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Abstract

A valuable metric in understanding infectious disease local dynamics is the local time-

varying reproduction number, i.e. the expected number of secondary local cases caused

by each infected individual. Accurate estimation of this quantity requires distinguishing

cases arising from local transmission from those imported from elsewhere. Realistically,

we can expect identification of cases as local or imported to be imperfect. We study

the propagation of such errors in estimation of the local time-varying reproduction

number. In addition, we propose a Bayesian framework for estimation of the true local

time-varying reproduction number when identification errors exist. And we illustrate the

practical performance of our estimator through simulation studies and with outbreaks of

COVID-19 in Hong Kong and Victoria, Australia.

Introduction

Epidemic modeling, while not at all new, has taken on renewed importance due to

the COVID-19 pandemic. The local time-varying reproduction number, Rlocal
∗ (t), is an
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important quantity to monitor the infectiousness and transmissibility of diseases and,

therefore, to design and adjust public health responses during an outbreak. Recent

examples include monitoring transmission of the COVID-19 pandemic and demonstrating

the efficacy of non-pharmaceutical interventions in more than 100 countries [1–4]. The

value of Rlocal
∗ (t) represents the expected number of secondary local cases arising from

a primary case infected at time t. Different formal definitions of Rlocal
∗ (t) have been

proposed, and a number of methods are available to estimate this quantity. The most

widely used is an estimator of the instantaneous reproduction number that is defined

as the ratio of the expected number of incident locally infected cases at time t to the

expected total infectiousness of infected individuals at time t [5, 6].

Distinguishing local cases from imported cases is essential to estimation of the local

time-varying reproduction number. However, surveillance data generally is available

only up to some level of error. For example, if we are unable to identify the correct

source of infection from contact tracing or genetic information, imported cases might be

misclassified as local cases, and vice versa. Such misclassification error is recognized as

one limitation of estimating Rlocal
∗ (t) in the COVID-19 outbreak [7,8]. We investigate

how identification error impacts on the estimation of the instantaneous reproduction

number and, thus, on our understanding of diseases transmission dynamics.

Extensive work regarding improving inference of time-varying reproduction numbers

has been done. For instance, there have been efforts to estimate the serial interval that

is used to compute the total infectiousness for Rlocal
∗ (t) estimation, including Bayesian

parametric estimation using data augmentation Markov Chain Monte Carlo [9], and

a cure model for limited follow-up data [10]. Many studies have explored the effects

of imperfect detection and estimated the true infection prevalence [8, 11–13]. But, to

our best knowledge, there has been little attention to date given towards accounting for

identification errors of local and imported cases.

Our contribution in this paper is to quantify how such errors propagate to the local

time-varying reproduction number, and to provide estimators for Rlocal
∗ (t) when contact

tracing survey information is available. Adopting the definition of Rlocal
∗ (t) proposed

by [5], we characterize the impact of identification errors on the bias of noisy local

time-varying reproduction numbers. Our work shows that, in general, the bias can be

expected to be nontrivial. Accordingly, we propose a Bayesian framework to estimate
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the true local time-varying reproduction number. Numerical simulation suggests that

high accuracy is possible for estimating local time-varying reproduction numbers in

outbreaks of even modest size. We illustrate the practical use of our estimators in the

context of COVID-19 pandemic in Hong Kong and Victoria, Australia.

The organization of this paper is as follows. In Methods Section we show the bias of

the noisy local time-varying reproduction number, and propose a Bayesian hierarchical

framework to estimate the true local time-varying reproduction number with imperfect

knowledge. Results Section reports the practical performance of our estimators through

simulation studies and with SARS-CoV-2 infections in Hong Kong and Australia. Finally,

we conclude in Discussion Section with a discussion of future directions for this work.

Methods

In this section, we first quantify the bias of the noisy local time-varying reproduction

number when misidentification occurs in the surveillance data. We then build a Bayesian

hierarchical framework to estimate true local time-varying reproduction numbers. We

also propose a method to estimate misidentification rates based on contact tracing survey

data, which informs the prior distribution in the model.

Notation

We provide essential notation and background here. The number of newly infected cases

at time t, I∗(t) , is the sum of the numbers of local (I local∗ (t)) and imported (I imported
∗ (t))

cases. If one assumes independence between calendar time and the generation interval,

g(s), then the local time-varying reproduction number is defined as [5]

Rlocal
∗ (t) =

µlocal
∗ (t)∫∞

0
g(s)µ∗(t− s)ds

, (1)

where µlocal
∗ (t) = E[I local∗ (t)] and µ∗(t) = E[I∗(t)].

In reality, we only know the serial interval and the number of diagnosed cases. Let

I(t), I local(t) and I imported(t) be the numbers of total diagnosed cases, local diagnosed

cases, and imported diagnosed cases at time t, respectively. Then, we define a realistic
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local time-varying reproduction number as

Rlocal(t) =
µlocal(t)∫∞

0
w(s)µ(t− s)ds

, (2)

where w(s) is the serial interval, µlocal(t) = E[I local(t)] and µ(t) = E[I(t)]. Note that the

serial interval corresponds to date of symptom onset. One can estimate symptom onset

dates by back calculation of report dates [14].

Realistically, we can expect identification of cases as local or imported to be imperfect.

Let Ĩ
local

(t) and Ĩ
imported

(t) be the number of new local and imported cases reported at

time t, with identification error. Thus, we define a noisy local time-varying reproduction

number as

R̃
local

(t) =
µ̃local(t)∫∞

0
w(s)µ(t− s)ds

, (3)

where µ̃local(t) = E[Ĩ
local

(t)]. The definition of R̃
local

(t) in (3) comes from an argument

that mimics the original argument using Poisson arrivals in [15]. Specifically, we suppose

that we observe a Poisson stream Ĩ
local

(t) that is a function of calendar time t in terms

of the transmissibility, denoted β̃local(t, s), an arbitrary function of calendar time t and

time since infection s. Then, µ̃local(t) follows the so-called renewal equation

µ̃local(t) =

∫ ∞
0

β̃local(t, s)µ(t− s)ds. (4)

Following [15], we have

β̃local(t, s) = R̃
local

(t)w(s). (5)

Inserting (5) into (4) yields the definition of R̃
local

(t) in (3).

Our interest is in characterizing the manner in which the uncertainty in Ĩ
local

(t) and

Ĩ
imported

(t) propagates to the local time-varying reproduction number, and providing

estimators of Rlocal(t) to account for identification errors.

Bias of the noisy local time-varying reproduction number

We quantify the bias of the noisy local time-varying reproduction number in (3) when

misidentification occurs. We begin by defining a model for Ĩ
local

(t) and Ĩ
imported

(t). Let

α0 denote the probability that an imported case is misidentified as local, and α1 the
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probability that a local case is misidentified as imported. Then, a simple model is

Ĩ
local

(t)|I local(t), I imported(t), α0, α1 ∼ Bin(I local(t), 1− α1) + Bin(I imported(t), α0),

Ĩ
imported

(t) = I local(t) + I imported(t)− Ĩ local(t).

(6)

Under independence, the first relationship in (6) is directly obtained by the definition of

α0 and α1. And the second equation in (6) is due to the fact that the total number of

cases reported at time t is not affected by the misidentification.

By (6), the relationship between µ̃local(t) and µlocal(t) is

µ̃local(t) = (1− α1)µlocal(t) + α0µ
imported(t), (7)

where µimported(t) = E(I imported(t)). Direct computation yields

R̃
local

(t) =
(

1− α1 + α0
µimported(t)

µlocal(t)

)
Rlocal(t) (8)

when µlocal(t) 6= 0. From (8), we can see that the bias of R̃
local

(t) depends on α0, α1

and the ratio of µimported(t) and µlocal(t). When µimported(t)/µlocal(t) = 1, we have

R̃
local

(t) > Rlocal(t) if α0 > α1, and R̃
local

(t) < Rlocal(t) if α0 < α1.

Bayesian hierarchical modeling to account for misidentification

We propose a Bayesian framework to estimate Rlocal(t) using noisy surveillance data.

Following [5, 6, 15], we specify

I local(t)|Rlocal(t), n(t− 1), w(s) ∼ Pois(Rlocal(t) · Λ(t)), for t > 0, (9)

where Λ(t) =
∑t
s=1 w(s)I(t−s) is the total infectiousness of infected individuals at time t,

and n(t−1) represent the historical data up to time t−1 (i.e., I local(0), I imported(0), · · · ,

I local(t− 1), I imported(t− 1)). Note that Λ(t) is undefined for t = 0. So, we assume that

I local(0)|µlocal(0) ∼ Pois(µlocal(0)). (10)
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And we assume the imported case counts follow a Poisson distribution:

I imported(t)|µimported(t) ∼ Pois(µimported(t)). (11)

Next, we define relevant prior distributions. We assume a distribution for Rlocal(t) of

the form

Rlocal(t)|n(t− 1), w(s) ∼ Gamma(alocalt|t−1, b
local
t|t−1), for t > 0. (12)

This choice is similar to that in [5], but differs in that we specify gamma conditioned on

the history, rather than marginally. The conditioning reflects the expectation that the

evolution of Rlocal(t) is likely to depend on the course of infection in the population and

intervention measures that may result. Analogously, we also assume gamma distributed

priors for µimported(t) and µlocal(0), that is,

µimported(t) ∼ Gamma(aimported
t , bimported

t ),

µlocal(0) ∼ Gamma(alocal0 , blocal0 ).

(13)

In addition, we assume the convention that the misidentification rates are beta distributed,

and hence given by

α0 ∼ Beta(ζα0
, ξα0

),

α1 ∼ Beta(ζα1
, ξα1

).

(14)

By using Markov chain Monte Carlo (MCMC) simulation, we can get both estimates

of Rlocal(t) and its uncertainty. We implement MCMC using the R package, NIMBLE

[16–18] with the default assignment of sampler algorithms. The samplers assigned to

the variables are as follows: Gibbs samplers are assigned to µlocal(0) and µimported(t),

t ≥ 0, which have conjugate relationships between their prior distribution and the

distributions of their stochastic dependents; slice samplers [19] are used for I local(t) and

I imported(t), t ≥ 0; Metropolis-Hastings adaptive random-walk samplers are set to α0,

α1 and Rlocal(t), t > 0.
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Estimating misidentification rates

Without any information on the misidentification rates, it is difficult to get an accurate

estimator of Rlocal(t). However, contact tracing data could provide adequate information

to estimate the misidentification rates.

Let pi be the probability that we think individual i is a local case based on the

survey. Then, pi is a mixture of α0 and 1− α1. Note that α1 ∼ Beta(ζα1
, ξα1

) implies

1− α1 ∼ Beta(ξα1
, ζα1

). We thus model the distribution of pi as a mixture of two beta

distributions:

pi ∼ π0Beta(ζα0
, ξα0

) + (1− π0)Beta(ξα1
, ζα1

), (15)

where π0 can be interpreted as the fraction of the diagnosed cases that are imported.

By using the expectation–maximization (EM) algorithm, we can obtain estimators

ζ̂α0 , ξ̂α0
, ζ̂α1

and ξ̂α1
.

Note that, if 1− ζα0
/(ζα0

+ ξα0
)− ζα1

/(ζα1
+ ξα1

) 6= 0, we obtain unbiased estimators

of I local(t) and I imported(t)

Î local(t) =
[1− ζα0

/(ζα0
+ ξα0

)] · Ĩ local(t)− ζα0
/(ζα0

+ ξα0
) · Ĩ imported

(t)

1− ζα0
/(ζα0

+ ξα0
)− ζα1

/(ζα1
+ ξα1

)
,

Î imported(t) =
[1− ζα1/(ζα1 + ξα1)]Ĩ

imported
(t)− ζα1/(ζα1 + ξα1)Ĩ

local
(t)

1− ζα0
/(ζα0

+ ξα0
)− ζα1

/(ζα1
+ ξα1

)
.

(16)

Thus, good initial values of I local(t) and I imported(t) in MCMC are estimators of

Î local(t) and Î imported(t) based on the estimated misidentification rates, i.e., replac-

ing ζα0
, ξα0

, ζα1
, ξα1

in (16) by ζ̂α0
, ξ̂α0

, ζ̂α1
, ξ̂α1

.

Results

In this section, we conduct some simulations to illustrate the performance of the proposed

estimation methods. And we apply our method to two real data sets. One is surveillance

data of COVID-19 in Hong Kong that includes contact tracing information, including

travel history data [20]. They collected information on 1,038 SARS-CoV-2 cases confirmed

between 23 January and 28 April 2020. And they identified 355 local cases and 683

imported cases. The other data set is from the COVID-19 pandemic in Victoria, Australia,

studied in [21]. There they had 1,333 laboratory-confirmed cases of COVID-19 between 6
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January and 14 April 2020. After excluding duplicate patients from cases, they identified

345 local cases and 558 imported cases.

We consider two settings, a simulation setting and an application setting. In the

simulation setting, we first use surveillance data from Hong Kong and Victoria to create

realistic simulated data, and then we add identification errors to the ‘true’ local and

imported cases derived from the simulated epidemics, finally we estimate the local

time-varying reproduction number using the noisy local and imported cases counts. In

the application setting, we assume that identified local and imported cases in the real

data sets are with some error. The former results allow us to understand what properties

can be expected of our estimators, while the latter are reflective of what would be

observed in practice with such data.

Simulation study

In this simulation study, we used Covasim [22], a stochastic individual-based model for

transmission of SARS-CoV-2, calibrated to the epidemics in Hong Kong and Victoria.

Fig 1 shows the average daily local and imported diagnosed counts over 1,000 trials. The

noisy Ĩ
local

(t) and Ĩ
imported

(t) are generated according to (6). We set α0 ∼ Beta(2, 18)

(mean of 0.1), and α1 ∼ Beta(2, 8) (mean of 0.2), Beta(4, 8) (mean of 0.33), or Beta(8, 8)

(mean of 0.5) to see the effect of small α0 and large α1. This might happen if the

definition of imported cases relies on travel history collected in the case investigation

and some people are infected locally, even though they have a travel history within 14

days prior to symptom onset. We also consider α1 ∼ Beta(2, 18), and α0 ∼ Beta(2, 8),

Beta(4, 8), or Beta(8, 8) (corresponding to small α1 and large α0, which might occur

if cases are defined as local when we are not sure about their source of infection.) We

assume that both α0 and α1 are unknown.

We evaluate the estimate for Rlocal(t) in terms of a corresponding posterior, and 95%

credible intervals. Fig 2 and 3 show the simulation results, in which we run MCMC

chains of 10,000 samples for each of 1,000 simulated epidemic trials. Fig 2 assumes

that we are more likely to misclassify local cases as imported cases and Fig 3 assumes

that we are more likely to misclassify imported cases as local cases. For comparison

purposes, we compute Rlocal
∗ (t) and Rlocal(t) defined in (1) and (2) by approximating
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Fig 1. The means of daily local and imported diagnosed counts in 1,000 simulation
trials for epidemics in Hong Kong and Victoria.

µlocal
∗ (t), µ∗(t), g(s), µlocal(t), µ(t), w(s) using 1,000 simulation trials. And we calculate

the most widely used estimator of R̃local(t) defined in (3), which is implemented in the R

package, EpiEstim [23]. We view it as a representative estimator that does not account

for misidentification, i.e., it treats the noisy local and imported cases as true.

In the simulated epidemics for both Hong Kong and Victoria, if we ignore the

misidentification, we will underestimate Rlocal(t) when the mean of α0 is small and the

mean of α1 is relatively large (Fig 2), and overestimate Rlocal(t) when the mean of α1

is small and the mean of α0 is relatively large (Fig 3), with the biases increasing when

the means of α0 and α1 increase. The results are consistent with (8) implying that the

biases will lead to inappropriate public health response, i.e., inadequate interventions or

overreaction. We correct the bias by our Bayesian hierarchical framework. The biases of

our estimators are close to zero in all cases. The 95% credible intervals of our estimators

are wide in the first two months because the number of incident cases are very low. For

the last month or so when the diagnosed counts are relatively high, the 95% credible

intervals are narrow.

Application

We apply our proposed methods to surveillance data of COVID-19 in Hong Kong and

Victoria. Fig 4 (a) and (b) show the daily local and imported cases counts in Hong Kong

and Victoria. For Hong Kong data, [20] calculated the serial intervals using a gamma

distribution and estimated shape and rate parameters of 2.23 and 0.37, respectively

9
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Fig 2. Estimations of local time-varying reproduction numbers in simulated epidemics
for Hong Kong and Victoria under three sets of error misidentification rates:
α0 ∼ Beta(2, 18), and α1 ∼ Beta(2, 8), Beta(4, 8), or Beta(8, 8). The error bands are
the averages of 95% credible intervals over 1,000 trials. Note that the differences
between the blue curve (Rlocal

∗ (t)) and the purple curve (Rlocal(t)) are due to the
differences among infected dates, symptom onset dates, diagnosed dates.

(corresponding to a mean of around 6 days and standard deviation of around 4 days).

There is no specific serial interval that has been calculated for Victoria. Considering the

epidemic curve in Victoria is relatively similar to that in Hong Kong, we use the same

serial interval distribution when we estimate Rlocal(t) in Victoria.

Fig 4 (c) and (d) show estimates for Rlocal(t) under three scenarios: 1) no identification

error, 2) small α0 and large α1, 3) small α1 and large α0. We run MCMC chains of

10,000 samples and the error bands are the 95% credible intervals. We can see that the

estimated local time-varying reproduction numbers are quite different when the two

identification error rates are about 10% and 30%. If we think we are more likely to

misclassify local cases as imported, then we should trust the curve corresponding to

scenario 2). If imported cases are more likely to be misidentified as local, then the curve

10
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Fig 3. Estimations of local time-varying reproduction numbers in simulated epidemics
for Hong Kong and Victoria under three sets of error misidentification rates:
α1 ∼ Beta(2, 18), and α0 ∼ Beta(2, 8), Beta(4, 8), or Beta(8, 8). The error bands are
the averages of 95% credible intervals over 1,000 trials.

corresponding to scenario 3) is reliable. And if we believe the identification error is close

to zero, we should trust the estimate under scenario 1).

Ultimately, we see that the ability to account for identification error appropriately in

reporting the local time-varying reproduction number can lead to substantially different

conclusions than use of the original, noisy local time-varying reproduction number. These

differences can then in turn be translated to decision making for public health response.

Discussion

We have developed a general framework for estimation of the true local time-varying

reproduction numbers in contexts wherein one has identified local and imported case

counts with some error. Simulations demonstrate that substantial inferential accuracy

11
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Fig 4. Epidemic curves of COVID-19 cases and estimations of local time-varying
reproduction numbers in Hong Kong and Victoria. (a) The epidemic curve of daily
cases of laboratory-confirmed SARS-CoV-2 infection in Hong Kong by symptom onset
date and colored by case category. Asymptomatic cases are included here by date of
confirmation. (b) The epidemic curve of the coronavirus disease cases in Victoria by
sample collection date and colored by case category. (c) and (d) Estimations of local
time-varying reproduction numbers under three scenarios: 1) no identification error, 2)
α0 ∼ Beta(2, 18) and α1 ∼ Beta(4, 8) (around 10% imported cases are misclassified as
local and around 33.3% local cases are misclassified as imported), 3) α0 ∼ Beta(4, 8) and
α1 ∼ Beta(2, 18) (around 33.3% imported cases are misclassified as local and around
10% local cases are misclassified as imported). The bands are the 95% credible intervals.

by our estimators is possible when nontrivial error is present. And our application to

epidemics in Hong Kong and Victoria shows that the gains offered by our approach over

presenting the noisy local instantaneous reproduction number can be pronounced.

We have shown examples on a state/province level, but our method could be useful

for cities, or more local settings, such as a university trying to determine if there is

substantial local transmission occurring. Our approach requires daily numbers of local

and imported cases, serial interval, and contact tracing data or other data to provide
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adequate information to estimate the misidentification rates.

We have pursued a Bayesian approach to the problem of estimating the local instanta-

neous reproduction number. The credible intervals are relatively wide when the number

of cases is low. To improve the performance at low case incidence, Kalman filtering is a

natural approach. Estimating the time-vary reproduction number by Kalman filtering

is an emerging topic. For instance, [24] constructed a recursive Bayesian smoother for

estimating the effective reproduction number from the incidence of an infectious disease

in real time and retrospectively. However, one typically does not distinguish between

local and imported cases in this setting.

The identification errors are informed by contact tracing survey data in our approach.

If the data from the survey is categorical (e.g., we ask people where they were infected

and attach some qualitative measure of our confidences that we think they are local

cases), we can transform them into numerical values. For example, [25] proposed a

method that converts categorical variables to numerical data for Gaussian distribution.

We could modify the method to convert categorical variables to Beta distributed data.

If the survey data is unavailable, using genomic data is a natural alternative. Genomic

surveillance has been used to detect transmission clusters and to provide information on

the possible source of individual cases [26–31].

We have showed the results of retrospective estimation. And it is computationally

feasible to run MCMC on each day to obtain real time estimators; it takes about 5

minutes for the MCMC chain of 10,000 samples. To reduce the computational cost, one

approach is adaptive MCMC methods [32, 33], which use the covariance structure of the

posterior distribution to design proposal distributions. Other methods include stochastic

Newton [34] and Riemannian manifold MCMC [35], which construct efficient proposals

by local derivative information.

Data Accessibility

No primary data are used in this paper. Secondary data sources are taken from [20,21].

These data and the code necessary to reproduce the results in this paper are available at

https://github.com/KolaczykResearch/EstimLocalRt.
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