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Abstract 

Background and aim: Mortality risk stratification was vital for targeted intervention. This study aimed at building the 
prediction model of all-cause mortality among Chinese dwelling elderly with different methods including regression models and 
machine learning models and to compare the performance of machine learning models with regression model on predicting 
mortality. Additionally, this study also aimed at ranking the predictors of mortality within different models and comparing the 
predictive value of different groups of predictors using the model with best performance. 

Method: I used data from the sub-study of Chinese Longitudinal Healthy Longevity Survey (CLHLS) - Healthy Ageing 
and Biomarkers Cohort Study (HABCS). The baseline survey of HABCS was conducted in 2008 and covered similar domains 
that CLHLS has investigated and shared the sampling strategy. The follow-up of HABCS was conducted every 2-3 years till 
2018. 

The analysis sample included 2,448 participants from HABCS. I used totally 117 predictors to build the prediction model 
for survival using the HABCS cohort, including 61 questionnaire, 41 biomarker and 15 genetics predictors. Four models were 
built (XG-Boost, random survival forest [RSF], Cox regression with all variables and Cox-backward). We used C-index and 
integrated Brier score (Brier score for the two years’ mortality prediction model) to evaluate the performance of those models.  

Results: The XG-Boost model and RSF model shows slightly better predictive performance than Cox models and 
Cox-backward models based on the C-index and integrated Brier score in predicting surviving. Age. Activity of daily living and 
Mini-Mental State Examination score were identified as the top 3 predictors in the XG-Boost and RSF models. Biomarker and 
questionnaire predictors have a similar predictive value, while genetic predictors have no addictive predictive value when 
combined with questionnaire or biomarker predictors. 

Conclusion: In this work, it is shown that machine learning techniques can be a useful tool for both prediction and its 
performance sightly outperformed the regression model in predicting survival.  
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Introduction  

Currently, aging is a global phenomenon, and in particular, the proportion of older individuals in low and 

middle-income countries (LMIC) is growing in an accelerated pace due to the increasing average life span. 

Among LMICs, China shows the fastest rate of aging, and the related health care cost has been growing rapidly. 

According to the UN statistics database, China’s dependency ratio for retirees could rise as high as 44% by 

2050 which would then be the highest around the world [1]. As the population is aging quickly, it is important 

to have adequate identification and risk stratification for individuals with reduced life expectancy. Adequate 

risk stratification of mortality can lead to a more precise intervention and more targeted care. It also has 

important clinical relevance as an accurate mortality risk assessment tool might improve the accuracy of the 

prognostic assumptions which in turn can influence clinical decisions [2, 3]. 

Most of the current estimation methods available for mortality prediction are based on a single 

independent factor including blood pressure [4], body weight [5], walking speed [6], self-reported health [7] and 

frailty [8]. There are some indices consisting of several predictors for short-term mortality, but they have mainly 

been developed for and assessed in older individuals or in high-risk populations [3]. To be more specific, a large 

number of clinical conditions were assessed their relevance in the prediction of 1-year mortality and they were 

summarized into the Charlson Comorbidity Index (CCI) [9], which has been validated in large populations and 

widely used to predict mortality among hospitalized patients. However, since more data, including biomarkers 

and genetic assessments, became available, a systematic approach has become a trend in medical and public 

health studies. However, it is still unclear whether only using several or only a selected group of predictors for 

prediction has limitations in providing accurate mortality risk stratification. Additionally, an inaccurate 

mortality risk stratification may lead to an untargeted mortality prevention strategy [2]. 

Following the fast-paced development of biomedical technology, more and more high dimensional data 

became available in clinical and public health studies [10]. These data include genetics, metabolomics, and 

proteomics. Additionally, the number of predictors in epidemiological studies were also increasing. Normally, 

hundreds of predictors are available for developing mortality prediction models in epidemiological studies or 

electronic medical record data. The core of traditional statistical methods is hypothesis testing and this process 

is user-driven which indicated that the researcher would have to specify dependent variables, regression family 

and link and interaction type. Therefore, user intervention may influence the results of those models. Another 

methodological concern was that the traditional statistical techniques such as regression models are often 

limited by the correlation between variables, nonlinearity of variables, and the possibility of overfitting [11, 

12]. The newly developed machine learning method has provided the possibility the address those challenges. 

With machine learning techniques, the hypothesis is that the associations between various predictors and the 

outcome were a pattern [13]. Thus, it is a hypothesis-free method. Machine learning models can analyze all 

predictor variables in a way that prevents overlooking potentially important predictor variables even if it was 
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unexpected. Accordingly, it is reasonable that machine learning method could be an effective method in 

identifying the best predictors of outcomes from a large number of predictors. 

Most of the prediction models are based on regression model and the researcher need to manually input the 

predefined interactions, such as the interaction between vitamin D and albumin on mortality I have 

demonstrated [14]. Missing those complex interactions in the regression model may result in an inaccurate 

prediction of outcomes. In the prediction model developed by machine learning methods, the model can 

automatically identify those interactive relationship from the data and it is unnecessary to specify interactions 

[11, 12]. However, it is still widely debated whether the performance of machine learning model was better 

than that of regression model and recently it was a very hot issue to demonstrate the usefulness of these 

methods. 

Recently, a systematic review that included 71 from 927 searched studies suggested that some 

common-used machine learning methods were classification trees, random forests, artificial neural networks, 

and support vector machines [12]. It was found that the difference in logit between logistics regression and 

machine learning was 0.00 (95% CI: −0.18, 0.18). Moreover, a meta-analysis published in Nov. 2020 

suggested that machine learning models provide better discrimination in mortality prediction after cardiac 

surgery [11]. However, among those studies included in those two reviews, the number of predictors and the 

sample has a very large variation. Therefore, more studies are warranted to compare those two methods in 

different cohorts and different populations. 

The overarching goal of this study is to provide mortality risk stratification tools for the Chinese older 

adults. Specifically, there are three major research objectives and their sub-objectives of this study: 

1. Using the data from HABCS with maximal number of predictors to build the survival prediction model 

for Chinese older adults using different methods including regression models (Cox and Cox-backward) and 

machine learning models (random survival forest [RSF] and XG-boost) and to compare the performances of 

machine learning models with regression models in predicting survival.  

2. To rank the predictors of mortality within different survival models.  

3. To compare the predictive values of different groups of predictors using the best performing model  
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Method 

Study population 

The present study uses data from the sub-study of Chinese Longitudinal Healthy Longevity Survey 

(CLHLS), the Healthy Ageing and Biomarkers Cohort Study (HABCS). CLHLS is a longitudinal study since 

1998 with follow-up surveys every 2-3 years till 2018. The CLHLS surveys were conducted in randomly 

selected counties and cities in China, which accounted for half of the counties and cities in 23 out of 31 

provinces covering over 85% of China’s population. Based on gender and place of residence (ie, living in the 

same street, village, city or county) for a given centenarian, randomly selected octogenarians and nonagenarians 

were also sampled. This matched recruitment procedure resulted in an oversampling of the oldest old and older 

men. In the CLHLS, a weight of age-sex urban/rural residence in the sample with the distribution of the total 

population in the sampled 22 provinces was employed to reflect the unique sampling design. More details of 

this survey have been published elsewhere [15]. In this study, we derived data from the HABCS. The HABCS 

was conducted in eight longevity areas from CLHLS [16]. The HABCS covers similar domains that CLHLS has 

investigated and shared the sampling strategy as CLHLS. Participants from HABCS with age less than 65 years 

old (n=51) and with missing values in higher than 30% of the predictors were excluded (n=33) and my analyses 

included 2,448 elderly aged 65 years or over from HABCS who had both phenotypic, biomarker, and genotypic 

measurements. 

The Ethics approval of HABCS study was obtained from the Research Ethics Committees of Peking 

University and Duke University. All participants or their legal representatives signed written consent forms in 

the baseline and follow-up surveys.  

Predictors and imputation techniques  

After excluding those variables with missing value higher than 30%, 117 predictors of HABCS were 

included in this study including demographic variables, lifestyle (smoking, drinking, diet and physical 

activities), health indicators (cognitive function, activity of daily living and leisure activities), comorbidities, 

biomarkers and genetic information.  

The questionnaire data of HABCS were collected through in-home interviews by trained interviewers who 

are local staff members from the county-level network system of the National Bureau of Statistics of China. All 

interviewers have received 12+ years of schooling, and most have earned a college degree. Each interviewer 

was accompanied by a local doctor, a nurse, or a medical college student so that some health check-ups could 

be performed. In the physical examination, body weight and height were measured by trained medical staff 

using a standardized protocol. Totally 61 questionnaire predictors were included in the analysis. 

The HABCS collected blood and urine sample since 2008. During the investigations, blood samples 

were centrifuged within 1 hour after collection and heparin anticoagulant blood samples were centrifuged at 

3000 rpm for 10 min at 18°C–25°C. Then blood and urine samples are immediately stored at −80°C in the local 

Center of Disease Control and Prevention (CDC). And then the sample were transported at −20°C with 
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transport cases provided by CCDC by specially assigned persons to designated testing units. A variety of blood 

and urine biomarker were measured and all laboratory analyses are conducted by the central clinical laboratory 

at Capital Medical University in Beijing. The protocol of biomarker measurement was published elsewhere. In 

this study, totally 41 biomarker predictors were included. [16] 

The Genotyping of HABCS was performed by a customized chip targeting about 287,898 candidate 

SNPs associated with longevity, chronic disease or health indicators based on multiple studies. There were no 

familial/kinship relations among the participants within and across different waves. Beijing Genomics Institute 

(BGI) performed the genotyping, and the BGI genotyping quality control procedures of the HABCS genetics 

study have been published elsewhere. [17] In this study, totally 15 SNPs were selected by previous 

meta-Genome wide association studies (GWAS) focusing on longevity and our previous GWAS study using the 

same data [17-20]. All the predictors are listed in Table 1.  

Overall, there are 4.7% missing data in HABCS. We use the missForest algorithm to impute those 

missing values [21]. This method is a nonparametric imputation method that builds a random forest model for 

each variable and it was demonstrated that this method outperformed many imputation methods especially in 

data settings where complex interactions and non-linear relations are existing. 

Data on mortality 

Vital status and date of death were collected from officially issued death certificates when available or 

otherwise from the next-of-kin or local residential committees who were familiar with the decedents. Duration 

of follow-up was calculated by the time interval between the first interview date and date at death. Survivors at 

the last wave (2018) were censored at the time of the last survey. 

Statistical analysis 

For the analysis using data from HABCS, totally four models for predicting survival were built: 1. The 

RSF model, 2. the XG-boost model, 4. the Cox model with all predictors, 4. the COX-backward model. For the 

analysis using data from CLHLS, I build the XG-boost model to predict the two years’ mortality.   

In order to train and validate the models and optimize the machine learning models, I used 10-fold internal 

cross validation. The training data was randomly divided into ten folds, and each time, nine folds of data were 

included in the training model and the rest one fold of data was used as the testing test. This process was 

repeated ten times for all combinations of folds. I used the grid search to determine the hyper-parameters of 

machine learning model.  

To evaluate the performance of those models, I use Harrell’s concordance index (C-index) and 

integrated brier score (IBS) for the survival model. Higher C-index and lower IBS/BS indicate better 

discrimination and calibration performance.  

Cox proportional hazard regression models and Cox-backward models: In this survival analysis, the 

focus is on the period till the occurrence of mortality. The Cox proportional hazards model is usually used to 

estimate the hazard ratio of the interested factors on the outcome. I build two Cox models. One is the Cox with 
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all predictor and the other is the Cox model with a backward elimination model (Cox-backward). The 

Cox-backward model was widely used for variable selection. I used R (version 3.6.1) to build the Cox model.   

 XG-boost: In the survival analysis and the analysis of predicting two year’s mortality, I built the extreme 

gradient boosting (XG-Boost), an ensemble machine learning method based on decision trees, to establish the 

prediction model for mortality with all the predictors. Gradient boosting is a machine learning model that 

involves combinations of prediction models into a strong model. The XG-Boost approximates the value of the 

loss function with the second-order Taylor series and reduces the probability of overfitting by regularization.  

Some hyper-parameters parameters of XG-Boost model was defined as following: 1) number of trees: 400, 

learning rate: 0.005, 2) minimal loss to expand on a leaf node: 0; 3) maximum tree depth: 4, 4) subsample 

proportion: 1. Additionally, the XG-Boost model can provide the estimations of feature importance from the 

trained model. In this study, I used F scores in XG-Boost model to evaluate the feature importance which is the 

sum of Gini index among the corresponding splits in a tree and further averaged among all the trees. Python 3.7 

was used to build this model. 

RSF: In the survival analysis, I build the RSF model with all predictors. RSF designed for time-to-event 

data such as survival as a transformed RF. Some hyper-parameters parameters of RSF model were defined as 

following: 1) number of trees: 1000, number of random split points used to split a node: 5, 2) mtry value: 12; 3) 

node size: 50, 4) block size: 5. I applied variable importance (VIMP) to ranking the predictors. The absolute 

value of VIMP indicates the impact of this predictor on the overall performance. The positive VIMP value 

indicates the predictor improves predictive performance and negative value indicates that the predictor has 

negative effect on the performance of the prediction model. I used “randomForestSRC” and “cph” in R (version 

3.6.1) to perform those analysis. 

Results 

Baseline characteristics  

For the HABCS cohort, the median follow-up period was 3.6 years (range: 0.2-9.9 years). Totally 43.8% 

(n=1,071) of all participants died during the follow up. Table 1 presents the part of baseline characteristics by 

survival status at the last follow up. The mean age was 84.3 years (SD: 13.7). Participants who were survival 

are more likely to be younger, male, without impaired activity of daily living, married, with higher MMSE 

score, social activity score and psychological wellbeing score, with higher levels of album, 25-hydroxyvitamin 

D, red blood cells and hemoglobin (Ps<0.05). 

Comparisons between models 

Two Cox models were built: a) a model with all 117 predictors and a Cox model with backward selection. 

Furthermore, two machine learning models were built: a) a RSF model, b) XG-Boost model. 

Table 3 presented the performance of the four models on test data. Regarding the IBS, the XG-Boost 

models have the lowest (IBS = 0.120) followed by the RSF (IBS = 0.128). Cox models have sightly higher IBS 

(COX with all variables: IBS = 0.131; Cox-backward: 0.129). In terms of C-index, the XG-Boost model has the 
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highest C-index (C-index: 0.80), and the Cox models with all variables has slightly worse performance (Cox 

model with all variables: C-index: 0.77; Cox backward model: C-index: 0.78). C-index for Cox backward and 

RSF models are nearly the same (C-index: 0.78). 

Figure 1 shows the average prediction Brier error over time for those four models (XG-Boost, RSF, Cox 

with all variables and Cox-backward). Only small differences can be observed between Cox and Cox-backward 

models. The XG-Boost model achieved better performance than the other models, but only sightly better than 

the RSF model. 

Predictor ranking in HABCS cohort  

Hazard ratios of the 5 most predictive variables for the Cox models with all predictors are shown in Table 2 

which was selected by the z-score values. The strongest predictor is chronological age. One-year increase in age 

increased a 5% higher mortality risk. The other most predictive variables are mean corpuscular hemoglobin 

concentration (One-unit increase: HR: 1.005, 95% CI: 1.002, 1.008), gender (male: 1.66, 95% CI: 1.23, 2.24), 

activity of daily living (impaired: HR: 1.40, 95% CI: 1.11, 1.77), urine microalbumin (one-unit increase: HR: 

1.002, 95% CI: 1.000, 1.003). In the Cox backward model, after the backward selection, there are only five 

variables left which are urine microalbumin (HR: 1.003, 95% CI: 1.002, 1.004), MMSE score (HR: 0.98, 95% 

CI: 0.97, 0.99), age, (HR: 1.06, 95% CI: 1.05, 1.07), albumin (HR: 0.93, 95% CI: 0.90, 0.95), 

25-hydroxyvitamin D (HR: 0.98, 95% CI: 0.97, 0.98). The predictor with highest predictive value was urine 

microalbumin. 

Table 3 presented the top-10 predictors in the RSF and XG-Boost models. The importance of predictors is 

assessed by F score in the XG-boost models and VIMP in RSF. The strongest predictor is age in the two models. 

In those top predictors, age, MMSE score, activity of daily living, social activity score, 25-hydroxyvitamin D, 

albumin, marital status and hemoglobin were both identified in those two models. “Red blood cell” was 

identified as high predictive value in RSF model (VIMP: 0.0023) and “self-reported health” was identified by 

XG-Boost model (F score: 0.0018). 

Comparisons between groups of predictors in HABCS 

 The predictors were grouped as “questionnaire variables”, “biomarker variables” and “genetic variables” 

and I put different groups of predictors in the XG-Boost model which has the best predictive performance. 

When solely add “questionnaire variables”, “biomarker variables” or “genetic variables” into the model, the 

C-index for each XG-Boost model was 0.74 (95% CI: 0.68, 0.80), 0.77 (0.71, 0.83) and 0.54 (95% CI: 0.48, 

0.60) respectively. After adding the genetic variables into the XG-Boost model with questionnaire or biomarker 

variables, the predictive value did not improve and the C-indexes before and after adding the genetic variables 

was nearly the same. 

Discussion  
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In this large, prospective cohort study, with the data form HABCS cohort (N=2,448, 117 predictors), I 

did an extensive analysis of mortality prediction model which included over one hundred predictors with 

all-cause mortality followed up to ten years. I have ranked the predictive value of those predictors from 

questionnaire, biomarker and genetic assessment of HABCS.  

Several key messages can be concluded from this study. First, the performance of machine learning 

model was sightly better than the regression model in predicting survival. Second, predictors that can simply be 

obtained by interview without blood testing can predict all-cause mortality with a high predictive value among 

the older population. Age, activity of daily living and MMSE score were the strongest predictors. Third, 

generally, the predictive value of biomarker predictors was highest, and the predictive value of questionnaire 

predictors was comparable, however the predictive value of genetic predictors was low, and it did not increase 

the performance of prediction model when combined with other groups of predictors. In this report, I have 

presented only part of my findings, and a detailed version of my results are available in an open access database 

where the detailed predictive value for each variable in each model was available to generate new research 

hypotheses for other researchers.  

  In this study regression and machine learning models were applied for predicting all-cause mortality 

among Chinese community-dwellings within two cohorts. Generally, I found that machine learning models 

outperformed the regression model in predicting mortality in terms of C-index and IBS, but the difference was 

quite small. The results indicated that machine learning methods are well suited for meaningful risk prediction 

in large-scale epidemiological studies. Theoretically, compared with regression models, machine learning 

methods can avoid the problem of overfitting and non-convergence, and also considering the non-linearities. 

However, it is still controversial that whether machine learning could improve the accuracy of mortality risk 

stratification. In some study with relatively small sample size and limited number of predictors, the regression 

models have a comparable performance as the machine learning models. In one study including 1701 men with 

a follow up of 3 years and eight predictor available [22], it found that in predicting survival, machine learning 

models did not have a better performance as the regression models (C-static: Cox-regression: 0.78; survival tree: 

0.71; binary tree: 0.66; logistics regression: 0.72) In another study including 603 patients from the hospital with 

ST elevation myocardial infarction, using 10-fold cross validation, the logistics regression achieves the highest 

C-statistics of 0.82 and outperformed decision tree, naive Bayes classifier, artificial neural network and 

Bayesian network classifier . However, in some studies with larger simple size and larger numbers of predictor, 

machine learning models outperformed the regression model. For instance, a study including 6,520 patient with 

66 predictors compared the performance of logistic regression model and different machine learning models on 

predicting the mortality in-hospital after elective cardiac surgery [23]. Four different machine learning models 

have been evaluated with the regression models: gradient boosting machine, random forest, support vector 

machine and naive bayes. The area under the ROC curve for the machine learning model (C-index = 0.80) was 

significantly higher than the logistic regression model (C-index = 0.742). Similar result was found in another 
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study with a large size of simple and predictors, a study derived data from the Multi-Ethnic Study of 

Atherosclerosis (MESA) including 6814 participants aged 45 to 84 years [24]. Seven-hundred thirty-five 

variables from imaging and noninvasive tests, questionnaires, and biomarker panels were used to build the RSF 

and Cox model. In predicting all-cause mortality, the RSF model has a higher C-index (0.86) compared with 

that of the Cox regression models (AIC-Cox with forward selection: 0.78; LASSO-Cox: 0.80). To conclude, it 

is plausible that when the sample size was small and the number of predictors, the performance of machine 

learning model seems comparable with the regression model, while when the sample size was big enough and 

the number of predictors was larger enough, the performance of machine learning model will outperform the 

regression model. Combined with previous evidence, our analysis with the sample of over two thousand elderly 

with over one hundred predictors also partly demonstrated this hypothesis. However, further methodology 

studies were warranted to investigate in what situation the machine learning models would outperform the 

regression model. Additionally, the methodology development of the interpretative machine learning method is 

also needed to understand how those interactive relationships influent the predictive performance of the models. 

As we move into the age of precision medicine, understanding the use of phenotypic data and methods to 

analyze already acquired information is of paramount importance. 

Previous studies were mainly focus on the impact of signal predictors and could not have a comparison 

among those predictors, while our analysis provided the information about the relative importance of each 

variable as predictor of all-cause mortality. Several previous studies on mortality have ranked the predictors 

from across domains. In a study using data from UK biobank, 655 predictors were evaluated on their predictive 

value of five-year mortality in nearly 500,000 adults aged over 50 years old [25]. Those predictors included 

blood biomarkers, disease histories, socio-demographics, early life health factors and family history, 

psychosocial factors, and healthy lifestyle. Among those predictors, self-reported health was the strongest 

predictors of all-cause mortality. In another study derived data from Heath and Retirement Study [26], totally 57 

predictors of adverse socioeconomic and psychosocial experiences during childhood, socioeconomic conditions, 

health behaviors, social connections, psychological characteristics, and adverse experiences during adulthood 

was evaluated. Smoking was the strongest predictor of mortality among those 13,611 American aged from 52 to 

104 years old. Of note, in those two studies examined the predictive value of a comprehensive groups of 

predictors, age was regarded as covariate. In another study using machine learning methods the most powerful 

predictor for all-cause mortality was the chronological age. Additionally, in that study, some novel biomarkers 

were identified as tissue necrosis factor-α soluble receptor and interleukin-2 soluble receptor [24]. In my study, 

I have also identified some other predictors need to be addressed such as activity of daily living as a 

measurement of activity of daily living, blood pressure and MMSE score as a measurement of cognitive 

function which was previously underestimated in the mortality risk prediction models. This results were 

corresponding with the findings of UK biobank study which indicate that some general health indicator may be 

the most potent mortality predictor [25]. To note, the importance of cognitive health and blood pressure control 
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were addressed in my study. In China, A large number of elderly people are expected to suffer varying degrees 

of cognitive impairment and hypertension in the future.[27] My findings along with evidence on the lack of 

adequate care for cognitive impairment and blood pressure control in China indicate that there is an urgent need 

for China's health care system and government to improve provision and quality of these services. My study 

also suggested that some biomarkers such as red blood cells, hemoglobin and urine microalbumin which was 

rarely studied also need to be addressed in the future mortality risk stratification studies. In terms of those 

finding, machine learning enabled the researcher to discover new relationships without prior without prior 

assumptions. Identifying effective mortality risk predictor may be of benefit for effective screening strategies 

and suggest specific targets for risk reduction. Additionally, although I have identified some predictors which 

seems not actionable on the personal level such as cognitive function and social and leisure activity. But this 

should not be interpreted as an impediment to improvement of health behaviors. Previous studies have 

demonstrated that healthier modifiable behaviors such as quit smoking, higher level of physical activities and 

healthier diet are beneficial and further reduce the risk of mortality. 

Another finding of my analysis was that the predictive value of questionnaire and biomarker predictors 

was comparable, and the predictive value of genetic predictor was low. Additionally, adding genetic variables 

into the prediction model with biomarker or questionnaire predictors did not substantially improve its 

performance. Our results were corresponding with another study which also suggested that the predictive value 

of genetic predictors was limited. The study included 5,974 participants from the Rotterdam Study [28], 

followed for a median of 15.1 years, and it has demonstrated that specific genetic factors were independently 

associated with mortality, jointly they contributed little to mortality prediction (C-index = 0.56). Combined with 

those previous studies, it is possible that common SNPs only have very limited predictive power of mortality or 

longevity, when comparing with those traditional predictors. Considering its limited predictive power, it may be 

not necessary to perform the genetic assessment when evaluating the mortality risk. Although my results 

suggested that it may be unnecessary or invalid to assess the individual’s genetic background in mortality risk 

prediction, it is still validate for some specific disease risk prediction such as the APOE gene in predicting the 

risk of dementia and BCL2 gene in predicting breast cancer. Additionally, it may be possible that some 

epigenetic biomarker such as the methylation in genomes may improve the predictive performance of prediction 

models, however the cost of such measurement was much higher and the cost-effectiveness needs to be 

considered. 

This is the first study where machine learning models are applied to data from Chinese dwelling elderly 

in predicting all-cause mortality where a comparison with the traditional Cox model was also performed. My 

study has some implications for at the individual, clinical or policy making level especially for those at the 

LMICs with a rapid pace of aging.  

At the individual level, it can be applied to address the dwelling’s self-awareness of the health. For 

example, taking more health behaviors such as quit smoking and alcohol drinking to prevent cognitive 
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impairment and control the blood pressure. At the clinical and community level, the physician or health worker 

might use the model to identify individuals who were at high risk of mortality. To note, currently, frailty, as a 

measure consisting nearly one hundred variables, was gradually used in the real-world settings to perform the 

mortality risk stratification. However, it might be possible that my model which would be more convenient, as 

the development of medical informatics, could be applied to evaluate the mortality risk in different settings and 

may outperformed the frailty measurement. With such mortality risk stratification, targeted specific 

interventions or treatment can be implemented to those individuals and further improve the quality of 

healthcare. Finally, policy maker can use this information to allocate more medical or public health recourse to 

decrease the burden of specific risk factors.  

My study has several limitations. Firstly, the sample size is limited of the HABCS study, but, it has 

included a wide range of predictors. It is difficult to find another cohort with such big numbers of predictors. 

Secondly, the accuracy of the predictor. I used many self-reported predictors and those predictors are always 

subject to misclassification bias. However, the data of CLHLS has a good overall quality and its reliability and 

validity were validated. Thirdly, the genetic information was selected from the GWAS studies, which may not 

fully represent the genetic risk of mortality, however, I extracted the genetic information according to the 

published GWAS study using the same data, which may reduce the under estimation of the genetic mortality 

risk. Fourth, some biomarker was not available in my data such as the Interleukin 6 or Tumour Necrosis Factor 

alpha which represented level of inflammation, however, in our data, there are other biomarker measured the 

inflammation level such as albumin and high-sensitivity C-reactive protein. Fifthly, I use the internal validation 

method which is the training and test data sets were both drawn from the CLHLS study population. An external 

validation with data from other cohorts was needed.  

Conclusions 

In this population-based study, I built the prediction models with machine learning models and regression 

model and I found that machine learning model sightly outperformed the regression model in predicting 

all-cause mortality. Age, MMSE score and ADL were three of the most important predictors. Additionally, I 

have compared the predictive value of different groups of predictors and found that the predictive value of 

genetic predictors was much lower compared with those predictors from questionnaire and biomarker 

assessment. I provide a framework for big data applications to obtain meaningful risk prediction and generate 

data-driven hypotheses. 
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Figures and tables  

Table 1. Baseline Characteristics a of the HABCS Participants by Survival Status  

 Survival Death Total P -values 

  (N = 1377) (N = 1071) (N = 2448)  

Age    <0.001 

      Mean (SD) 77.7 (12.6) 92.7 (9.8) 84.3 (13.7)  

      Median (Q1, Q3) 77.0 (68.0, 86.0) 95.0 (86.0, 101.0) 85.0 (73.0, 97.0)  

Gender    <0.001 

      Female 570 (41.4) 663 (61.9%) 1233 (50.4%)  

      Male 807 (58.6) 408 (38.1%) 1215 (49.6%)  

Marital status    <0.001 

   Married (spouse alive) 761 (55.3) 215 (20.1) 976 (39.9)  

Others b 616 (44.7) 856 (79.9) 1472 (60.1)  

Activity of daily living c    <0.001 

      Not impaired 1257 (91.3) 717 (66.9) 1974 (80.6)  

      Impaired 120 (8.7) 354 (33.1) 474 (19.4)  

MMSE score d    <0.001 

      Mean (SD) 25.9 (6.24) 16.9 (11.2) 22.0 (9.8)  

      Median (Q1, Q3) 28.0 (25.0, 29.0) 20.0 (5.0, 28.0) 27.0 (18.0, 29.0)  

Social activity score e    <0.001 

      Mean (SD) 13.0 (3.0) 10.5 (3.1) 11.9 (3.3)  

      Median (Q1, Q3) 13.0 (11.0, 15.0) 10.0 (8.0, 12.0) 12.0 (9.0, 14.0)  

Psychological wellbeing 

score f    

<0.001 

      Mean (SD) 25.4 (4.4) 23.8 (4.6) 24.7 (4.6)  

      Median (Q1, Q3) 25.0 (23.0, 28.0) 23.0 (21.0, 26.0) 24.0 (22.0, 27.0)  

Album, g/L    <0.001 

      Mean (SD) 42.01 (3.6) 39.99 (3.7) 41.13 (3.8)  

      Median (Q1, Q3) 42.0 (40.3, 43.8) 40.2 (38.4, 41.8) 41.2 (39.3, 43.0)  

25-hydroxyvitamin D, 

ng/mL    

<0.001 

      Mean (SD) 46.9 (16.5) 38.1 (13.3) 43.0 (15.8)  

      Median (Q1, Q3) 45.3 (37.8, 53.2) 37.9 (29.7, 44.6) 41.8 (33.8, 50.0)  

Red blood cells, million/mm3    <0.001 

      Mean (SD) 4.9 (1.8) 4.6 (2.4) 4.8 (2.1)  

      Median (Q1, Q3) 4.4 (4.0, 5.0) 4.1 (3.6, 4.7) 4.3 (3.8, 4.9)  

Hemoglobin, g/dL    <0.001 

      Mean (SD) 131.1 (22.7) 123.5 (35.6) 127.8 (29.3)  

      Median (Q1, Q3) 131.0 (118.0, 145.0) 122.0 (109.0, 135.0) 127.3 (114.0, 141.0)  

TOMM40, rs2075650 

genotype  

 

 

0.45 

      AA 1150 (83.5) 904 (84.4) 2054 (83.9)  

      AG 221 (16.0) 158 (14.8) 379 (15.5)  

      GG 6 (0.4) 9 (0.8) 15 (0.6)  

FOXO3, rs10457180 genotype    0.66 

      AA 761 (55.3) 592 (55.3) 1353 (55.3)  

      AG 517 (37.5) 406 (37.9) 923 (37.7)  
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      GG 99 (7.2) 73 (6.8) 172 (7.0)  

Abbreviation: MMSE: Mini-Mental State Examination 
a Numbers shown are N (%) unless otherwise noted.; b Other marital status includes separated, 

widowed, divorced, never married; c Activity of daily  living: assessed by six self-reported questions: “Do you 

need assistance in bathing/dressing/toileting/transferring/eating/continence?”. Impaired Activity of daily 

living was defined as if the participants answered ‘Yes’ for any of those questions; d MMSE score: The MMSE 

score includes 24 item, covering seven subscales including orientation (four points for time orientation and one 

point for place orientation); naming foods (naming as many kinds of food as possible in one minute, seven 

points); registration of three words (three points); attention and calculation (mentally subtracting three 

iteratively from twenty, five points); copy a figure (one point); recall (delayed recall of the three words 

mentioned above, three points); and language (two points for naming objectives, one point for repeating a 

sentence, and three points for listening and obeying). The MMSE score ranges from 0 to 30. Higher scores 

represent a better cognitive function; e Leisure activity score: eight activities are assessed: visiting neighbors, 

shopping, cooking, washing clothes, walking 1 km, lifting 5 kg, crouching and standing up three times, and 

taking public transportation. I scored each activity 1 for ‘never’, 2 for ‘sometimes’ 3 for ‘almost every day’. The 

score ranged from 5 to 21 with a higher score indicating more leisure activities; f Psychological wellbeing score: 

Psychological wellbeing was measured by seven items. These seven items included four positive psychological 

wellbeing (tapping levels of optimism, conscientiousness, personal control and positive feeling about aging) 

and three negative aspects of psychological wellbeing (regarding neuroticism, loneliness and loss of 

self-worthy). The responses of these items used 5-point Likert scale ranging from “always” (5) to never (1) with 

negative items reversely recoded. The scores of the seven items were summed to obtain a total score with a 

possible range of 8-35 with a higher score represented a more positive level of psychological wellbeing. 
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Table 2.  A List of the Predictors Used for Prediction  

Questionnaire: basic demographics and lifestyle 

Age, gender, ethnicity, co-residence, years of schooling, marital status, residence, occupation before retirement, 

smoking status, drinking status, physical activity, consumption of fruit, vegetable, meat, fish, egg, bean, 

salt-preserved vegetables, sugar, tea, garlic, height 

Questionnaire: disease history and health indicators 

Times of suffering from serious illness in past two years, suffering from hypertension, diabetes, heart disease, 

stroke, bronchitis, emphysema, pneumonia, asthma, tuberculosis, cataract, glaucoma, cancer, ulcer, 

Parkinson’s disease, bedsore, arthritis, systolic and diastolic blood pressure, BMI, self-reported health, 

self-reported life satisfactory, activity of daily living, social and leisure activities, MMSE score, psychological 

well-being 

Biomarkers 

White blood cell count, red blood cell count, hemoglobin, erythrocyte hematocrit, erythrocyte mean 

corpuscular volume, erythrocyte mean corpuscular hemoglobin, erythrocyte mean corpuscular hemoglobin 

concentration, platelet count, plateletocrit, mean platelet volume, lymphocyte count, percentage of 

lymphocytes, platelet distribution width, white blood cell leukocytes, nitrates, urobilinogen, bilirubin, ketones, 

glucose, Vitamin C, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, urea acid, plasma 

creatine, urea nitrogen, triglyceride, total cholesterol, high sensitive c-reactive protein, malondialdehyde, 

superoxide dismutase activity,  albumin, creatine, glycolated plasma protein, superoxide dismutase, 

25-OH-D3, vitamin B12, urine microalbumin, urine creatinine, urine microalbumin/ urine creatinine ratio 

Genetic 

HLA-DQA1/DRB1: rs34831921, TOMM40: rs2075650, APOC1: rs4420638, NECTIN2: rs6857, APOE: rs769449, 

BEND4: rs1487614, EPHA6: rs10934524, ZFYVE28: rs57681851, ASIC2: rs7213812, FAM13A: rs2609284, 

LIMCH1: rs10007810, FOXO3: rs10457180, OR2W3: rs10888267, LINC02227: rs2149954, CSRNP3: rs6432832 

Abbreviation: MMSE: Mini-Mental State Examination
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Table 3: Integrated Brier Score (IBS) and C-index on the Test Data  

CLHLS IBS C-index 

Cox all variables   0.131 0.77 

Cox backward   0.129 0.78 

RSF 0.128 0.78 

XG-boost 0.120 0.80 
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Table 4: Hazard ratios along with their 95% confidence intervals for the 12 most influential variables

the Cox models.  

Variable name Cox all variables, 

HR (95% CI) 

Variable name Cox back

HR (95%

One-year increase in age 1.05 (1.04, 1.06) One-unit increase in 

urine microalbumin 

1.003 (1.002

One-unit increase in mean corpuscular 

hemoglobin concentration 

1.005 (1.002, 1.008) One point increase in 

MMSE score 

0.98 (0.97

Gender, male 1.66 (1.23, 2.24) One-year increase in 

age 

1.06 (1.05

Activity of daily living, impaired  1.40 (1.11, 1.77) Albumin 0.93 (0.90

One-unit increase in urine microalbumin 1.002 (1.000, 1.003) 25-hydroxyvitamin D 0.98 (0.97

Variables are presented in decreasing order according to the absolute z-score values for the Cox 

model with all variable 

. 

 

 

 

 

 

 

 

 

 

s for 

kward, 

% CI) 
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Table 5: The 10 most prognostic factors for the XG-Boost and for the Random Survival Forest 

Random Survival Forest XG-Boost 

Variable VIMP Variable F score 

Age 0.0389 Age 0.068 

MMSE score 0.0150 Activity of daily living 0.024 

Activity of daily 

living 

0.0137 MMSE score 0.023 

Social activity score 0.0095 Social activity score 0.021 

25-hydroxyvitamin D 0.0055 25-hydroxyvitamin D 0.0068 

Albumin 0.0032 Marital status 0.0048 

Marital status 0.0030 Psychological wellbeing 

score 

0.0029 

Red blood cells 0.0023 Self-reported health 0.0018 

Abbreviations: VIMP: variable importance  
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Figure 1: Prediction Error Curves for all Models. 
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Figure 2: The C-index and 95% Confidence Interval of XG-Boost model with different groups of 

variables  
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