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Resting-state functional MRI signal fluctuations are correlated 

with brain amyloid-β deposition 
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C. Munro Cullum4,5,6, Rong Zhang2,5, David C. Zhu1 

Abstract  

Mounting evidence suggests that amyloid-β (Aβ) and vascular etiologies are intertwined in 

the pathogenesis of Alzheimer’s disease. Spontaneous fluctuations of the brain blood-

oxygen-level-dependent (BOLD) signal, as measured by resting-state functional MRI (rs-

fMRI), have been shown to be associated with neuronal activities as well as cerebrovascular 

hemodynamics. Nevertheless, it is unclear if rs-fMRI BOLD fluctuations are associated with 

brain Aβ deposition in individuals with an elevated risk of Alzheimer's disease.  

We recruited 33 patients with amnestic mild cognitive impairment who underwent rs-fMRI 

and positron emission tomography (PET). The Aβ standardized uptake value ratio (SUVR) 

was calculated with cortical white matter as the reference region to improve sensitivity for 

cortical Aβ quantification. We calculated the amplitudes of low-frequency fluctuations 

(ALFF) of local BOLD signals in the frequency band of 0.01-0.08 Hz. Applying 

physiological/vascular signal regression in stepwise increasing levels on the rs-fMRI data, we 

examined whether local correlations between ALFF and brain Aβ deposition were driven by 

vascular hemodynamics, spontaneous neuronal activities, or both.  

We found that ALFF and Aβ SUVR were negatively correlated in brain regions involving the 

default-mode and visual networks, with peak correlation at the precuneus, and angular, 

lingual, and fusiform gyri. Regions with higher ALFF had less Aβ accumulation. The 

correlated cluster sizes in MNI space were reduced from 3018 mm3 with no 

physiological/vascular regression to 1072 mm3 with strong physiological/vascular regression, 

with mean cluster r values at approximately -0.47.  

Results demonstrate that both vascular hemodynamics and neuronal activities, as reflected by 

BOLD fluctuations, are negatively associated with brain Aβ deposition. These findings 

further imply that local brain blood fluctuations due to either vascular hemodynamics or 

neuronal activities can affect Aβ homeostasis. 
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Abbreviations: ADNI = Alzheimer's Disease Neuroimaging Initiative; AFNI = Analysis of 

Functional NeuroImages; ALFF = Amplitude of Low-Frequency Fluctuations; APOE4 = 

Apolipoprotein E4; AROMA = ICA-based Automatic Removal Of Motion Artifacts; AV45 = 

18F-Florbetapir; Aβ = Amyloid-β; BOLD = Blood-Oxygen-Level-Dependent; CBF = 

Cerebral Blood Flow; CDR = Clinical Dementia Rating; DPABI = Toolbox for Data 

Processing & Analysis of Brain Imaging; DPARSFA = Data Processing Assistant for 

Resting-State fMRI advanced edition; EPI = Echo Planar Imaging; FFT = Fast Fourier 

Transformation; flirt = FMRIB's Linear Image Registration Tool; fMRI = functional MRI; 

FMRIB = Functional Magnetic Resonance Imaging of the Brain; FSL = FMRIB Software 

Library; FWHM = Full Width at Half Maximum; GS = Global Signal; ICA = Independent 

Component Analysis; ISF = Interstitial Fluid; MELODIC = Multivariate Exploratory Linear 

Optimized Decomposition into Independent Components; MMSE = Mini-Mental State 

Examination; MNI = Montreal Neurological Institute; MPRAGE = Magnetization-Prepared 

Rapid Acquisition Gradient-Echo; MRI = Magnetic Resonance Imaging; ROC = Receiver 

Operating Characteristics; rs-fMRI = resting-state fMRI; sALFF = standardized ALFF; 

SUVR = Standardized Uptake Value Ratio; TE = Time of Echo; TR = Time of Repetition; 

WM = White Matter; WMS-LM = Wechsler Memory Scale – Revised Logical Memory 

 

Introduction  

Alzheimer’s disease is a major neurodegenerative brain disorder and the most common 

type of dementia among older adults.1 Patients with Alzheimer's disease exhibit memory loss, 

impaired decision-making capacity, disorientation, as well as changes in daily activity.2 

These cognitive deficits and functional changes are accompanied and often preceded by brain 

pathophysiological changes including amyloid-β (Aβ) and tau protein depositions in the 

cerebral cortex, brain hypoperfusion, and neuronal degeneration.3 Mild cognitive impairment, 

particularly amnestic mild cognitive impairment, has been considered to represent a 

transitional phase between cognitive aging and Alzheimer’s disease, as many who develop 

amnestic mild cognitive impairment progress to Alzheimer’s disease.4  

Two major hypotheses have been developed to understand the pathophysiological 

mechanisms of Alzheimer's disease and to develop effective treatments. In the classic 

amyloid cascade hypothesis, the disruption of brain Aβ homeostasis has been proposed to be 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.22.21255924doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.22.21255924


4 
 

a primary driver of Alzheimer's disease, leading to accumulations of Aβ plaques and 

neurofibrillary tangles, and consequently neurodegeneration and cognitive impairment.5 

Conversely, the vascular hypothesis of Alzheimer's disease proposes that cerebrovascular 

dysfunction is an important contributor to Alzheimer's disease onset and progression.6–8 

Mounting evidence indicates that Aβ and vascular etiology are intertwined in the 

pathogenesis of Alzheimer's disease.9,10 In a recent study, we found that age-related carotid 

artery stiffness was associated positively with brain Aβ burden in patients with amnestic mild 

cognitive impairment, supporting the role of arterial aging in brain Aβ deposition.11 Recent 

animal and human studies also suggested that cerebral arterial oscillations and vasomotions 

influence brain Aβ clearance and deposition.12–14 Spontaneous cerebral blood flow (CBF) 

fluctuations are linked intrinsically to brain neuronal activities through neurovascular 

coupling.15–17 This phenomenon has been exploited by using resting-state functional MRI (rs-

fMRI) to understand functional connectivities between brain regions and the disruption of 

functional connectivity in diseased states.16,18–26 Specifically, it has been proposed that 

spontaneous neuronal activities, which consume approximately 95% of the brain’s 

metabolism,16 are manifested as rs-fMRI blood-oxygen-level-dependent (BOLD) signal 

fluctuations.16,17,27 

It has been widely recognized that spontaneous BOLD fluctuations are influenced by 

both systemic and cerebrovascular hemodynamics in addition to neuronal activities.28–32 In 

this regard, our previous work has shown that spontaneous fluctuations of BOLD signals and 

CBF velocity measured in the middle cerebral artery (upper-stream vascular signals) had 

similar spectral distributions and high correlation in the 0.01 - 0.08 Hz frequency band.33 

These observations suggested that upper-stream cerebrovascular hemodynamic fluctuations 

can transmit downstream into the cerebral microcirculation and contribute importantly to 

regional BOLD fluctuations. On the other hand, local cerebral vasomotion, which has been 

linked to brain Aβ clearance, also may influence rs-fMRI BOLD fluctuations.12  A recent 

study also showed increased fMRI signal variability at cardiorespiratory frequencies in 

Alzheimer's disease patients when compared to cognitively normal performing older adults.34  

This study aimed to determine whether BOLD signal fluctuations as quantified by the 

amplitude of low-frequency fluctuations (ALFF) in the range of 0.01-0.08 Hz are related to 

brain Aβ deposition in patients with amnestic mild cognitive impairment.4,35–38 Furthermore, 

we examined whether the associations between local ALFF and brain Aβ depositions are 

influenced by the estimated upper-stream cerebrovascular hemodynamics, spontaneous 

neuronal activities, or both, using the well-established signal regression approaches.39–41 We 
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hypothesized that local ALFF would be negatively correlated with brain Aβ deposition and 

that correlation strength between ALFF and Aβ deposition would decrease when the upper-

stream vascular signals are regressed out from the raw BOLD signal under an assumption that 

upper-stream vascular effects drive brain Aβ clearance. 

Materials and methods  

Participants 

Thirty-three amnestic mild cognitive impairment subjects (64.4 ± 6.4 years of age, 19 

females) were recruited who represent a subgroup of participants enrolled in a proof of 

concept investigation aimed to identify effects of exercise training on neurocognitive function 

in amnestic mild cognitive impairment (ClinicalTrials.gov, NCT01146717).42 Data presented 

here were obtained at baseline before any intervention. The diagnosis of amnestic mild 

cognitive impairment was based on the Petersen criteria as modified by the Alzheimer's 

Disease Neuroimaging Initiative (ADNI) project (http://adni-info.org).43 Diagnostic 

assessments included the Clinical Dementia Rating (CDR) scale,44 the Mini-Mental State 

Examination (MMSE),45 and the Wechsler Memory Scale-Revised Logical Memory (LM) 

immediate and delayed recall trials.46 Heart rate (HR) and brachial cuff blood pressure (BP) 

were measured >3 times with an ECG-gated electro-sphygmomanometer (Suntech, 

Morrisville, NC, USA). Obtained values were averaged to obtain HR, systolic (SBP), and 

diastolic BP (DBP). Participants with major psychiatric disorders, major or unstable medical 

conditions, uncontrolled hypertension, diabetes mellitus, or chronic inflammatory diseases 

were excluded, as were participants with a cardiac pacemaker or any metal plates or pins in 

their body preventing them from undergoing MRI scanning (detailed inclusion and exclusion 

criteria are provided in ClinicalTrials.gov NCT01146717). All participants gave informed 

consent. This study was approved by the Institutional Review Boards of the University of 

Texas Southwestern Medical Center and Texas Health Presbyterian Hospital of Dallas and 

performed by the guidelines of the Declaration of Helsinki and Belmont Report. 

 

MRI Measurements 

Rs-fMRI data were collected on a Philips Achieva 3T scanner (Philips Healthcare, Best, 

the Netherlands) under an “eye-closed” condition with the following parameters: gradient 

recalled echo planner imaging (EPI), 29 contiguous 5-mm axial slices, 30-ms time of echo 
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(TE), 1500-ms time of repetition (TR), 60° flip angle, a 24-cm field of view, 80 × 80 matrix 

size and 200 time-points. High-resolution T1-weighted 3D MPRAGE (Magnetization-

Prepared Rapid Acquisition Gradient-Echo) images were also collected to cover the whole 

brain with the following parameters: TE/TR = 3.7/8.1 ms, flip angle = 12°, field of view = 

256 mm × 204 mm, 160 1-mm slices, resolution = 1 mm × 1 mm × 1 mm, SENSE factor = 2 

and scan duration = 4 minutes. 

 

PET image acquisition  

After an intravenous bolus injection of 10 mCi 18F-florbetapir (also called AV45), 

participants were positioned in a Siemens (Munich, Germany) ECAT HR PET scanner for 

data acquisition, using laser guidance for precise head positioning. Velcro straps and foam 

wedges were used to secure the participant's head. To ensure the brain was completely in the 

field of view and absent of rotation in either the transverse or sagittal planes, a 2-minute scout 

scan was acquired. At 50 minutes post-injection, 2 frames of 5-minute PET emission scan 

and a 7-minute transmission scan were acquired in 3D mode using the following parameters: 

matrix size = 128 × 128, resolution = 5 mm × 5 mm, slice thickness = 2.42 mm, and field of 

view = 58.3 cm. Emission images were processed by iterative reconstruction, 4 iterations, and 

16 subsets with a 3-mm full width at half maximum (FWHM) ramp filter. The transmission 

image was reconstructed using back-projection and a 6-mm FWHM Gaussian filter for 

attenuation correction 47,48. 

 

RS-fMRI BOLD signal fluctuation quantification 

The quantification of rs-fMRI BOLD local signal fluctuation using ALFF was first 

proposed by Zang et al..38 It was first used to investigate regional rs-fMRI signal fluctuations 

in attention deficit hyperactivity disorder. To calculate ALFF, rs-fMRI recordings are first 

pre-processed according to current standards, including slice-timing correction, motion 

correction, and spatial blurring (different strategies used here are detailed later). Importantly, 

no temporal filtering is applied before ALFF calculation. Fast Fourier transformation (FFT) is 

carried out on each preprocessed voxel time course. The ALFF index is calculated as two 

times the amplitude of the FFT output, divided by the sample length (number of data points 

in the time course), then averaged across the specified frequency band of interest.  

A frequency band of 0.01 - 0.08 Hz was used in this study. Figure 1(a) shows a typical 

pre-processed rs-fMRI time course at a brain voxel.  Figure 1(b) shows the corresponding 
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Fourier spectrum and the frequency band for ALFF computation. ALFF at each voxel is 

subsequently normalized by the global mean ALFF from all voxels within the brain to 

generate a standardized ALFF index (sALFF) that allows comparisons across participants. 

ALFF computations were carried out using the ALFF function included in the DPARSFA 

toolbox from the “DPABI V4.3_200401” software package49,50 in MATLAB R2019a 

(MathWorks, Natick, MA, USA). 

 

Anatomical image pre-processing and MNI-registration 

One common challenge in brain imaging studies of older adults is the high degree of 

anatomical variability due to atrophy, leading to difficulties in performing group-wise image 

analyses. FreeSurfer51, an automated data processing software for cortical surface 

reconstruction and anatomical segmentation of brain MRI scans, provides a robust brain 

segmentation in comparable study cohorts, as demonstrated in prior studies.26 The high-

resolution T1-weighted volumetric MR images of each participant were processed using the 

default FreeSurfer “recon-all” pipeline. This pipeline creates a robust non-linear 

transformation matrix that warps images from a participant’s native space to MNI standard 

space, according to the MNI305 template resolution (1 mm × 1 mm × 1 mm with a matrix 

size of 256 × 256 × 256). This transformation matrix was applied to warp the results of the 

sALFF and AV45-SUVR calculations to the MNI305 template. While the transformation to 

the standard template performed well overall for brains with atrophy, artifacts in subcortical 

regions were noticeable due to non-linear stretching, especially for brains with enlarged 

ventricles. These artifacts generated spatial noise in our data analyses. Subsequently, for 

computational efficiency, all images in MNI305 template resolution were resampled to fit the 

MNI152 template with a resolution of 2 mm × 2 mm × 2 mm at a matrix size of 91 × 109 × 

91.  

 

fMRI preprocessing and physiological/vascular signal regression 

Resting-state fMRI pre-processing was first carried using AFNI software 52 in native 

space. The “afni_proc.py” routine in AFNI was used to generate the script to pre-process the 

rs-fMRI data. For each participant, any signal spikes in the signal intensity time courses were 

first detected and removed. The acquisition timing difference was then corrected for different 

slice locations. With the third functional volume as the reference, rigid-body motion 

correction was carried out in three translational and three rotational directions. The 
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displacements due to motion in these six directions as well as the corresponding motion 

derivatives at each time point were estimated and then modeled as motion regressors. The 

data points with excess motion (normalized motion derivative�>�0.5 or voxel 

outliers�>�10%) were identified to generate another motion regressor. For each participant, 

spatial blurring with a full width half maximum (FWHM) of 4 mm was used to reduce 

random noise. At each voxel, motion-related signal changes, baseline, linear, 2nd-order, and 

3rd-order system-induced signal trends were modeled as linear regressors. The 

“3dDeconvolve” function in AFNI was applied to remove the motion and system introduced 

noises from each voxel’s time course, as modeled in the regressors described above. Up to 

this step, physiological signals, likely due to upper-stream vascular effects, have not yet been 

regressed from the signal. The resulting fMRI dataset up to this step will be called “No 

Physiological Regression” to emphasize that no attempt has been made to remove upper-

stream vascular effects.  

The standardized amplitude of the BOLD signal fluctuations (sALFF) within the 

frequency range of 0.01 Hz to 0.08 Hz was then calculated for each voxel within the brain. 

For group analyses, subject-space sALFF maps were non-linearly transformed into MNI305 

standard space, using the transformation matrix created by the FreeSurfer processing pipeline 

as discussed above. MNI305 sALFF images were subsequently resampled to fit the MNI152 

standard template for improved computational efficiency. The correlation between sALFF 

and brain amyloid β accumulation, calculated as AV45 PET amyloid β standardized uptake 

value ratio (SUVR), was then calculated in MNI152 standard space as discussed further in 

the following section. To understand the upper-stream physiological/vascular effects, the “no 

physiological regression” dataset was further processed with three progressively more 

aggressive physiological signal regression procedures. For each procedure, sALFF was 

calculated again followed by the aforementioned standard-space transformations and 

correlation analyses. The three regression procedures, in addition to the “no physiological 

regression”, are listed below: 

1. “No physiological regression:” as described above, this procedure has no special 

treatment to remove upper-stream physiological/vascular effects before sALFF 

computation. 

2.  “WM/CSF regression:” White matter (WM) and cerebrospinal fluid (CSF) do not 

contain neuronal brain activity. Consequently, fluctuations of mean BOLD signal time 

courses at these regions can be assumed to mostly represent upper-stream vascular 

effects.53 Hence, CSF and WM signals were modeled and used as additional 
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regressors in the “3dDeconvolve” step to reduce the upper-stream vascular influence, 

before sALFF computation. 

3. “WM/CSF/GS regression:” The mean global signal (GS) was assumed to be primarily 

driven by an overall upper-stream vascular effect and added as an additional regressor 

to this “WM/CSF regression” procedure for further physiological signal removal 

before sALFF computation. With this procedure, the resulting signal time course 

should closely reflect neuronal brain activity.53 While global signal removal can 

potentially remove some neuronal signals from fMRI data, current research suggests 

that the upper-stream vascular components most likely dominate the global signal.54–

56 Recently, Xifra-Porxas and colleagues reported that physiological signals accounted 

for an r of about 0.6 within the global signal.57 Here, global signal regression was 

used to further investigate the effect of the upper-stream vascular signals on Aβ 

deposition in the brain and its influence in this cascaded setup. 

4. “Aggressive AROMA:” A rs-fMRI noise removing technique called “ICA-AROMA” 

was developed by Pruim and colleagues39 to aggressively remove motion artifacts and 

physiological noise. The authors demonstrated that this technique could effectively 

identify motion and physiological signals as independent components and then 

remove them from rs-fMRI data.58 “ICA-AROMA” was implemented using FSL’s 

MELODIC routine 59. In this technique, single-subject spatial independent component 

analysis (ICA) is performed on a motion-corrected whole-brain rs-fMRI dataset in 

native space. Using a pre-trained classifier, the resulting components are sorted into 

noise and non-noise components. The time courses of components identified as noise 

are subsequently regressed from the data using FSL’s “regfilt” function, where partial 

regression is called “non-aggressive AROMA,” and full regression is called 

“aggressive AROMA.” The “aggressive AROMA” approach was employed here to 

maximize the effect of removing upper-stream vascular signals. 

The overall signal processing steps described above are also presented in supplementary 

Figure S1. 

 

PET image processing 

Using “flirt” from the FSL software package,59 a six-degree linear transformation was 

applied to align PET AV45 SUVR images to the 3D MPRAGE anatomical MRI images. All 

alignments were visually inspected and improved with manual adjustments if necessary. 
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Using the segmentation of the high-resolution 3D MPRAGE image from the FreeSurfer 

analysis, white-matter (WM) and cerebellar regions were isolated. An additional erosion of 

the white-matter map, using FSL’s “fslmaths” with a box kernel of 4 mm × 4 mm × 4 mm 

ensured that only white-matter regions were obtained. The AV45 uptake images were then 

normalized by the mean uptake at the white matter and also the cerebellar regions to generate 

two versions of SUVR images. Previous studies have shown that SUVR calculation using 

WM signal can improve discriminatory power for detecting Alzheimer's disease and mild 

cognitive impairment.60 In the following results, SUVR will be reported for WM 

normalization, yet posthoc analyses with the AV45-SUVR images normalized by cerebellar 

signal were also carried out to confirm observations. Congruent to the spatial normalization 

of sALFF maps, AV45-SUVR images were non-linearly transformed to match the MNI305 

standard template, using the transformation matrix created by the FreeSurfer processing 

pipeline. AV45-SUVR images in MNI305 template space were subsequently resampled to fit 

the MNI152 standard template for better computational efficiency.  

 

Statistical analysis 

Correlations between sALFF and AV45-SUVR across participants were carried out 

for each brain voxel in MNI152 template space. Monte-Carlo simulations, using 10,000 

random permutations for each correlation value r were applied to approximate the 

corresponding p values, through constructing voxel-specific empirical cumulative 

distributions.61 These computations were realized in MATLAB R2019a (MathWorks, Natick, 

MA, USA). Cluster-level multiple-comparison corrections were computed using AFNI’s52 

“3dClustSim” Monte-Carlo simulation software. In these simulations, we estimated the 

minimum cluster sizes required to achieve a corrected p ≤ 0.05 at a voxel-level p < 0.001. As 

the estimated minimum cluster size is highly dependent on data spatial smoothness, which in 

turn depends on data preprocessing, cluster size thresholds were estimated independently for 

each physiological/vascular signal removal procedure, described earlier. Autocorrelation 

function parameters (-acf) employed by “3dClustSim” were estimated using “3dFWHMx” 

(AFNI) on the preprocessed fMRI data (MNI transformed and resampled to 91 x 109 x 91 

isotropic 2-mm voxels). This procedure yields mean parameters (across participants) for each 

of the four different autocorrelation functions, specific to each fMRI preprocessing 

procedure. We also estimated the spatial autocorrelation of the AV45-SUVR maps using 

“3dFWHMx”. Our pre-processed fMRI images showed less auto-correlation than the AV45-
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SUVR maps. To be conservative, we used the autocorrelation estimates of the fMRI images 

to calculate the required cluster sizes to achieve statistical significance. Subsequently, 

“3dClusterize” (AFNI) was used to generate correlation cluster maps that survive the 

estimated cluster correction thresholds for each preprocessing procedure.  

The preprocessing-specific significant clusters were then used to assess whether the 

correlations between BOLD signal fluctuations and brain amyloid deposition were rather 

influenced by upper-stream physiological/vascular effects or neuronal activations. For this 

purpose, we illustrated the distributions of the Fisher z transformed r values of the AV45-

SUVR-sALFF correlations, using the voxel populations identified as significant clusters 

resulting from the analyses based on the “no physiological regression” and the “aggressive 

AROMA” procedures.  

Data availability  

The raw data were generated at the University of Texas Southwestern Medical Center 

and UTSW and Institute for Exercise and Environmental Medicine Texas Health Presbyterian 

Hospital, Dallas, TX, USA. Derived data supporting the findings of this study are available 

from the corresponding authors upon reasonable request. 

Results  

Table 1 shows the participant characteristics. Overall, our amnestic mild cognitive 

impairment patients were well educated and showed early amnestic mild cognitive 

impairment symptoms, as shown by CDR scores of 0.5, a mean MMSE score of 29.5 ± 0.8, 

and mean LM immediate recall of 11.4 ± 2.3 and delayed recall of 9.7 ± 1.8. These older 

adults had an average heart rate of 62 bpm and mean systolic blood pressure of 118 mmHg 

but included hypertension (≥140 mmHg). The presence of apolipoprotein E4 (APOE4) was 

assessed in 28 participants and 25% were APOE4 positive. The participants had a mean 

cortical AV45-SUVR of 0.57 ± 0.05 when normalized with the white matter as a reference 

and 1.15 ± 0.08 with the whole cerebellum as a reference. 

Figures 2 and 3 show graphical representations of select sagittal and axial slices of 

mean AV45-SUVR, mean sALFF for each preprocessing procedure, and the significant 

correlation clusters between them. Table 2 provides a detailed list of significant correlation 

clusters with associated brain regions for each preprocessing procedure. Using the “no 
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physiological regression” procedure, cluster level significance was estimated with voxel-level 

p < 0.001 and a corrected p ≤ 0.05, yielding a minimum cluster size of 493 voxels (2-mm 

isotropic). Using this threshold, four significant negatively correlated clusters between 

sALFF and AV45-SUVR were found spanning across the lingual gyrus, precuneus, cuneus, 

and fusiform gyrus, with the most prominent cluster reaching a size of approximately 3018 

mm3 (see Table 2, Figures 2b & 3b). 

After applying the “WM/CSF regression” procedure using the same statistical criteria 

as above, the corrected p ≤ 0.05 was achieved with a minimum cluster size of 434 voxels. At 

this threshold, four clusters were identified as significant. The significant brain regions are 

consistent with the “no physiological regression” methods, spanning the lingual gyrus, 

fusiform gyri, cuneus, and precuneus, yet at slightly smaller cluster sizes for all except the 

lingual gyrus cluster which slightly increases in size (see Table 2, Figures 2c & 3c). 

After applying the “WM/CSF/GS regression” procedure using the same statistical 

criteria as above, the corrected p ≤ 0.05 was achieved with a minimum cluster size of 344 

voxels.  Again, four clusters were identified as significant at brain regions consistent with the 

prior procedures. While the cluster at the right lingual gyrus, fusiform gyrus, and cuneus 

increases in size once more, clusters at regions involving precuneus and left fusiform gyrus 

show smaller cluster sizes (see Table 2, Figures 2d & 3d). 

After applying the “aggressive AROMA” procedure using the same statistical criteria 

as above, the corrected p ≤ 0.05 was achieved with a minimum cluster size of 384 voxels. 

Two clusters spanning precuneus, cuneus, angular gyrus, fusiform gyrus, and lingual gyrus 

were identified as significant, with the most prominent cluster reaching a size of 

approximately 1072 mm3 (see Table 2, Figures 2e & 3e).  

Overall, significant negative correlations were found between sALFF and AV45-

SUVR with all four regression procedures, decreasing in cluster sizes in a stepwise manner 

based on the aggressiveness of physiological/vascular signal removal. Scatterplots, 

demonstrating the negative correlation between the mean sALFF and mean AV45-SUVR at 

the location of the most significant cluster, found using the “no physiological regression” 

procedure, are depicted in Figure 4, across the four regression procedures. The corresponding 

scatterplots for all significant voxel populations across all regression procedures are 

presented in Supplementary Figures S2-S5. 

To further understand the effect of the different physiological/vascular signal 

regression procedures on sALFF and AV45-SUVR correlations, the Fisher z transformed r-

value distributions at significant voxel locations were illustrated in Figure 5. Using all 
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significant voxel locations for either the “no physiological regression” procedure (4563 

voxels) or the “aggressive AROMA” procedure (944 voxels), r-value distributions are 

depicted for each regression procedure at these specific voxel locations. Figure 5 (a) shows 

the violin plots of the r-value distributions of significant voxels from the no 

physiological/vascular regression procedure with mean and standard deviations as follows: -

0.47 ± 0.06 (no physiologic regression), -0.45 ± 0.07 (WM/CSF regression), -0.43 ± 0.08 

(WM/CSF/GS regression) and -0.32 ± 0.13 (aggr. AROMA). Figure 5 (b) shows the opposite 

effect, depicting the violin plots with r-value distributions of the significant voxel population 

from the “aggressive AROMA” procedure. The r-value means and standard deviations at 

these voxel locations corresponding to each regression procedure are: -0.37 ± 0.14 (no 

physiologic regression), -0.36 ± 0.13 (WM/CSF regression), -0.38 ± 0.13 (WM/CSF/GS 

regression) and -0.46 ± 0.06 (aggr. AROMA).  

Discussion  

The main finding of this study is the observation of significant negative correlations 

between the sALFF of rs-fMRI BOLD signals and brain amyloid deposition measured with 

PET AV45-SUVR at regions associated with default mode and visual networks in patients 

with amnestic mild cognitive impairment. We have also shown that stepwise removal of the 

upper-stream physiological/vascular signals reduced the correlation strength between sALFF 

and AV45-SUVR at these regions. However, even the most intensive upper-stream 

physiological/vascular signal regression procedures implemented in this study did not 

completely abolish the negative correlations between sALFF and AV45-SUVR in regions 

associated with default-mode and visual networks. These findings suggest low-frequency 

upper-stream cerebral arterial pressure, as well as blood flow fluctuations, are transmitted 

into the cerebral microcirculation, where they may play an important role in brian Aβ 

deposition.33 Conversely, our data also support the hypothesis that local neuronal activity 

fluctuations contribute to Aβ homeostasis, independent of the upper-stream vascular effect. 

Below, we discuss the potential mechanisms and methodological considerations of this study. 

 

Potential mechanisms 

Brain metabolic waste products, including Aβ, are cleared partly via the recently 

identified brain lymphatic system.13,62 This system is a highly organized brain metabolite 
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transportation system between brain interstitial fluid (ISF), cerebrospinal fluid (CSF), and the 

cerebral vasculature.13,62 One theory proposed that CSF enters the perivascular spaces from 

the subarachnoid space and is propelled deep into the brain by arterial pulsatility. The CSF 

subsequently enters the neuropil via the astrocytes AQP4 water channels. It then mixes with 

brain ISF in the extracellular space and leaves the brain, along with brain waste products via 

the perivenous space into the systemic lymphatic system.13 Conversely, other studies have 

shown that brain waste products also can be cleared via backflow through the periarterial 

basement space.62 Regardless of specific vascular clearance pathways, cerebral arterial 

pulsatility has been proposed as a key driver of brain waste clearance through these 

pathways.14 Furthermore, a recent study showed that spontaneous cerebral arteriolar 

vasomotion at a frequency of ~0.1 Hz was correlated with paravascular clearance of Aβ in the 

awake mouse brain (van Veluw et al. Neuron 2020), while MRI studies also suggest that low-

frequency waves in the CSF of ~ 0.02 and ~ 0.05 Hz are likely related to brain Aβ 

clearance.63,64 In this regard, our previous study has demonstrated that brain BOLD signal 

fluctuations at the regions associated with the default-mode and the visual networks have 

similar spectral distribution to the fluctuations of systemic blood pressure and CBF velocity 

measured from the middle cerebral artery, suggesting these upstream vascular signals may 

transmit downstream into the cerebral microcirculation and impact Aβ clearance.33  

The present study extended these previous studies by showing that significant 

negative correlations exist between spontaneous low-frequency BOLD fluctuations and brain 

amyloid deposition, measured using PET AV45-SUVR, in default-mode and visual networks 

in patients with amnestic mild cognitive impairment. These findings taken together with the 

previous studies discussed above suggest that hemodynamic fluctuations transmitted from the 

upper-stream cardiovascular and cerebrovascular systems into the cerebral microcirculation 

may influence Aβ homeostasis in individuals with elevated risk for Alzheimer's disease 

dementia. Consistent with this hypothesis, we have found that age-related carotid artery 

stiffness was associated positively with brain Aβ burden in patients with amnestic mild 

cognitive impairment, suggesting cerebral arterial stiffening may attenuate the transmission 

of arterial pressure and blood flow oscillations into the brain, leading to a reduction of brain 

amyloid clearance.11,65  

Interestingly, even with the most intensive upper-stream physiological/vascular signal 

removal procedure implemented in this study, negative correlations between sALFF and 

AV45-SUVR were still present in default-mode and visual regions. These findings suggest 

that local neuronal activity fluctuations might also prevent brain Aβ deposition. 
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Methodological considerations 

For calculating the PET AV45-SUVR, we chose white matter instead of the more 

traditional cerebellum as the reference for normalization. The comparison between reference 

regions has been comprehensively discussed by Brendel et al..60 In their study, they 

performed a discrimination analysis of healthy controls (HC) vs. mild cognitive impairment 

vs. Alzheimer's disease of roughly 1000 subjects from the ADNI dataset. They compared the 

PET AV45-SUVR discriminative power using different reference regions, including the 

cerebellum, brainstem, and cortical white matter. Their receiver operating characteristics 

(ROC) analyses found that using white matter as the reference had the best performance in 

discriminating the diagnosis groups. Specifically, when compared to the more typical 

cerebellar reference scaling, a higher discriminatory power between healthy controls and 

Alzheimer's disease was found when the white matter was used as a reference. Inter-subject 

variability was lowest when the white matter was used as a reference as well. Assessment of 

the longitudinal amyloid deposition was also more reliable and consistent when using white 

matter as the reference. Using white matter as the reference for the PET AV45-SUVR 

calculation, Brendel et al. showed that additional partial volume effect correction could lead 

to 0-2% higher scores in sensitivity and specificity, thus reaching the highest discriminative 

power of all comparisons. Since the effect of partial volume correction appeared small and its 

benefits have not been consistent,66 we analyzed the AV45 data without partial volume 

correction. We repeated our analyses with the cerebellum as the reference for AV45-SUVR 

calculation, finding the same trend of negative correlation between local sALFF and AV45-

SUVR (data not shown). 

The mean images of the well-established standardized amplitude of low-frequency 

fluctuations (sALFF) of fMRI recordings in Figures 2 and 3 show a strong effect of 

preprocessing strategy. As fMRI data is generally suffering from a multitude of confounds 

and noise signals, the goal of advanced preprocessing strategies is to achieve cleaned BOLD 

response signals stemming only from neuronal activity. In the present study, we employed 

different noise regression models, to remove physiological/vascular signals. All regression 

strategies had inherent motion confound modeling, yet the amount of physiological/vascular 

regression varied. While white matter (WM) and cerebrospinal fluid (CSF) signals are widely 

accepted to represent physiological/vascular signal components,53 the much-debated global 

signal has recently been shown to also represent a substantial amount of 
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physiological/vascular signals.57,67 Using the data-driven “ICA-AROMA” approach warrants 

noise-regressors that are closely tailored to the data and promise an effective and robust noise 

regression,58 making it the most demanding regression model in this study.    

 

Limitations and strengths 

 Only 33 participants were available in this study and thus the statistical power for 

voxel-wise analyses was limited. However, our voxel-wise analyses have clearly shown a 

correlation between sALFF and PET AV45 SUVR. Changes in the correlation strength due to 

different regression procedures were further presented with cluster-based correlation 

analyses. However, a causal relationship between brain Aβ deposition and BOLD fluctuation 

quantified by ALFF cannot be drawn from this cross-sectional study.  

The discriminative power of PET AV45 imaging in Alzheimer's disease has been 

proven in many studies, nonetheless, there are limitations.68 PET images inherently contain a 

high level of spatial blurring, in addition to a relatively low spatial resolution provided by 

signal detection. Additionally, the high level of non-specific binding to white matter leads to 

segmentation and registration inaccuracies at the border between gray- and white matter.69 

Especially in the situation of grey matter atrophy, commonly observed in Alzheimer's disease 

brains, the signal at the cortical grey matter is inevitably contaminated by white matter signal, 

resulting in reduced specificity. Using the advanced freesurfer segmentation from the 

anatomical MRI recordings, paired with the manually supervised alignment of AV45 PET 

images to the anatomical images, we can reduce these segmentation issues in AV45 PET 

images. 

 

Conclusions  

This study has shown that local spontaneous BOLD signal fluctuations are associated 

negatively with brain Aβ accumulation measured with amyloid PET in individuals with 

amnestic mild cognitive impairment who are at a higher risk for Alzheimer's disease. 

Furthermore, we found that physiological signal regression decreased the cluster size of 

negative correlations between low-frequency BOLD signal fluctuation and PET AV45 

SUVR. Nevertheless, the most intensive physiological/vascular regression procedures did not 

completely abolish the correlations between BOLD signal fluctuations and PET AV45 

SUVR. Therefore, these findings collectively suggest that both cerebral hemodynamic 
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fluctuations and local neuronal activity play important roles in brain Aβ homeostasis in older 

adults with amnestic mild cognitive impairment. 
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 1 

Table 1 Participant characteristics 
 Mean ± SD Minimum Maximum 

Men/Women (n) 14/19 

Race (n) 29 Caucasian, 4 African American 

APOE4 carrier+, n (%) 7 (25%) 

Age (years) 64 ± 7 55 78 

Height (cm) 169 ± 9 143 184 

Body mass (kg) 79 ± 14 58 117 

Body mass index (kg/m2) 28 ± 4 21 36 

Education (years) 16 ± 2 12 18 

Clinical Dementia Rating (points) 0.5 

MMSE total 29.5 ± 0.8 27 30 

Logical Memory immediate recall 11.4 ± 2.3 5 16 

Logical Memory delayed recall 9.7 ± 1.8 6 15 

Heart rate (bpm) 62 ± 9 44 81 

Systolic blood pressure (mmHg) 118 ± 18 85 152 

Diastolic blood pressure (mmHg) 70 ± 8 53 87 
 

+Apolipoprotein E4 (APOE4) was assessed in 28 patients.  
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Table 2 Correlation cluster analysis of sALFF and AV45-SUVR  

Cluster-ID Associated Brain Regions Cluster size+ Mean r ± SD Max r 
MNI coordinates++ 

RL AP IS 

N
o 

ph
ys

io
lo

gi
ca

l  
   

   
 

re
gr

es
si

on
 

#1 Right Lingual Gyrus, Right Declive, Right Fusiform Gyrus, Right Middle Occipital Gyrus, Right Inferior 
Occipital Gyrus, Right Cuneus, Right Culmen 
 
 
 
 

1509 -0.47 ± 0.06 -0.68 -24 52 2 

#2 Right Inferior Parietal Lobule, Right Precuneus, Right Superior Parietal Lobule, Right Superior Temporal 
Gyrus, Right Supramarginal Gyrus, Right Middle Temporal Gyrus 

1432 -0.48 ± 0.07 -0.74 -30 50 38 

#3 Left Precuneus, Left Superior Parietal Lobule, Left Inferior Parietal Lobule, Left Middle Temporal Gyrus 837 -0.47 ± 0.06 -0.72 10 62 26 

#4 Left Fusiform Gyrus, Left Middle Occipital Gyrus, Left Middle Temporal Gyrus, Left Declive, Left Inferior 
Occipital Gyrus 

785 -0.47 ± 0.06 -0.67 28 90 -16 

W
M

 / 
C

SF
   

   
   

   
re

gr
es

si
on

 

#1 Right Lingual Gyrus, Right Declive, Right Fusiform Gyrus, Right Middle Occipital Gyrus, Right Cuneus, 
Right Culmen, Right Inferior Occipital Gyrus 1538 -0.46 ± 0.05 -0.66 -8 80 -14 

#2 Left Middle Occipital Gyrus, Left Fusiform Gyrus, Left Declive, Left Middle Temporal Gyrus, Left Inferior 
Occipital Gyrus 1070 -0.47 ± 0.06 -0.72 28 90 -16 

#3 Left Precuneus, Left Superior Parietal Lobule, Left Inferior Parietal Lobule, Left Supramarginal Gyrus, Left 
Middle Temporal Gyrus 808 -0.46 ± 0.06 -0.69 38 66 24 

#4 Right Superior Parietal Lobule, Right Precuneus, Right Inferior Parietal Lobule 704 -0.49 ± 0.07 -0.73 -18 62 46 

W
M

 / 
C

SF
 / 

G
S 

  
re

gr
es

si
on

 

#1 Right Lingual Gyrus, Right Declive, Right Fusiform Gyrus, Right Cuneus, Right Middle Occipital Gyrus, 
Right Inferior Occipital Gyrus, Right Culmen 1762 -0.46 ± 0.05 -0.67 -22 92 0 

#2 Left Middle Occipital Gyrus, Left Declive, Left Fusiform Gyrus, Left Middle Temporal Gyrus, Left Inferior 
Occipital Gyrus, Left Uvula 1069 -0.47 ± 0.06 -0.73 28 90 -16 

#3 Right Superior Parietal Lobule, Right Precuneus, Right Inferior Parietal Lobule 567 -0.47 ± 0.06 -0.68 -16 62 56 

#4 Left Superior Parietal Lobule, Left Inferior Parietal Lobule, Left Precuneus 356 -0.47 ± 0.06 -0.69 14 60 64 

A
gg

re
ss

iv
e 

A
R

O
M

A
 

#1 Left Precuneus, Left Cuneus, Left Inferior Parietal Lobule, Left Angular Gyrus, Left Middle Temporal 
Gyrus, Left Superior Parietal Lobule 

536 -0.46 ± 0.06 -0.71 38 64 38 

#2 Right Lingual Gyrus, Right Cuneus, Right Declive, Right Inferior Occipital Gyrus, Right Fusiform Gyrus 408 -0.47 ± 0.06 -0.64 -18 74 -8 

 

+Cluster size is the number of voxels with a voxel size of 2 × 2 × 2mm at a corrected p ≤ 0.05 
++MNI coordinates are shown at maximum intensity with RL = right-left, AP = anterior-posterior and IS = inferior-superio 
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Figure 1 Time series and spectral analysis of spontaneous BOLD signal fluctuations 
(a) time course at a voxel in the occipital region of one study participant; (b) corresponding 
Fourier spectrum. Across the applied frequency band of 0.01- 0.08 Hz, the amplitude of low-
frequency fluctuations (ALFF) yields 605.7 as of this voxel’s fluctuation amplitude (plotted in 
the green shade). 
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Figure 2 Voxel-wise correlation analysis between brain amyloid-β deposition and the amplitude of low-frequency BOLD signal 
fluctuations (sALFF) - sagittal.  Images represent slices near the mid-sagittal region (right and left 9.25mm in MNI space). (a) mean AV45-
SUVR (standardized uptake value ratio with the white matter as a scaling reference) color maps of 33 amnestic mild cognitive impairment 
participants are shown along with the corresponding mean sALFF (standardized amplitude of low-frequency fluctuations) color maps after the 
physiological signal cleaning procedures of (b) “no physiological regression”, (c) “WM/CSF regression”, (d) “WM/CSF/GS regression” and (e) 
“aggressive AROMA”. Significant correlation clusters between AV45-SUVR and sALFF for each regression procedure (b)-(e) are shown in the 
row below the mean sALFF images. Clusters are depicted in blue, as r values are negative (see Table 2 for detailed statistical analysis data). AV45-
SUVR maps are nearly identical if the cerebellum, instead of white matter, is used as a reference, except the color scale range becomes 0 to 2. 
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Figure 3 Voxel-wise correlation analysis between brain amyloid-β deposition and the amplitude of low-frequency BOLD signal 
fluctuations (sALFF) - axial.  Images represent an axial slice (top half) above the corpus callosum (42mm in inferior-superior plane MNI) and 
an axial slice (bottom half) across the thalamus (0.75mm in inferior-superior plane MNI). (a) mean AV45-SUVR (standardized uptake value ratio 
with white matter scaling) color maps of 33 amnestic mild cognitive impairment participants are shown, along with the corresponding mean 
sALFF (standardized amplitude of low-frequency fluctuations) color maps after the physiological signal cleaning procedures of (b) “no 
physiological regression”, (c) “WM/CSF regression”, (d) “WM/CSF/GS regression”, and (e) “aggressive AROMA”. Significant correlation 
clusters between AV45-SUVR and sALFF for each regression procedure (b)-(e) are shown in the row below the mean sALFF images. Clusters 
are depicted in blue, as r values are negative (see Table 2 for detailed statistical analysis data). AV45-SUVR maps are nearly identical if the 
cerebellum, instead of white matter, is used as a reference, except the color scale range becomes 0 to 2. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.22.21255924doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.22.21255924


 
 
 
 
 
 

 
 

Figure 4 Correlation of brain amyloid-β deposition and the amplitude of low-frequency BOLD signal fluctuations (sALFF) for “No 
physiological regression” cluster #1 (Table 2). Depicted are scatterplots for each physiological/vascular regression procedure, left to right: 
(a) “no physiological regression”, (b) “WM/CSF regression”, (c) “WM/CSF/GS regression”, and (e) “aggressive AROMA”. Blue crosses 
represent the 33 subjects, using mean sALFF and mean AV45 within this cluster. The plots show reduced correlation strength from (a) to (d). 
For scatterplots of the remaining significant clusters see Supplementary Figures 2-5. 
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Figure 5 Impact of stepwise regression of upper-stream vascular effects on the correlations between brain amyloid-β deposition and 
the amplitude of low-frequency BOLD signal fluctuations (sALFF) in the significant clusters identified with “no physiological regression” 
(a) and “aggressive AROMA” (b). Fisher z transformed r-value distributions shown in violin plots: (a) Using the r-values of all voxels 
within the significant clusters reported in Table 2 under “no physiological regression”. This comparison shows a stepwise decrease of negative 
correlation magnitude as more aggressive physiological signal removal procedures were applied, suggesting that BOLD-fluctuations at these voxel 
locations are more driven by upper-stream vascular effects; (b) Using the r-values of all voxels within the significant clusters reported in Table 
2 under “aggressive AROMA”. This comparison shows a stepwise increase of negative correlation magnitude as more aggressive physiological 
signal removal procedures were applied, suggesting that BOLD fluctuations at these voxel locations are more likely driven by neuronal activity.  
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