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Background: Clinical babesiosis is diagnosed, and parasite burden is determined, by microscopic 39 

inspection of a thick or thin Giemsa-stained peripheral blood smear. However, quantitative analysis by 40 

manual microscopy is subject to observer bias, slide distribution errors, statistical sampling error, 41 

recording errors, and is inherently burdensome from time management and workflow efficiency 42 

standpoints. As such, methods for the automated measurement of percent parasitemia in digital 43 

microscopic images of peripheral blood smears could improve clinical accuracy, relative to the predicate 44 

method. 45 

Methods: Individual erythrocyte images (shape: 70x70x3) were manually labeled as “parasite” or 46 

“normal” and were used to train a model for binary image classification. The best model was then used 47 

to calculate percent parasitemia from a clinical validation dataset, and values were compared to a 48 

clinical reference value. Lastly, model interpretability was examined using an integrated gradient to 49 

identify pixels most likely to influence classification decisions. 50 

Results: The precision and recall of the model during development testing were 0.92 and 1.00, 51 

respectively. In clinical validation, the model returned increasing positive signal with increasing mean 52 

reference value. However, there were two highly erroneous false positive values returned by the model. 53 

Lastly, the model incorrectly assessed three cases well above the clinical threshold of 10%. The 54 

integrated gradient suggested potential sources of false positives including rouleaux formations, cell 55 

boundaries, and precipitate as deterministic factors in negative erythrocyte images.  56 

Conclusions: While the model demonstrated highly accurate single cell classification and correctly 57 

assessed most slides, several false positives were highly incorrect. This project highlights the need for 58 

integrated testing of ML-based models, even when models in the development phase perform well.  59 

  60 
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INTRODUCTION: 61 

Clinical Babesiosis is a haemoprotozoan disease that is most commonly transmitted from animals to 62 

humans by invertebrate vectors (e.g., Ixodes scapularis, the black legged deer tick)(1). In the United 63 

States, 95% of cases occur in the Northeast and Upper Midwest states, occurring primarily between May 64 

and October. In the state of Connecticut, the seroprevalence has been shown to range between 0.3-65 

17.8%, with the number of reported cases being approximately 44 per 100,000 (2). Disease severity can 66 

range from asymptomatic to severe, the latter of which may lead to life-threatening scenarios. Severe 67 

disease is more common in specific at-risk populations including those who are post-splenectomy, 68 

immunocompromised, or older than 50 years of age. The all-cause mortality of babesiosis has been 69 

estimated as <1% for clinical cases, and approximately 10% for iatrogenic cases (e.g., transfusion-70 

transmitted) (2). 71 

 The diagnostic gold standard for babesiosis is microscopic inspection of thick, or thin, Giemsa-72 

stained peripheral blood smear (1). If Babesia spp is identified, the degree of parasitemia is used to 73 

guide patient management strategies. For mild disease, or minimal parasitemia, antimicrobials are the 74 

preferred therapy. However, the American Society for Apheresis (ASFA) guidelines state that severe 75 

babesiosis is a category II indication for red blood cell (RBC) exchange. Severe disease is determined 76 

both by clinical and laboratory criteria including significant parasitemia (e.g., >10%), the presence of 77 

comorbidities (e.g., asplenia), or severe symptoms such as, disseminated intravascular coagulation or 78 

multiorgan failure (2). While there is no consensus on when to discontinue RBC exchange, it is 79 

recommended that patients with severe babesiosis be monitored closely, with parasitized erythrocytes 80 

quantified daily alongside continued RBC exchange until parasite burden decreases below 5% (2,3). 81 

 Percent parasitemia is the quotient of parasite-infected erythrocytes over the number of total 82 

erythrocytes counted. To derive this in a clinical laboratory, the process commonly involves a medical 83 

laboratory scientist (MLS) counting a large number of erythrocytes (e.g., 1,000) using a 100x oil-84 
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immersion objective. While this process requires minimal laboratory equipment, it does require an 85 

experienced MLS to ensure optimal accuracy and reproducibility for serial measurement purposes (1). In 86 

addition, quantitative analysis by manual microscopy is subject to observer bias, slide distribution errors, 87 

statistical sampling error and recording errors, and is inherently burdensome from time management 88 

and workflow efficiency standpoints (4,5). Such limitations can mislead or delay therapeutic decision 89 

making, particularly in the context of therapeutic RBC exchange. Accordingly, there remains a significant 90 

need to develop automated methods to optimize the cost, efficiency, and accuracy of quantitative 91 

analysis. 92 

The progress made in computer vision and machine learning (ML) technology over the last 93 

decade has encouraged a corresponding increase in their implementation in the clinical laboratory (6). 94 

With the decreasing availability of experienced medical laboratory scientists, evaluating ML-based 95 

software capabilities without expert operator review remains an important consideration in study 96 

design (7,8). To this end, we sought to develop and evaluate the accuracy of a an ML-based method for 97 

the automated measurement of percent parasitemia in digital microscopic images of peripheral blood 98 

smears. Specifically, we sought to describe the accuracy of parasitemia measurements, as determined 99 

by ML-based software, relative to an MLS-derived reference standard (MLS-RS). We hypothesized that 100 

results generated by the ML-based software would show superior precision to MLS-RS while achieving 101 

clinically comparable numerical results to the average MLS-RS. 102 

 103 

METHODS: 104 

Hardware and Operating Systems: 105 

Computation for model training was performed on a local Linux server (NVIDIA DGX Server Version 106 

4.6.0) (GNU/Linux 4.15.0-122-generic x86_64) running Ubuntu (version: 18.04.5 LTS). Processing 107 
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hardware included 80 CPUs (Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz) and 8 GPUs (Tesla V100-108 

SXM2-16GB) using CUDA Toolkit (version: 11.0). 109 

 110 

Data Set Curation: 111 

This study has been reviewed and approved by the Yale University Internal Review Board (IRB# 112 

2000020244). Clinical blood samples were originally collected as part of routine clinical workflow in 113 

lavender-top (EDTA) tubes for screen and quantitation of Babesia spp. Slides and concomitant digital 114 

images of the associated peripheral blood smears, which were found by to be positive for Babesia spp 115 

and negative for Malaria spp (BinaxNOW Malaria; Abbott, Chicago, IL), were flagged for inclusion using 116 

previously described methods (9–11). Slides and the concomitant digital images of Babesia-negative 117 

samples were collected from the routine clinical workflow throughout the study period and reviewed by 118 

a clinical pathologist for the absence of Babesia spp prior to inclusion.  119 

 Slides and images were separated into two distinct groups, representing separate patient 120 

cohorts: (1) The model development dataset and (2) the clinical validation dataset. The model 121 

development dataset was used for training, validation, and preliminary evaluation of the cell 122 

classification model. The clinical validation dataset was used as a second, ‘external’ validation dataset to 123 

evaluate how the model would perform in a clinical implementation workflow, as compared to a 124 

predicate method-based reference standard.  125 

All peripheral blood smears were created and imaged on a DI-60 Integrated Slide Processing 126 

System (Cellavision AB, Lund, Sweden). The DI-60 uses a 100X-objective and a 0.5X magnifier prior to 127 

imaging, rendering an effective magnification of 50X. Images are 3-channel RGB, with a resolution of 5 128 

pixels per micron. In the model development dataset, slide images had an average height and width of 129 

2884 pixels (95% CI: 2882-2885) and 2867 pixels (95% CI: 2865-2868) (Figure 1A). Slides included in the 130 

model development dataset were imaged a single time. Slides included in the clinical validation dataset 131 
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were imaged three times on the same scanner to compute intra-precision for quantitation of Babesia 132 

spp during subsequent portions of the study.  133 

 134 

Cell Labeling for Model Development Dataset: 135 

Slide-level images from the model development dataset were uploaded to a custom-built web 136 

application for labeling of individual erythrocytes using one of two labels: (1) parasite or (2) normal. 137 

Using the web application, annotators marked central X-Y coordinates of infected and non-infected 138 

erythrocytes (Figure 1B). X-Y coordinates of cell centers were then used to crop individual erythrocytes 139 

from the slide-level parent image into 70x70 pixel, 3-channel image arrays. These 70x70x3 images were 140 

then paired with their corresponding label of either ‘parasite’ or ‘normal’ (Figure 1C). The labeling 141 

process was performed by a single laboratory medicine attending and author of this manuscript (TJD). 142 

As a post-processing step, X-Y coordinates which were within 140 pixels of another set of X-Y 143 

coordinates were removed from the dataset following completion of the annotation process. This was 144 

done to ensure that there was no overlap of images in the final development dataset which, if present, 145 

could have resulted in part of an image being represented in both the training and validation and test 146 

datasets, leading to overfitting, or an over-optimistic estimate of model performance.  147 

Ultimately, the final dataset used for model development consisted of non-overlapping, 148 

individual erythrocyte images (shape: 70x70x3) with an associated label of ‘parasite’ or ‘normal’. These 149 

data were split and used to train, validate, and test the image classification model. The model 150 

development dataset was divided 80:20 into train and test datasets, respectively (Figure 1D). The train 151 

dataset was further subdivided 70:30 into train and validation datasets, respectively. The train and 152 

validation datasets were used during the training of the image classification model (Figure 1E). The test 153 

dataset was used to evaluate model performance following completion of training (Figure 1F).  154 
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 155 

Network Implementation: 156 

For image classification, the authors implemented DenseNet121 as the base model, initialized with 157 

pretrained weights from ImageNet (7). Densely connected neural networks were first described by 158 

Huang et al. and are a commonly used architecture for learning image classification tasks (8). This neural 159 

network was chosen based on previously published performance metrics comparable with current state 160 

of the art models, and because it uses relatively fewer parameters, making it faster to train and easily 161 

portable (12). Base model layers were not frozen and were configured as trainable. DenseNet121 was 162 

combined with a custom set of prediction layers, specific to this image classification task. These included 163 

a 2-dimensional global average pooling layer, a dropout layer, and a densely connected layer with 164 

sigmoid activation function for binary classification. The Adam method was used for gradient-based 165 

optimization. In total, there were 7,038,529 parameters, 6,954,881 of which were trainable. The 166 

network was implemented using Tensorflow (version: 2.4.0rc0), Tensorflow-gpu (version: 2.4.0rc0) and 167 

Python (version: 3.6.9). 168 

 169 

Model Development Protocol: 170 

Train dataset images were subjected to label preserving augmentation prior to being served as input to 171 

the network. Image augmentation included random horizontal and vertical flips, random rotation, 172 

random translation, random zoom, random contrast adjustments, and random brightness adjustments. 173 

Lastly, due to the imbalanced nature of our training dataset the ‘parasite’ class was oversampled to 174 

produce a 1:1 ratio of parasite and normal images during training. The network was trained for a total of 175 

50 epochs (i.e., iterations) over the complete training dataset. The validation dataset was used to 176 
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monitor model performance during training for subsequent tuning according to the calculated binary 177 

cross-entropy loss. Model parameters were saved following a reduction in the binary cross-entropy loss, 178 

calculated from the validation dataset after each epoch. The initial learning rate was set to 1e-5 and 179 

decreased by a factor of 10 if validation loss did not improve after 5 epochs. The total training process 180 

was repeated three times using unique random seed initializers to evaluate variability in train 181 

performance metrics. Performance metrics monitored during training included true positives (TP), false 182 

positives (FP), true negatives (TN), false negatives (FN), binary accuracy, precision (i.e., positive 183 

predictive value) (TP / (TP + FP)), recall (i.e., sensitivity) (TP / (TP + FN), and area under the receiver 184 

operator characteristic curve (AUC). These were calculated on both train and validation datasets 185 

following the completion of each epoch. Following model training, the best model parameters (i.e., 186 

those which achieved the lowest validation loss) were used to evaluate individually labeled erythrocytes 187 

in the test dataset. Cells with a probability score greater than or equal to 0.5 were assigned ‘parasite’ 188 

prediction labels. Test predictions were then used to calculate the performance metrics for the test 189 

dataset. Similarly, the ‘best model’ was used to evaluate cells in the clinical validation protocol.  190 

 191 

Clinical Validation Protocol: 192 

Following model development, a separate set of peripheral blood smear slides were used to assess the 193 

accuracy of the model in a simulated clinical workflow. Due to the inherent variability seen with 194 

quantitative analysis by microscopy, a clinical reference standard consisting of multiple measurements 195 

was compiled for comparisons between the model and the predicate method. Accordingly, each glass 196 

slide in the clinical validation dataset was independently evaluated by three MLS’s with 26, 6, and 4 197 

years of experience for MLS A, B, and C, respectively. The clinical validation slides were shuffled, 198 

specimen numbers on the glass slides were covered, and a box containing the clinical validations slides 199 
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was given to each of the MLS’ for independent evaluation. Each MLS evaluated all clinical validation 200 

slides three separate times (Figure 2A). In total, this process generated 9 results of percent parasitemia 201 

for each slide in the clinical validation dataset. These data were used to calculate the average percent 202 

parasitemia across all 9 reads which was used as the MLS-RS for each case/sample (Figure 2B). Of note, 203 

the lower limit of quantitation for percent parasitemia in the clinical laboratory at our institution is 1% 204 

and results below this value are reported out as <1% in routine practice. For the purposes of this study, 205 

MLSs were asked to record the precise parasitemia value, including those below 1%, to allow for a 206 

completely empirical comparison against the model.  207 

For the model-based method, as mentioned, each slide in the clinical validation dataset was 208 

scanned three separate times by the DI-60 (Figure 2C). A custom cell-segmentation script was then used 209 

to crop individual erythrocytes from the peripheral blood smear image (Figure 2D). Cell-segmentation 210 

was implemented using OpenCV (version: 4.2.0.34) using contour-based (cv.findContours()). Individual 211 

erythrocytes (shape: 70x70x3) were then provided as input to the best model, as defined in the 212 

development protocol, to yield a predicted class (i.e., ‘parasite’ or ‘normal’) for each individually 213 

cropped erythrocyte (Figure 2E). Following classification of individual erythrocytes, the number of cells 214 

with the predicted label of ‘parasite’ were divided by number of total cells classified to yield the 215 

quantification of percent parasitemia. This process was done one time for each image with three images 216 

per specimen, yielding a total of 3 parasitemia results per slide (Figure 2F). 217 

Method-to-method (i.e., accuracy) comparisons between the model and MLS-RS percent 218 

parasitemia were made using a variety of approaches: (1) bar plot visualization; (2) regression and 219 

Bland-Altman plots; (3) quantitative agreement of model percent parasitemia in relation to ±2 SD of the 220 

average MLS-RS percent parasitemia (n=9) for each case in the clinical validation dataset; (4) categorical 221 

agreement of percent parasitemia bins; (5) categorical agreement around the clinical decision threshold 222 
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of 10%. Precision was assessed using the coefficient of variation, which was calculated on a case-wise 223 

basis across the MLS (n=9) and model results (n=3).  224 

 225 

Model Interpretability:  226 

In an effort to examine the relationship between model predictions and image features, we 227 

implemented an explainable artificial intelligence (XAI) technique based on axiomatic attribution for 228 

deep networks and known as Integrated Gradients (IG) (13). While the methods of IG are outside the 229 

scope of this report, the general purpose is to identify pixels within each image which most heavily 230 

influence a model’s prediction, and derived from the gradient (i.e., slope or derivative) of the prediction 231 

function relative to each feature (i.e., pixel). For the purposes of this report we attempted to provide 232 

representative samples of what we observed when reviewing the images derived from an IG 233 

implementation. This was done on the test images in the model development dataset. 234 

 235 

RESULTS: 236 

Dataset Curation: 237 

A total of 96 unique slides were included in this study. Of these, 71 slides were included in the 238 

development dataset, 28 of which were found to be positive for Babesia spp by routine clinical 239 

workflow. A total of 14,633 individual erythrocyte images were initially labeled. Of those, 2,019 images 240 

that had overlapping cells were removed, yielding a final development dataset of 11,388 erythrocytes 241 

labeled as normal and 1,226 with a parasite. The mean number of labeled cells per unique slide was 178 242 

(SD 63; range 1-286). Of the slide-level images which were Babesia-positive, the mean parasitemia was 243 

6.5% (SD 4.5; range 1.0-20.0). The clinical validation dataset consisted of the remaining 25 slides, of 244 

which 64% (n=16) were Babesia-positive. The mean parasitemia among the Babesia-positive slides in the 245 

clinical validation dataset was 8.9% (SD 9.4; range 1.0-29.2). 246 
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 247 

Model Development: 248 

The cell classification model was trained 3 separate times. Each training replicate consisted of 50 epochs 249 

(iterations). Learning rates decayed following validation loss plateau across all training replicates, with 250 

the final value ranging from 1e-8 to 1e-9. Minimum validation loss was observed following completion 251 

of training epoch 22, 22, and 31 for each of the training replicates, with an average binary cross-entropy 252 

of 0.024 (SD 0.003). Binary cross-entropy loss was plotted and inspected for positive divergence of 253 

validation loss, relative to training loss, as an empirical indicator of overfitting. This was observed 254 

minimally in the later training epochs (Figure 3A). Precision, recall, and AUC for asymptotically 255 

approached model performance limits which were concordant with plateaus of validation loss, 256 

indicating model improvement to be unlikely to occur with additional training iterations (Figures 3B-D). 257 

Training replicate 3 achieved the lowest validation loss during training (0.021) and was subsequently 258 

used for evaluation of the test and clinical validation datasets. Model predictions on the test dataset 259 

resulted in 20 false positives and zero false negatives. The precision and recall were 0.92 and 1.00, 260 

respectively (Figure 4A). The binary classification accuracy was 0.99. The distribution of predicted 261 

probabilities for erythrocytes in the test dataset was visualized and demonstrated a predominantly 262 

bimodal distribution between the predicted classes (Figure 4B).  263 

 264 

Clinical Validation of Model-Based Method 265 

A total of 25 unique slides were identified for evaluation in the clinical validation set, 16 of which were 266 

found to be positive for Babesia spp by routine clinical workflow. Of those 16, one (Case #15) was 267 

excluded from analysis, as per the consensus recommendation of the participating MLS’ due to 268 

excessive artifact, Howell-Jolly bodies, and only rare, dying parasites. The remaining slides were 269 
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evaluated in three separate instances by each of the MLS’ with an average parasitemia ranging from 270 

<0.1% to 38.5% (Supplemental Table 1 and Supplemental Figure 1).  271 

Model classification demonstrated an increasing positive signal (i.e., higher parasite count) with 272 

respect to the MLS-RS; however, the automated model also demonstrated spurious positive signal with 273 

the negative cases (Cases 16-25). In addition, the model returned highly erroneous false positive signal 274 

on cases 11 and 16, relative to the MLS-RS (Figure 5). A simple linear regression was performed to 275 

evaluate the concordance between the MLS-RS and the model predictions. The regression equation was 276 

determined as: 4.78 + 0.55x with correlation coefficient (R2) of 0.244 (Figure 6A). With cases 11 and 16 277 

removed, the regression equation is calculated as: 1.68 + 0.68x with an R2 of 0.916. Bland-Altman plots 278 

were also assessed for bias trends, and similarly demonstrate erroneous positive signal on the low end 279 

and erroneously low positive signal on the high end (Figure 6A and 6B).  280 

Of the 14 positive cases included in the clinical validation dataset, 10 were within 2 SD of the 281 

MLS-RS mean. However, only 7 were concordant between the model and MLS-RS with regards to the 282 

percent parasitemia bins. In addition, there were three major errors by the model-based method, which 283 

were defined as discordance around the clinical decision point of 10% parasitemia. Of the 14 positive 284 

cases, the MLS-RS CV was less than 20% in only 3 cases, whereas the Model CV was less than 20% for 10 285 

of the cases (Supplemental Table 2).  286 

 287 

Model Interpretability:  288 

Cells from the test dataset and the clinical validation dataset were evaluated using the IG approach to 289 

visualize feature pixel-level activation patterns. Cells from the test dataset generally demonstrated 290 

activation of pixels which were near the intra-erythrocytic parasite (Figure 7). Cells from case 25, a 291 

negative case in the clinical validation set, were also examined and demonstrated erroneous activation 292 

on non-parasitic features. Some of these features included erythrocyte abnormalities (e.g., target cell 293 
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contours), precipitate, and overlying platelets. In some cases, the model appeared to be focusing on 294 

background pixels which may be indicative of overfitting in some aspects of the model (Figure 8).  295 

 296 

DISCUSSION 297 

In this report, we describe an approach to quantifying percent-parasitemia in peripheral blood smears 298 

using computer vision and machine learning technology. We sought to examine the accuracy of an ML-299 

based solution without the use of expert operator-reclassification. Since the beginning of modern 300 

computing, there has been considerable interest in the optimization of peripheral blood smear review, 301 

with published efforts for smear image analysis dating back to the 1970’s (14,15). While previous 302 

attempts yielded variable results, recent improvements in computing hardware have led to significant 303 

advancements in performance, particularly in the context of object classification tasks (16). Indeed, 304 

there has been a resurgence over recent years investigating the application of machine learning-based 305 

technologies for classification, speciation, and quantitative tasks using digital images of the peripheral 306 

blood smear (17,18). Automated image analysis tools are becoming increasingly available for peripheral 307 

smear analysis, however, the scope of FDA approval is limited and classification algorithms demonstrate 308 

suboptimal performance without human reclassification (19,20). 309 

 We found that in the context of the train-test development cycle, model performance metrics 310 

demonstrated highly accurate results. Train and validation loss curves demonstrated minimally 311 

appreciable divergence towards the end of training iterations which would imply that there is negligible 312 

overfitting with the cell classification model (Figure 3A). The sigmoid activation function used for the 313 

classification layer of the model demonstrated good separation between the parasite class and the non-314 

parasite class, with only 20 false positive cells in the test dataset (Figure 4). However, when the model 315 

was implemented with contour-based cell segmentation and applied to the clinical validation dataset, 316 

method comparison studies with the MLS-RS demonstrated suboptimal concordance with the model-317 
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based method. Simple linear regression between the two methods had a calculated correlation 318 

coefficient (R2) of 0.244 and 0.916 with and without outliers, respectively. In addition, only 7 of the 14 319 

positive cases were concordant between the model and MLS-RS when grouped by percent parasitemia 320 

bins. Lastly, there were three major errors by the model-based method, which were defined as 321 

discordance around the clinical decision point of 10% parasitemia (Supplemental Table 2). 322 

The root cause of these discrepancies is likely multifactorial and highlights the need to 323 

interrogate the performance of ML-based technology beyond the train-test development cycle. In the 324 

clinical validation method-to-method comparison, the model returned highly erroneous positive signal 325 

with cases 11 and 16, relative to the MLS-RS (Figure 5). These errors were likely driven, in part, by the 326 

quality of the blood smear which contained significant amount of precipitate and rouleaux formations. 327 

For blood smear images where there was minimal to no rouleaux formation, visual inspection of 328 

contour-based cell segmentation suggested adequate performance (Supplemental Figure 2). However, 329 

in the context of significant rouleaux formation, cell segmentation resulted in fewer individual cells 330 

identified for evaluation (Supplemental Figure 3 and 4). In combination with overlying precipitate, which 331 

can be mistaken for intra-erythrocyte parasites, this can result in a high numerator (i.e., false positives) 332 

and a low denominator (i.e., fewer individually segmented cells), which led to artificially elevated 333 

parasitemia quantification. Future work in this area could explore the use of ML-based approaches to 334 

cell segmentation. However, these approaches would theoretically encounter similar barriers when 335 

initializing models with coordinates for segmentation training and would need specific considerations 336 

for handling rouleaux formations. During the initial stages of this work, we had found there to be little 337 

qualitative difference between computer vision and ML-based segmentation for smears when there was 338 

minimal rouleaux formation to contend with (data not shown).  339 

Model interpretability experiments were used to develop an intuitive sense as to what 340 

effectuates the observed model behavior, a limitation being that this method only provides an 341 
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indication of feature importance on individual images and does not offer a mechanism to provide insight 342 

across the entire dataset. It also only explains individual feature contributions, but does not examine 343 

how feature interactions may contribute to predictions (21). Nonetheless, these experiments revealed 344 

that model predictions of the target class, ‘parasite’, were generally most impacted by pixels spatially 345 

related to intraerythrocytic ring-forms (Figure 7). However, there were instances wherein pixel-wise 346 

activation patterns were found to be localized outside of the erythrocyte and corresponding to 347 

background noise (Supplemental Figure 5). This would suggest that there is some degree of overfitting 348 

which is not obviously appreciable through visual inspection of the train and validation loss curves. 349 

Integrated gradients also provided some context as to model fallibility when applied to the clinical 350 

validation dataset. Cells which were classified as ‘parasite’ from case 25 demonstrated pixel-wise 351 

activation patterns which suggest that the model prediction of the target class was susceptible to 352 

influence by features which share similarities to ring-form parasites. Examples of these microscopic 353 

features which were associated with localized pixel activation included variations in erythrocyte 354 

morphology (e.g., target cell contours) and overlying precipitate or platelets (Figure 8). 355 

In general, model misclassification errors may be remedied by increasing the number of class 356 

examples during training. In doing so, the model input space would be more representative of the 357 

heterogeneity the model may be expected to encounter with real-world data, relative to a model 358 

trained with fewer class examples. However, in the context of training classification models in 359 

healthcare, particularly those which rely on cases of low prevalence diseases, increasing the number of 360 

training examples can be prohibitive. There are techniques which can be implemented to artificially 361 

expand the size of the training dataset (e.g., label-preserving image transformations) and improve 362 

model performance and generalizability. However, these techniques are limited in terms of their 363 

performance benefits and cannot portray inherent intra-class variability which is not already 364 
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represented in the existing training dataset. Overall, results of this study reinforce the need for 365 

consistent, artifact-free, high quality data for optimal algorithm performance. 366 

 Most scientific literature on parasite quantitation is done in the context of Malaria diagnostics, 367 

whereas approaches leveraging deep learning methods have only recently been described (22). To our 368 

knowledge, this is the first published work to focus on the quantitation of Babesia with interpretable 369 

clinical results, using images that are derived from routine clinical workflows. Further, we also evaluated 370 

the utility of the model-based method using external validation datasets, not commonly done in malaria 371 

quantitation studies (18,23). Similar to other published reports, we classified and quantified intracellular 372 

parasites using ‘per-cell’ images (24). Other articles have also described a region-based approach, 373 

wherein images containing multiples cells are evaluated for intracellular parasites, and a final 374 

quantitative score is ultimately produced (18). However, while there are arguably benefits to each, there 375 

is currently no clear advantage to either approach. Indeed, with the increasing breadth of machine 376 

learning technologies, there are multiple avenues to pursue for parasite quantitation. Further research 377 

is needed to delineate which methods are most performant, scalable, and most easily implemented into 378 

clinical workflows, as well as addressing data quality for machine learning implementation in 379 

microscopic image-based computer analysis. 380 

  381 
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FIGURES: 449 

Figure 1: Flow diagram of model development process. (A) Slides included in the model development 450 

dataset were imaged a single time by the Cellavision DI-60 and uploaded to a custom-built-web 451 

application for label annotation. (B) Central X-Y coordinates of infected (red) and non-infected (blue) 452 

erythrocytes were marked on the slide-level images. (C) Central X-Y coordinates were used to crop 453 

individual erythrocytes into 70 x 70 pixel, 3-channel arrays and paired with the corresponding label of 454 

either ‘parasite’ (red) or ‘normal’ (blue). (D) Labeled erythrocyte images were collectively divided 80:20 455 

into train and test datasets, respectively. The train dataset was further subdivided 70:30 into train and 456 

validation datasets, respectively. (E) The train and validation datasets were used train the image 457 

classification model. (F) Following completion of training, the [best model] was used to evaluate model 458 

performance using the test dataset. 459 

Figure 2: Flow diagram of clinical validation process. (A) Each peripheral blood smear was evaluated 460 

three times, in a blinded fashion, by each MLS. (B) This process yielded a total of 9 parasitemia results 461 

for each slide in the clinical validation dataset. These data were used to calculate the average 462 

parasitemia across all 9 reads which was used as the clinical reference standard for each case. (C) Each 463 

glass slide in the clinical validation dataset was imaged three separate times by the Cellavision DI-60. (D) 464 

Contour-based cell segmentation was used to extract individual erythrocytes from the DI-60 slide-level 465 

images as 70x70x3 cropped images. (E) Individually cropped erythrocytes were independently evaluated 466 

by the [best model] to yield a predicted class (i.e., ‘parasite’ or ‘normal’). (F) The number of cells with 467 

the predicted label of ‘parasite’ were divided by number of total cells classified to yield the parasitemia 468 

result. This process was done one time for each DI-60 image. With three images per specimen, this 469 

yielded a total of 3 parasitemia results per slide, which were used to calculate an average parasitemia 470 

result for each specimen.  471 
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Figure 3: Model performance metrics plotted as a function of training epochs (iterations). (A) Train and 472 

validation loss. (B) Train and validation recall (sensitivity). (C) Train and validation area under the 473 

receiver operator characteristic curve. (D) Train and validation precision (positive predictive value).  474 

Figure 4: Model classification results on test dataset. (A) Confusion matrix of actual versus predicted 475 

labels. (B) Per-cell probability distribution of model predicted class with actual labels depicted in color 476 

(red = parasite) (blue = normal). X-axis: The probability of the predicted class being ‘parasite’. Y-axis: 477 

Random number between 0 and 1 was assigned to each cell for better visualizing data points. Green 478 

dotted line: Decision threshold for prediction label of ‘parasite’ – i.e., cells with a predicted probability 479 

of ≥ 0.5 are labeled as ‘parasite’.  480 

Figure 5: Bar plot of mean percent parasitemia for the MLS-RS (n=9) and the model-based method (n=3). 481 

Error bars represent 1 standard deviation.  482 

Figure 6: Visualizations for method-to-method comparison of MLS-RS and model-based method. (A) XY-483 

scatter plot with regression line overlay (red-dotted line represents 95% confidence interval of 484 

regression). (B) Bland-Altman absolute bias plot. (C) Bland-Altman percent bias plot. 485 

Figure 7:  Integrated gradient (IG) visualizations including the original image, the pixel-wise IG 486 

attribution mask, and the overlay of the two. Images are from the model development test dataset. (A 487 

and B) Representative examples from the ‘parasite’ class. (C and D) Representative examples from the 488 

‘normal’ class.  489 

Figure 8: Integrated gradient (IG) visualizations including the original image and an overlay of the pixel-490 

wise IG attribution mask and the original image. Images are from Case #25 of the clinical validation 491 

dataset and are those which were predicted as belonging to the ‘parasite’ class. 492 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.27.21256115doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256115


Train Dataset Test Dataset

Train 
Dataset

Validation
Dataset

Train Model
Save [Best Model]

Evaluate 
Test Dataset
[Best Model]

A

D

E F

B

C

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.27.21256115doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256115


C

D

Evaluate individual erythrocytes with [Best Model]

Model Read #1 Model Read #2

E

F
Model Read #3

MLS-A Read #1

MLS-CMLS-BMLS-A
MLS-CMLS-BMLS-A

MLS-CMLS-BMLS-A
Sl

id
e:

 1
23

A 1 2 3

B

MLS-B Read #1

MLS-C Read #1

MLS-A Read #2

MLS-B Read #2

MLS-C Read #2

MLS-A Read #3

MLS-B Read #3

MLS-C Read #3

Sl
id

e:
 1

23

Sl
id

e:
 1

23

Sl
id

e:
 1

23

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.27.21256115doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256115


0 10 20 30 40 50
0.90

0.92

0.94

0.96

0.98

1.00

Epoch

AU
C

Train AUC
Validation AUC

0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

Epoch

Lo
ss

Train Loss
Validation Loss

0 10 20 30 40 50
0.6

0.7

0.8

0.9

1.0

Epoch

Pr
ec

is
io

n

Train Precision
Validation Precision

0 10 20 30 40 50

0.80

0.85

0.90

0.95

1.00

Epoch

Re
ca

ll

Train Recall
Validation Recall

A

B

C

D

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.27.21256115doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256115


A

Actual Label Predicted Label
Normal Parasite

Normal 2258 20
Parasite 0 245

B

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.27.21256115doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256115


1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 25
0

10

20

30

40

50

60

70

Case Number

Pa
ra

si
te

m
ia

 (%
)

MLS
Model

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.27.21256115doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256115


0 10 20 30 40
-20

0

20

40

Parasitemia (%)

Bi
as

  (
Pa

ra
si

te
m

ia
  (

%
))

Average Bias

0 10 20 30 40
0

10

20

30

40

Clinical  Reference Standard

M
od

el

Regression

1:1 Line

0 10 20 30 40

0

10

20

30

Parasitemia (%)

Pe
rc

en
t B

ia
s

A B C

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.27.21256115doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256115


Original Image Attribution Mask Overlay

A

B

C

D

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.27.21256115doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256115


All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.27.21256115doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256115

	babesia_manuscript
	babesia_ppt_figures
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8


