.   
 
HLA allele typing 
 
 Clinical specimens of nasopharyngeal swabs were collected in a viral transport medium. 
DNA was extracted from viral transport medium or directly from tracheal aspirates by 
Maxwell® RSC Blood DNA Kit per manufacturer’s instructions (Promega Corporation). 
RNase A was added to samples to remove potential viral RNA. Isolated genomic DNA was 
quantified by NanoDrop™ One/OneC Microvolume UV-Vis Spectrophotometer (Thermo 
Scientific).   Genotyping was done using Axiom™ Human Genotyping SARS-CoV-2 
Research Array as instructed by the manufacturer (Thermo Scientific). Genotyping data were 
assessed by Axiom™ Analysis Suite Software and filtered according to QC and HLA-related 
datasets. Hardy-Weinberg Equilibrium (HWE) was evaluated for all the SNPs evaluated, and 
all SNPs selected for HLA allele typing meet the criteria (p > 0.05). Automated high-resolution 
HLA typing was done by Axiom™ HLA Analysis Software, and certain HLA-A, -B, -C, -DPA1, 
-DPB1, -DQA1, -DQB1, -DRB1/3/4/5 alleles of each loci were assigned to samples.  
 
Peptide binding analysis 
 
 The Wuhan-Hu-1 sequence of the spike glycoprotein was used to predict peptides that 
bind HLA-DP molecules (https://www.ncbi.nlm.nih.gov/datasets/coronavirus/proteins/). The 
SMM-align (NetMHCII-1.1)(PMID:17608956) prediction method implemented in IEDB was 
used to generate the half-maximal inhibitory concentration (IC50) values that estimate 
dissociation constant (KD) in nanomolar values. 
 
Structural modeling of spike peptide HLA-DP interactions 
 
 The crystal structure of HLA-DP complexed with a peptide corresponding to RAS (PDB 
code 4P5K, 24995984) was used for modeling the SARS-CoV-2 spike peptide 
VVFLHVTYVPAQEKN (positions 1060-1074, corresponding to the S2 subunit). The HLA-DP 
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α-chain in this structure corresponds to HLA-DPA1*01:03:0119. The RAS peptide 
NKFDTQLFHTITGGS was mutated to VVFLHVTYVPAQEKN using COOT20 with rotamers 
that represent a local energy minimum of torsional angles. The geometry of the resulting 
complex was regularized in PHENIX21. The amino acid sequence of HLA-DPA1*03:01:01 
from IMGT19 was used as the basis for structural modeling with SWISS-MODELER, which 
generated a protein data bank format file based on a crystal structure of HLA-DP α-chain 
98.9 % identical to HLA-DPA1*03:01:01, PDB 4P5M. PyMOL (https://pymol.org/2/) was used 
to generate molecular graphic images.   
 
Statistical analysis 
 
 HLA class I and class II allele frequencies were estimated by direct counting based on 
results from allele typing, calculated as the ratio of the number of times different alleles 
appeared in the sample to the total number of alleles.. Odds ratios (ORs, 95% confidence 
interval [CI]) and p-values were calculated using R 4.0.3 (R Core Team, 2018), the exact2x2 
(v1.6.5; Fay MP, 2010) package or Prism 9.0 software (GraphPad Software, La Jolla 
California USA). 0.5 was added to all the cells to prevent computation errors when calculating 
the odds ratio or standard error.  When zero values caused computational problems with the 
odds ratio or its standard22.Since small size samples were used in this analysis, the risk of 
introducing a bias in estimating the probability (p-value) and wrongly accepting association 
(type I error) was corrected using the method of Benjamini-Hochberg. In this method, the 
p-value is multiplied by the number of alleles input at each locus, thereby giving a more 
powerful corrected p-value (pc-value) that may be interpreted with confidence.  
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Results 
 
HLA typing of COVID-19 patients 
 
 We genotyped 94 SARS-CoV-2 positive patients and 89 healthy control populations 
matched as control. We identified multiple alleles present for HLA-A, -B, -C, -DPA1, -DPB1, 
-DQA1, -DQB1, -DRB1 loci (30, 46, 20, 5, 20, 7, 16, and 32, respectively (Table S1)). 
HLA-DRB/3/4/5 were not analyzed due to high rates of ambiguous imputation (Table S2). 
The allele distributions of HLA-A, -C, -B, -DRB1, -DQB1, and –DPB1 loci were compared 
between COVID-19 patients and control individuals. The frequencies and odds ratios (OR) of 
HLA alleles with significant associations with incidence of SARS-CoV-2 positivity are shown 
in Table 1. Potentially significant associations between HLA-DPA1 alleles and SARS-CoV-2 
positivity were identified. DPA1*03:01 was associated with an increased risk of SARS-CoV-2 
positivity (OR 9.3, CI 1.3 - 200.4, p=0.01). DPA1*03:01 is a rare allele (frequency < 1% in 
controls), but present in 6% of SARS-CoV-2 positive individuals (Pc value 0.06). In contrast, 
DPA1*01:03 was associated with reduced incidence of SARS-CoV-2 positivity (OR 0.6, CI 0.4 
- 0.9, p=0.02). DPA1*01:03 is a common allele (frequency 72% in controls), but less frequent 
in individuals infected with SARS-CoV-2 (60 %, Pc value 0.06).  
 
Race comparison of risk and protective HLA 
 
 It is well established that minority groups of different races and ethnic groups in the US 
are disproportionately affected by COVID-19.  Minorities endured a higher risk for infection, 
hospitalization, and death23,24.  Therefore, in this study, we sought to determine if there was 
an association between the identified HLA and SARS-CoV-2 positivity in different races in the 
Floridian population. The data indicated that HLA-A*02:01 was associated with reduced 
incidence of SARS-CoV-2 positivity (OR 0.1, CI 0.003-0.6, p=0.02) in the black population 
(Table S3). Black individuals carrying the common HLA-A*02:01 allele were ten times more 
likely to test negative for SARS-CoV-2 than black individuals lacking HLA-A*02:01.  Similar 
analyses were performed for the white Floridan population.  As presented in Table S4, there 
was no significant allelic association in this population.  The data indicate that HLA-A*02:01 
allele might be protective for the black minority group.        
 
Structural modeling of HLAs binding to SARS-CoV-2 spike protein: 
 
 Since different allelic forms of HLA molecules exhibit binding preferences for distinct sets 
of antigenic peptides, specific HLA allotypes may be less likely to present certain peptides 
derived from SARS-CoV-2 to T cells, resulting in a weaker antiviral response (as suggested 
by the association of HLA-B*46:01 in SARS patients8). In contrast, other HLA molecules may 
bind with higher affinities to immunodominant SARS-CoV-2 derived peptides, resulting in 
more robust antiviral responses. Since the dominant immunogenic T cell epitopes derived 
from SARS-CoV-2 were recently defined from all proteins, including in the critical spike 
protein25, we sought to identify peptides that bind preferentially to HLA molecules associated 
with risk or protection. We identified a peptide corresponding to the SARS-CoV-2 spike 
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protein (15 amino acids, VVFLHVTYVPAQEKN) predicted to bind HLA-DP molecules related 
to risk with different affinities (Figure 1). VVFLHVTYVPAQEKN was predicted to bind an 
HLA-DP molecule associated with reduced incidence of SARS-CoV-2 positivity (i.e., lower 
levels of infection) with high affinity (estimated Kd 298 nM for HLA-DPA1*01:03 
α-chain/HLA-DPB1*02:01 β-chain, IEDB). In contrast, the same peptide was predicted to 
bind an HLA-DP molecule associated with increased risk of SARS-CoV-2 positivity with a low 
binding affinity (estimated Kd 1.7 μM, HLA-DPA1*03:01:01 α-chain/HLA-DPB1*04:02 
β-chain).  
 
 Structural modeling suggests that SARS-CoV-2 spike peptide VVFLHVTYVPAQEKN 
binds DPA1*01:03 with higher affinity than DPA1*03:01 due to a polymorphism at position 42 
located on the α1 helix of the DP α-chain, oriented toward the peptide at the center of the 
antigen binding cleft. Alanine at position 42 of DPA1*01:03 α-chain is predicted to anchor 
peptide binding by intermolecular contact with tyrosine in the peptide core 
(VVFLHVTYVPAQEKN)(Figure 2, upper panel). The bulky methionine at position 42 of 
DPA1*03:01 α-chain is predicted to impose steric clash with the peptide core (Figure 2, lower 
panel), preventing formation of a high-affinity immunogenic epitope. These data suggest a 
model in which the course and severity of COVID-19 disease are influenced by the 
presentation of immunogenic peptides by specific HLA molecules present in a subset of 
individuals, Figure 3. 
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Discussion 
 
 In late December 2019, COVID-19 began spreading in Wuhan, Hubei Province, China, 
caused by a suspected zoonotic source of SARS-CoV-226,27. While coronaviruses are 
relatively common, mutations can cause severe symptoms in humans; COVID-19 is the third 
noted case in which this has happened following SARS28,29 and MERS30. Globally, as of 
March 22th, 2021, there were more than 123 million confirmed cases and 2.71 million deaths 
worldwide; in the US there were 30 million confirmed cases with over 540,000 deaths31. Age 
and pre-existing medical conditions such as hypertension, obesity, chronic lung disease, 
diabetes mellitus, and cardiovascular disease are associated with disease severity and 
hospitalization rates of COVID-19 patients.  In the COVID-19–Associated Hospitalization 
Surveillance Network (COVID-NET), which represents approximately 10% of the U.S. 
population with an equal frequency of males and females,, 54% of COVID-19-associated 
hospitalizations occurred in males and 46% occurred in females32. These data suggest that 
males may be disproportionately affected by COVID-19 compared with females. A 
meta-analysis of 15 independent studies documenting patient gender-specific outcomes 
found that men were more likely to develop severe COVID-19 infection than women (Odds 
Ratio, 1.31; 95% CI, 1.07-1.60)33. Other studies have indicated that black and Hispanic 
populations might be disproportionately affected by COVID-1932. The most interesting 
development in COVID-19 is that there are cases of children worldwide with COVID-19 
exhibiting a Kawasaki-like disease34–36. Kawasaki disease has one of the strongest HLA 
associations, and there are significant differences in the distribution of HLA alleles among 
ethnicity37

. This suggests that children with susceptible HLAs may develop Kawasaki-like 
disease with COVID-19.   
 
 There is a broad range of immunological responses to SARS-CoV-2, rendering 
individuals on a spectrum from asymptomatic to severely symptomatic for reasons that are 
not understood but likely result from genetic and environmental factors. To demonstrate 
whether HLA molecules are associated with COVID-19 infection and to further explore 
whether HLAs could serve as biomarkers for susceptibility or protection against SARS-CoV-2, 
we examined the HLA types of infected patients and compared them to samples collected 
from healthy individuals during the same period. The study identified that HLA-DPA1*01:03 
was highly prevalent in healthy individuals but less in SARS-CoV-2 positive patients, and 
HLA-DPA1*03:01 was significantly associated in patients with SARS-CoV-2 infection. Using 
structural modeling with a potential T cell epitope derived from the spike protein, we predicted 
that HLA-DPA1*01:03 may be protective because of high binding affinity between 
SARS-CoV-2 peptides and HLA-DP. In our model, a polymorphic position in the center of the 
antigen binding cleft at position 41 in HLA-DPA1*03:01 was prevents high affinity peptide 
binding to HLA-DP, thus preventing specific T cell responses to SARS-CoV-2 peptides, 
consistent with risk associated with SARS-CoV-2 positivity.  
 
 HLA molecules present antigens by binding to endogenous antigenic peptides (class I) or 
exogenous antigenic peptides (class II) and express them as peptide-MHC complexes on the 
surface of antigen-presenting cells. During viral infection, cytotoxic T lymphocytes (CTL) kill 
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viral-infected cells by recognizing HLA class I-peptide complexes at the cell surface, and 
CD4+ T cells recognize viral antigens presented by HLA class II molecules and activate 
antigen presenting cells to trigger an adaptive immune response against invading pathogens.  
Therefore, a spectrum of immune response is dictated by the flavor of the HLAs. Recent 
studies from different countries have identified multiple COVID-19 morbidity-related alleles; 
for example, Wang et al. identified HLA-B*15:27 alleles from a Chinese population38, Novelli 
et al. identified HLA-B*27:07, ‐DRB1*15:01 and ‐DQB1*06:02 alleles from an Italian 
population 39, Yung et al. identified serotype B22(HLA-B*54:01, B*56:01 and B*56:04 alleles) 
from Hongkong Chinese population40. To further support the concept that low affinity of viral 
peptides binding to HLA can predict susceptibility, Amoroso et al. have shown that 
HLA-DRB1*08 was correlated to mortality (6.9% in living versus 17.5% in deceased), and 
peptide binding prediction analyses demonstrated that these alleles were not able to bind 
SARS-CoV-2 peptides with high affinity. A similar finding was supported by a study with 
Sardian population in which HLA-DRB1*08:01 allele was found only in the hospitalized 
patients41,42. Structural modeling of SARS-CoV-2 spike peptides and HLA-DP interaction in 
our study demonstrated that a polymorphism at position 42, located on the α1 helix of the DP 
α-chain, leads to a difference in the binding affinity with peptides derived from spike protein. 
The alanine of HLA-DPA1*01:03 α-chain had intermolecular contact with tyrosine in the 
peptide core, whereas the methionine of HLA-DPA1*03:01 α-chain prevented high-affinity 
binding with tyrosine due to steric clash. The latter may compromise the ability of 
HLA-DPA1*03:01 to present antigens optimally and activate the CD4+ T cells, thereby 
undermines the effector function, specifically its ability to clear the virus causing infection 
effectively. The data suggest that HLA-DPA1*01:03 may be protective because of effects on 
immunodomiant peptide binding, whereas HLA-DPA1*03:01 was associated with risk to 
SARS-CoV-2 infection because of limitations on binding immunodominant SARS-CoV-2 
epitopes.   
 
 The limitations of this study were the small population cohort and the lack of patient 
clinical information that could be extrapolated to examine the associations of other clinical 
symptoms and HLAs. Overall, this study demonstrates HLA typing and in-silico structural 
modeling to identify susceptible and protective HLA alleles. This approach can potentially 
provide a genetic biomarker to determine if an individual is protected from the severity of the 
infection or if an individual is susceptible to the disease. These biomarkers may be essential 
in the decision-making process for developing and implementing a strategy to keep the 
individual safe if there is no vaccine or treatment available.   
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Table 1 Significant alleles associate with either protective (OR <1) or risk (OR>1) factor. 
 

Allele COVID‐19 Control group Odds ratio 
(95% CI) 

P‐valu
e 

Pc-valu
e N Frequenc

y (%) 
N Frequenc

y (%) 
DPA1*03:0
1 

10 5.9524 1 0.6757 9.2568(1.3264 - 
200.3514) 

0.0120 0.06 

A*74:01 9 5.4878 1 0.6757 8.4924(1.2738 - 
185.6196) 

0.0211 0.579 

A*30:01 8 4.8780 1 0.6757 7.5017(1.1526 - 
165.9402) 

0.0386 0.579 

DPB1*01:0
1 

23 15.5405 8 5.7971 2.9792(1.2446 - 
7.258) 

0.0123 0.214 

DQA1*05:0
1 

40 26.3158 22 15.9420 1.8791(1.0435 - 
3.5288) 

0.0326 0.1141 

DPA1*01:0
3 

10
1 

60.1190 107 72.2973 0.5786(0.3551 - 
0.9401) 

0.0244 0.06 

DQA1*02:0
1 

14 9.2105 26 18.8406 0.4383(0.2122 - 
0.8942) 

0.0257 0.1141 

DPB1*11:0
1 

2 1.3514 9 6.5217 0.1974(0.0301 - 
0.9301) 

0.0301 0.396 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 8, 2021. ; https://doi.org/10.1101/2021.05.04.21256636doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256636


Figure legends 
 
Figure 1.  Model of an HLA-DP molecule associated with reduced incidence of 
SARS-CoV-2 positivity. SARS-CoV-2 spike peptide VVFLHVTYVPAQEKN, is shown as sticks 
modeled on the crystal structure of HLA-DP (PDB code 4P5K, DPA1*01:03 α-chain), yellow 
for carbon, red for oxygen, blue for nitrogen. The molecular surface of the HLA-DP α-chain is 
shown in orange for carbon, red for oxygen, blue for nitrogen. The molecular surface of the 
HLA-DP β-chain is shown in cyan for carbon, red for oxygen, blue for nitrogen. 
 
Figure 2.  Polymorphism in the antigen binding cleft of HLA-DP has the potential to inhibit 
binding to peptides derived from SARS-CoV-2. Upper panel, DPA1*01:03, associated with 
reduced incidence of SARS-CoV-2 positivity forms an α-chain predicted to bind SARS-CoV-2 
spike peptide VVFLHVTYVPAQEKN with high affinity. The molecular surface of the HLA-DP 
α-chain is shown in orange for carbon, red for oxygen, blue for nitrogen. The molecular 
surface of the HLA-DP β-chain is shown in cyan for carbon, red for oxygen, blue for nitrogen. 
The tyrosine residue at the central peptide position forms intermolecular contact with alanine 
at position 42 of DPA1*01:03. Lower panel, DPA1*03:01, associated with increased incidence 
of SARS-CoV-2 positivity, forms an α-chain predicted to bind SARS-CoV-2 spike peptide 
VVFLHVTYVPAQEKN with low affinity because of the steric clash between the tyrosine 
residue at the central peptide position (shown as red lines) and methionine at position 42 of 
DPA1*03:01. 
 
Figure 3.  HLA-DP allele-specific viral clearance model. HLA-DP molecules with certain 
α-chains may bind immunodominant epitopes (color dots within cells) derived from antigen 
presenting cells with high affinity, whereas others may bind with low affinity, affects whether 
CD4 T cells can be effectively activated (left, efficiently activated; right, inefficiently activated) 
to promote downstream responses for viral clearance. Polymorphism at position 42, located 
on the α1 helix of the DP α-chain, leads to a difference in the binding affinity with peptides 
derived from spike protein (e.g., VVFLHVTYVPAQEKN), alanine of HLA- DPA1*01:03 
α-chain had intermolecular contact with tyrosine in the peptide core (lower left corner, the 
peptide is shown by ball-and-stick), and methionine of -DPA1*03:01 α-chain prevented high 
affinity binding with tyrosine due to steric clash (lower right corner, the peptide is shown by 
ball-and-stick, crossed at low binding affinity position). | Created with BioRender.com 
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