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Abstract 
 
Background: There is growing interest in the clinical application of polygenic scores as their 

predictive utility increases for a range of health-related phenotypes. However, providing polygenic 

score predictions on the absolute scale is an important step for their safe interpretation. Currently, 

polygenic scores can only be converted to the absolute scale when a validation sample is available, 

presenting a major limitation in the interpretability and clinical utility of polygenic scores. 

Methods: We have developed a method to convert polygenic scores to the absolute scale for binary 

and normally distributed phenotypes. This method uses summary statistics, requiring only the area-

under-the-ROC curve (AUC) or variance explained (R2) by the polygenic score, and the prevalence of 

binary phenotypes, or mean and standard deviation of normally distributed phenotypes. Polygenic 

scores are converted using normal distribution theory. Given the AUC/R2 of polygenic scores may be 

unknown, we also evaluate two methods (AVENGEME, lassosum) for estimating these values from 

genome-wide association study (GWAS) summary statistics alone. We validate the absolute risk 

conversion and AUC/R2 estimation using data for eight binary and three continuous phenotypes in 

the UK Biobank sample. 

Results: When the AUC/R2 of the polygenic score is known, the observed and estimated absolute 

values were highly concordant. Across binary phenotypes, the mean absolute difference between 

the observed and estimated proportion of cases was 5%. For continuous phenotypes, the mean 

absolute difference between observed and estimated means was <0.3%. Estimates of AUC/R2 from 

the lassosum pseudovalidation method were most similar to the observed AUC/R2 values, though 

estimated values deviated substantially from the observed for autoimmune disorders. 

Conclusion: This study enables accurate interpretation of polygenic scores using only summary 

statistics, providing a useful tool for educational and clinical purposes. Furthermore, we have 

created interactive webtools implementing the conversion to the absolute scale for binary and 

normally distributed phenotypes (https://opain.github.io/GenoPred/PRS_to_Abs_tool.html). Several 

further barriers must be addressed before clinical implementation of polygenic scores, such as 

ensuring target individuals are well represented by the GWAS sample. 
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Introduction 
 
A substantial proportion of individual differences in health and disease are explained by 
genetic variation (Polderman et al., 2015). Genome-wide association studies (GWAS) have 
successfully identified thousands of genetic loci associated with a broad range of 
phenotypes, from anthropometric traits such as height (A. R. Wood et al., 2014), to 
psychiatric disorders such as major depression (Howard et al., 2019). One application of 
GWAS results is the estimation of genetic risk/propensity for a given phenotype using 
polygenic scores. Polygenic scores are calculated as the GWAS effect size-weighted sum of 
alleles carried by an individual (Choi, Mak, & O’Reilly, 2020). A range of methods exist for 
processing GWAS summary statistics prior to polygenic scoring to account for the linkage 
disequilibrium (LD) between variants and improve the predictive utility of polygenic scores 
(Pain et al., 2020).  
 
Polygenic scores capture only part of the genetic liability to a disease or trait, but the 
proportion explained increases with larger GWAS sample sizes and with improvements in 
polygenic scoring methodology. For example, individuals in the top 8% of cardiovascular 
disease (CAD) polygenic scores have a three-fold increased risk of developing CAD compared 
to the general population (Khera et al., 2018). The implementation of polygenic scores 
within a clinical setting are being increasingly discussed and investigated (Lewis & Vassos, 
2020; Wray et al., 2021), but several barriers exist before these scores can become an 
established part of healthcare, including the low variance of risk explained and issues with 
interpretation. 
 
For correct interpretation of a polygenic score, the score must first be standardised 
according to an ancestry-matched reference, so that the score is transformed to units of 
standard deviations from the mean. This standardised score, referred to as a polygenic Z-
score, can then be used to calculate the relative risk of disease for an individual, based on 
their polygenic score. Whilst relative risk estimates are of interest, they are challenging to 
interpret as they do not consider the predictive utility of the polygenic score or the 
prevalence of the outcome in the general population. It is well established that differences 
in risk are most accurately perceived by non-experts when presenting risk on the absolute 
scale, i.e., the probability an individual will develop the outcome (Gigerenzer, Gaissmaier, 
Kurz-Milcke, Schwartz, & Woloshin, 2007; Zipkin et al., 2014). The absolute risk conferred by 
a given relative risk is determined by the predictive utility of the polygenic score and the 
population prevalence of the phenotype. For example, an individual’s polygenic Z-score for 
schizophrenia may be 1.96, indicating their polygenic score is higher than 97.5% of an 
ancestry matched population. However, the absolute risk, or probability of the individual 
developing schizophrenia, is unknown, as we must account for the predictive utility of the 
polygenic score and the population prevalence of schizophrenia. 
 
When individual-level data is available for the polygenic score and the outcome of interest, 
it is possible to calculate the absolute risk conferred by a given polygenic score by 
measuring the proportion of cases within polygenic scores quantiles. This approach is often 
used in research to put variance explained estimates into perspective (Khera et al., 2018), 
and it is also implemented by 23andMe to help interpretation of results by their customers 
(Furlotte, Kleinman, Smith, & Hinds, 2015). However, individual-level data for the phenotype 
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of interest within a representative sample is often unavailable. Therefore, a summary 
statistic-based approach, requiring only information describing the predictive utility of the 
polygenic score and the prevalence of the outcome, would greatly improve the availability 
of interpretable results from polygenic scores.  
 
Within a homogenous population, polygenic scores are normally distributed due to the 
central limit theorem, and therefore normal distribution theory can be used to define 
polygenic scores based on the distribution of the phenotype and predictive utility of the 
polygenic score. Using this approach, our study develops a summary statistic-based tool for 
converting polygenic scores into absolute estimates for both binary and normally distributed 
phenotypes. For binary phenotypes, we calculate absolute risk based on the predictive 
utility of the polygenic score and the population prevalence of the phenotype. For normally 
distributed phenotypes, we calculate predictions in absolute terms based on the predictive 
utility of the polygenic scores and the population mean and standard deviation of the 
phenotype. In addition, we compare several approaches that estimate the predictive utility 
of polygenic scores using GWAS summary statistics alone, as this value is often unknown. 
 
Another important factor reported to help accurately interpret differences in risk is the use 
of simple visual aids (Zipkin et al., 2014). Therefore, this study also develops interactive 
webtools for converting an individual’s polygenic scores to the absolute scale with 
corresponding graphics. 
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Methods 
 
UK Biobank (UKB) 
 
UKB is a prospective cohort study that recruited >500,000 individuals aged between 40-69 
years across the United Kingdom (Bycroft et al., 2018). The UKB received ethical approval 
from the North West - Haydock Research Ethics Committee (reference 16/NW/0274). 
 
Phenotype data 
 
Eleven UKB phenotypes were analysed. Eight phenotypes were binary: Depression, Type 2 
Diabetes (T2D), Coronary Artery Disease (CAD), Inflammatory Bowel Disease (IBD), 
Rheumatoid arthritis (RheuArth), Multiple Sclerosis (MultiScler), Breast Cancer, and Prostate 
Cancer. Three phenotypes were continuous: Intelligence, Height, and Body Mass Index 
(BMI). Further information regarding phenotype definitions can be found in the 
Supplementary Material.  
 
Analysis was performed on a subset of ~50,000 UKB participants for each outcome. For each 
continuous trait (Intelligence, Height, BMI), a random sample was selected. For disease 
traits, all cases were included, except for Depression and CAD where a random sample of 
25,000 cases was selected. Controls were randomly selected to obtain a total sample size of 
50,000. Sample sizes for each phenotype after genotype data quality control are shown in 
Table 1. 
 
Genetic data 
 
UKB released imputed dosage data for 488,377 individuals and ~96 million variants, 
generated using IMPUTE4 software (Bycroft et al., 2018) with the Haplotype Reference 
Consortium reference panel (McCarthy et al., 2016) and the UK10K Consortium reference 
panel (UK10K Consortium, 2015). This study retained individuals that were of European 
ancestry based on 4-means clustering on the first 2 principal components provided by the 
UKB, had congruent genetic and self-reported sex, passed quality assurance tests by UKB, 
and removed related individuals (>3rd degree relative, KING threshold > 0.044) using 
relatedness kinship (KING) estimates provided by the UKB (Bycroft et al., 2018). The 
imputed dosages were converted to hard-call format for all variants. 
 
Polygenic scoring 
 
Polygenic scores were derived within a reference-standardised framework, whereby 
polygenic scores are derived using a common set of genetic variants, linkage disequilibrium 
estimates, and allele frequency estimates (Pain et al., 2020). This approach is well suited for 
the clinical setting and is also good practice for research purposes. 
 
SNP-level QC 
 
HapMap3 variants from the LD-score regression website (see Web Resources) were 
extracted from UKB, inserting any HapMap3 variants that were not available in the target 
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sample as missing genotypes (as required for reference MAF imputation by the PLINK allelic 
scoring function) (Chang et al., 2015). No other SNP-level QC was performed. 
 
Individual-level QC 
 
Individuals of European ancestry were retained for polygenic score analysis. They were 
identified using 1000 Genomes Phase 3 projected principal components of population 
structure, retaining only those within three standard deviations from the mean for the top 
100 principal components. This process will also remove individuals who are outliers due to 
technical genotyping or imputation errors. 
 
GWAS summary statistics 
 
GWAS summary statistics were identified for the phenotypes as defined above, or similar 
phenotypes (descriptive statistics in Table S1), excluding GWAS with documented sample 
overlap with the target sample of UKB. GWAS summary statistics underwent quality control 
to extract HapMap3 variants, remove ambiguous variants, remove variants with missing 
data, flip variants to match the reference retain variants with a minor allele frequency 
(MAF) > 0.01 in the European subset of 1KG Phase 3, retain variants with a MAF > 0.01 in 
the GWAS sample (if available), retain variants with a INFO > 0.6 (if available), remove 
variants with a discordant MAF (>0.2) between the reference and GWAS sample (if 
available), remove variants with association p-values >1 or </=0, remove duplicate variants, 
and remove variants with sample size >3SD from the median sample size (if per variant 
sample size is available). 
 
Reference genotype datasets 
 
Target sample genotype-based scoring was standardised using the European subset of 1000 
Genomes Phase 3 (N=503).  
 
Polygenic scoring methodology 
 
Polygenic scoring was carried out using DBSLMM (Yang & Zhou, 2020), which models LD 
between genetic variants and applies shrinkage parameters to avoid overfitting. DBSLMM is 
a computationally scalable method that performs similarly to other leading polygenic 
scoring methods (Pain et al., 2020). For comparison with the DBSLMM polygenic score 
results, a threshold and clump (pT+clump) approach was also used.  
 
pT+clump was performed using an R2 threshold of 0.1 and window of 250kb. Within the 
MHC region (28-34Mb on chromosome 6), the pT+clump method retains only the single 
most significant variant due to long range and complex LD in this region. Ten p-value 
thresholds were used to select variants: 1×10-8, 1×10-6, 1×10-4, 1×10-2, 0.1, 0.2, 0.3, 0.4, 0.5 
and 1. 
 
After preparation of GWAS summary statistics, polygenic scores were calculated using PLINK 
with reference MAF imputation of missing data. All scores were standardized (scaled and 
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centered) based on the mean and standard deviation of polygenic scores in the reference 
sample. 
 
 
Converting from relative to absolute scale 
 
Converting to the absolute scale here requires updating the distribution parameters for a 
phenotype, given that we observe a polygenic score within a specified range (determined by 
quantiles). We develop methodology to achieve this for both binary and normally 
distributed phenotypes, using only the distribution of the phenotype and the predictive 
utility of the polygenic score. 
  
Broadly, our approach defines the population distribution for the polygenic score using a 
measure of its predictive utility within normal distribution theory. The polygenic score 
quantiles are then estimated and, using these and the phenotype and polygenic score 
distributions, we derived the required, updated distribution parameters for the phenotype 
using conditional probability rules. 
 
For binary phenotypes, such as major depression and multiple sclerosis, polygenic scores 
can be modelled as a mixture of two normal distributions, using the population prevalence 
of the phenotype, and the predictive utility of the polygenic scores, often indicated by the 
area-under-the-ROC-curve (AUC). Once this distribution has been defined, the quantiles of 
the polygenic scores, and the proportion of cases within each quantile is estimated. 
Quantile estimation for the mixture distribution requires using a root-finding algorithm; 
here we use the ‘uniroot’ function in the ‘base’ R package (R Core Team, 2015). A full 
derivation of the formulae for conversion to the absolute scale is available in the 
Supplementary Material. 
 
For normally distributed continuous phenotypes, such as height and IQ, polygenic scores are 
defined as part of a bivariate normal distribution with the phenotype, using the mean and 
standard deviation of the phenotype in the general population, and the predictive utility of 
the polygenic scores, often indicated as the variance explained (R2). Once this distribution 
has been defined, the quantiles of the polygenic scores, and the phenotype mean and 
standard deviation within each quantile is estimated. The mean and standard deviation of 
the phenotype within each polygenic score quantile are estimated using the ‘mtmvnorm’ 
function in the ‘tmvtnorm’ R package (Wilhelm & Manjunath, 2015). A full derivation of the 
formulae for the conversion to the absolute scale is available in the Supplementary 
Material. 
 
Both conversions use some assumption of normality when defining the distribution of the 
polygenic score, which is underpinned by the central limit theorem. We note that polygenic 
scores derived using the pT+clump approach will often include only a small number of 
genetic variants when using a stringent p-value threshold and may therefore not fit a 
normal distribution. To determine whether the conversions are biased in this scenario, we 
compared absolute estimates to those observed when using pT+clump polygenic scores 
based on the most stringent p-values threshold available, whilst retaining at least 5 genetic 
variants. 
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Estimating predictive utility of polygenic scores 
 
Two approaches were explored to estimate the predictive utility of polygenic scores. 
 
The pseudovalidate function of the ‘lassosum’ R package (Mak, Porsch, Choi, Zhou, & Sham, 
2017) estimates the correlation (R) between the polygenic score and GWAS phenotype to 
identify the optimal lassosum hyper parameters (s and lambda). We have previously shown 
lassosum has a similar predictive utility to the DBSLMM polygenic score (Pain et al., 2020). 
For continuous phenotypes, the variance explained by the polygenic scores is R2. For binary 
phenotypes, the AUC is obtained from the correlation via calculation of the Cohen’s D, 
accounting for the GWAS sampling ratio (Aaron, Kromrey, & Ferron, 1998; Rice & Harris, 
2005). The Cohen’s D is calculated from R as: 
 
 

𝐷 =
√𝑎 × 𝑅

√1 − 𝑅2
 (1) 

 

 
where 𝑎 is a correction factor for imbalanced GWAS sampling ratio (𝑛1 ≠ 𝑛2), 
 
 

𝑎 =
(𝑛1 + 𝑛2)

2

𝑛1 × 𝑛2
 (2) 

 

 
The AUC is calculated from Cohen’s D as: 
 
 

𝐴𝑈𝐶 = Ф [
𝑑

√2
] (3) 

 

where Ф is the normal cumulative distribution function. 
 
The ‘AVENGEME’ R package (Palla & Dudbridge, 2015) includes a function called 
‘polygenescore’ which has several purposes including the estimation of the AUC/R2 of 
polygenic scores derived using the pT+clump approach. AVENGEME requires various input 
parameters, including the SNP-based heritability of the phenotype and the proportion of 
variants with zero effect (pi0). The SNP-based heritability was estimated from the GWAS 
summary statistics using LD-score regression (Bulik-Sullivan et al., 2015). However, pi0 is 
challenging to estimate from GWAS summary statistics, and so a range of pi0 values were 
used (0.92, 0.94, 0.96, 0.98).  
 
In a third approach, we also explored the G-WIZ R package (Patron, Serra-Cayuela, Han, Li, & 
Wishart, 2019). This method is able to estimate the AUC of polygenic scores derived from 
GWAS of binary outcomes, but it cannot currently be applied to continuous outcomes. A 
brief investigation of the method also highlighted that substantial computational resources 
would be required to model polygenic scores derived using genome-wide variation, as 
opposed to a smaller number of genome-wide significant variants. For these reasons, we 
have not considered this approach further. 
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Validation procedure 
 
Conversion to absolute scale 
 
Conversion to the absolute scale for binary and continuous phenotypes was validated in 
UKB. For binary phenotypes, the conversion was validated by comparing the observed 
number of affected individuals within each polygenic score quantile to the estimated values. 
For continuous phenotypes, the conversion was validated by comparing the observed 
phenotype mean and standard deviation (SD) within each polygenic score quantile to 
estimated values. When validating the conversion to the absolute scale, the observed 
AUC/R2 of the polygenic score, and observed sampling ratio or phenotype mean and SD 
were used to estimate the polygenic score distribution. We also compared observed and 
estimated values for height stratified by sex. 
 
Estimation of polygenic score AUC/R2 
 
To validate the AUC and R2 estimates derived from AVENGEME and lassosum, we compared 
the estimated values to those observed in UKB. We also used the estimated AUC/R2 values 
when converting polygenic score into absolute terms, to determine the extent to which 
differences between observed and estimated AUC/R2 values influenced the results. 
 
 
Development of interactive visualisation tool 
 
We developed an interactive webtool for converting and visualising standardised polygenic 
scores to the absolute scale for binary and normally distributed phenotypes. The webtools 
were developed using the ‘shiny’ package in R, and are hosted on the shinyapps.io website 
(see URLs). For the shiny app implementation of the absolute scale conversion, the 
polygenic score distribution is split into 1000 quantiles to increase the precision of the 
results. 
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Results 
 
Validating conversion to absolute terms 
 
We validated the approach for converting a polygenic score into absolute terms by 
comparing the observed and estimated distributions of phenotypes within DBSLMM 
polygenic score quantiles. When the AUC/R2 of the polygenic score is known, the absolute 
estimates were highly concordant with observed values (Table 1, Figure 1-2).  
 
For binary phenotypes (Table 1, Figure 1), the mean absolute difference between the 
observed and estimated proportion of cases was between 12.6% for MultiScler and 1.5% for 
both Depression and CAD. The concordance between observed and estimated values 
decreased as the number of cases within UKB decreased, reflecting increased error in the 
observed values. 
 
For the three continuous phenotypes (Table 1, Figure 2), the mean absolute difference 
between observed and estimated means was <0.3%. The mean absolute difference between 
observed and estimated phenotype standard deviations across polygenic score quantiles 
were 1.3% for Intelligence, 1.5% for Height, and 6% for BMI. The reduced concordance 
between observed and estimated values for BMI reflects the increased skewness of this 
phenotype in UKB. 
 
To demonstrate the flexibility of the conversion to model absolute risk within stratified 
populations, we compared observed and estimated absolute values for height within males 
and females separately. Again, the concordance between observed and expected values was 
high (Figure S1). Given large sex differences in height, the polygenic score R2 increased when 
stratified by sex, and correspondingly the difference in mean height across polygenic score 
quantiles was larger, and the standard deviation of height within polygenic score quantiles 
was smaller. 
 
The observed and estimated absolute values were also highly concordant when using 
pT+clump polygenic scores defined using stringent p-value thresholds (Figures S2-S3). Some 
discrepancy between observed and estimated values was present for Depression due to the 
low predictive utility of the polygenic score when using the stringent p-value threshold to 
select variants. 
 
We have provided examples using these conversions to interpret polygenic scores for an 
individual (Figure 3-4). For binary phenotypes, we use the example schizophrenia, with a 
population prevalence of 1% and a polygenic score AUC of ~0.67 (Pardiñas et al., 2018). If an 
individual has a polygenic Z-score of 1.96, they are in the 97.5th percentile of schizophrenia 
polygenic scores. However, given the modest AUC of the polygenic score, only 2.7% of 
individuals with that polygenic score will develop schizophrenia (Figure 3). For continuous 
phenotypes, we use the example of intelligence quotient (IQ), with a population mean of 
100 and standard deviation of 15, for which the educational attainment polygenic score can 
explain 10% of the variance (Allegrini et al., 2019). If an individual has a polygenic Z-score of 
-1.96, they are in the 2.5th percentile of educational attainment polygenic scores. The mean 
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IQ of individuals with this polygenic score is 90.7, with 95% prediction intervals from 62.8 to 
118.6 (Figure 4). 
 
To illustrate the full range of predictive utility of polygenic scores on the absolute scale, we 
have simulated results based on a range of polygenic score AUC and prevalence values for 
binary phenotypes, and range of polygenic scores R2 values for continuous phenotypes 
(Figures S4-S5). 
 
 
Validating polygenic scores AUC/R2 estimation 
 
The lassosum estimates of AUC/R2 were concordant with the observed AUC/R2 of PRScs 
polygenic scores for most phenotypes (Table 2). The absolute difference between estimated 
and observed AUC values was less than 0.04 for five of the eight binary phenotypes. The 
absolute difference between estimated and observed R2 values were 0.007, 0.015, and 
0.046 for BMI, Intelligence and Height, respectively. The lassosum estimates were most 
discordant for the three autoimmune disorders included in this study. The estimated AUC 
was substantially higher than the observed for IBD (AUC diff = 0.115) and MultiScler (AUC 
diff = 0.128). The analysis did not complete for RheuArth, resulting in an AUC of 0.5 being 
returned by the analysis. 
 
To determine the extent to which using estimated AUC/R2 influences the absolute 
estimates, we compared absolute estimates derived using lassosum estimated AUC/R2, to 
the observed absolute values (Table 3). The results for RheuArth were highly discordant due 
to the incomplete analysis estimating the AUC. After excluding RheuArth, the concordance 
between observed and estimated absolute values remained high when using estimated 
AUC/R2 values. For IBD and MultiScler, the phenotypes with discordant estimates of 
polygenic score AUC, the mean absolute percentage difference between observed-
estimated proportion of cases was 38.6% and 43.7%, respectively. Discrepancies were 
particularly pronounced in the upper tail of the polygenic score distribution. The ratio 
between estimated and observed proportions of cases in the top polygenic score quantile 
(top 5%) was 1.83 and 2.16 for IBD and MultiScler respectively. 
 
Estimates of polygenic score AUC/R2 derived using LDSC and AVENGEME were on average 
less accurate than those of lassosum. Sensitivity analysis highlighted two limitations of the 
approach. First, that LDSC SNP-based heritability estimates were often discordant to the 
SNP-based heritability estimated by AVENGEME based on observed polygenic score 
associations. For example, LDSC estimated the multiple sclerosis SNP-based heritability to 
be 2% whereas the AVENGEME SNP-based heritability estimate based on observed 
polygenic score associations was 13.3%. This discordance between the LDSC SNP-based 
heritability estimate and the SNP-based heritability reflected by the polygenic score 
associations leads to inaccurate estimates of polygenic score AUC/R2 by AVENGEME. The 
second limitation is that the polygenicity of GWAS phenotypes was not known, so we 
assumed an average degree of polygenicity for all GWAS phenotypes. This average 
polygenicity assumption contributed to inaccurate AUC/R2 estimates. Results of the 
LDSC/AVENGEME analysis are further described in the Supplementary Material (Figure S6-
S7, Table S2-S3). 
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Discussion 
 
This study has derived and evaluated methods for converting polygenic scores for both 
binary and normally distributed phenotypes from a relative value, of where the polygenic 
score lies on the distribution, into a value on the absolute scale. For a disorder, the 
conversion provides an estimate of the proportion of cases within a polygenic score 
quantile, and for a normally distributed trait, the conversion gives the trait mean and 
standard deviation within a polygenic score quantile. Comparison of absolute estimates with 
observed values within UKB show the method is highly accurate when the AUC (for 
disorders) or R2 (for a trait) of the polygenic score is known. Furthermore, we show that 
lassosum pseudovalidate function can provide accurate estimates of AUC/R2 in most 
instances, though inaccuracies in AUC/R2 estimation can substantially bias absolute 
estimates in the extremes of the polygenic score distribution. 
 
Interpretation of polygenic scores is one of the greatest barriers to their safe application to 
the clinical setting, and also poses a problem when polygenic scores are delivered to the 
individuals via direct-to-consumer genetics testing companies. Our study provides a 
summary statistic-based approach for converting polygenic scores into absolute terms, 
enabling their accurate interpretation. Furthermore, where the predictive utility of 
polygenic scores is unknown, we show that lassosum pseudovalidate may be used although 
the results should be interpreted with caution.  
 
The predictive utility of polygenic scores is under a great deal of scrutiny. A major criticism is 
that they are only predictive at the group-level, i.e. for research, but are poor predictors at 
the individual-level. Our approach of converting polygenic scores to the absolute scale helps 
understand this distinction as it converts the group-level metric of predictive utility (AUC or 
R2) into an absolute value for an individual (risk of disorder or trait value with prediction 
intervals). Indeed, the absolute estimates do not vary substantially across the polygenic 
score distribution except at the extremes, which reflects the modest AUC/R2 of the current 
polygenic scores. The predictive utility of polygenic scores will increase with more powerful 
GWAS and better resolution of the causal variant. However, these scores will always be 
probabilistic, and will never give deterministic predictions as genetic variation only explains 
part of the phenotypic variance. Polygenic scores can be combined with other risk factors to 
increase the accuracy of prediction, though the value of prediction also depends partly on 
the actions or interventions available to address the predicted outcome. 
 
We have developed an interactive webtool implementing these methods to convert 
polygenic scores into absolute risk or trait estimates, also providing visual aids to promote 
the accurate interpretation of differences in risk. We also plan to implement these methods 
on Impute.me, a popular non-profit website providing polygenic scores for users who 
upload genotype data from a direct-to-consumer genetic testing company. 
 
There are several limitations of this study. Firstly, this summary statistic-based approach 
relies on the input parameters being representative of the target individual’s demographic. 
This study focuses on UKB participants of European ancestry, and we define the distribution 
of the phenotype using the observed distribution within UKB. However, specifying the 
distribution of a phenotype and the AUC/R2 of the polygenic score for a population that is 
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representative of the target individual may be challenging. For example, assuming the 
phenotype distribution and polygenic score AUC/R2 found in a European population will give 
biased results in non-European populations where differences exist in the phenotype 
distribution and polygenic score AUC/R2 (T. R. Wood & Owens, 2020). Most GWAS are 
performed in European populations, and the variance explained by polygenic scores is 
typically higher in Europeans than non-Europeans (Martin et al., 2019). Secondly, although 
the lassosum pseudovalidate approach works well in most instances, it can provide 
inaccurate results which could lead to inaccurate absolute estimates. Further development 
of methods that can estimates the AUC/R2 of polygenic scores without a validation sample 
would be useful. Alternatively, the AUC/R2 could be based upon resources such as The 
Polygenic Score (PGS) Catalog (Lambert et al., 2021), which collate polygenic score data and 
corresponding prediction metrics. To support this effort, future polygenic score risk 
prediction studies should follow suggested reporting standards (Wand et al., 2021). Thirdly, 
for continuous phenotypes, the approach is tailored to normally distributed phenotypes. 
Further development of methods to account for non-normally distributed phenotypes may 
be useful. Finally, for binary traits or disease, we calculate life-time risks that are based on 
pre-specified prevalence, which do not account for the risk period an individual has already 
lived through or other risk factors. 
 
In summary, this study has provided an approach for converting polygenic scores into 
absolute risk and predictions based on GWAS summary statistics. It establishes a framework 
for appropriate and accurate interpretation of polygenic scores by patients, consumers, and 
healthcare professionals. 
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URLS 
 

• Interactive webtool/shiny apps: 
https://opain.github.io/GenoPred/PRS_to_Abs_tool.html  

• LDSC HapMap 3 SNP-list: 
https://data.broadinstitute.org/alkesgroup/LDSCORE/w_hm3.snplist.bz2 

• Impute.me: https://impute.me/ 

• GenoPred website: https://opain.github.io/GenoPred 
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Tables 
 
Table 1. Comparison between observed and estimated values on the absolute scale across 
polygenic score quantiles for binary and normally distributed phenotypes. Estimated values 
are based on the observed AUC/R2 of the polygenic score, the prevalence of binary 
phenotypes, and mean and standard deviation (SD) of continuous phenotypes in UKB. 

Binary       

Phenotype 
Mean Abs. 

Diff. 
Mean Abs. 
Diff. of SD 

N Ncas Ncon Skewness 

Depression 1.5% NA 49999 24999 25000 NA 

T2D 2.4% NA 49999 14888 35111 NA 

CAD 1.5% NA 49999 25000 24999 NA 

IBD 6.8% NA 49999 3461 46538 NA 

MultiScler 12.6% NA 49999 1137 48862 NA 

RheuArth 6.8% NA 49999 3408 46591 NA 

Breast_Cancer 4.6% NA 49999 8512 41487 NA 

Prostate_Cancer 8.7% NA 50000 2927 47073 NA 

Continuous       

Phenotype 
Mean Abs. 

Diff. 
Mean Abs. 
Diff. of SD 

N Ncas Ncon Skewness 

Intelligence 0.3% 1.3% 50000 NA NA 0.144 

Height 0.1% 1.5% 49999 NA NA 0.117 

BMI 0.2% 6% 49999 NA NA 0.592 
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Table 2. Comparison between polygenic score AUC/R2 observed in UKB and estimated using 
lassosum. 

Binary    

Phenotype Observed AUC Estimated AUC Difference 

Depression 0.580 0.581 0.001 

T2D 0.642 0.651 0.010 

CAD 0.597 0.624 0.027 

IBD 0.677 0.792 0.115 

MultiScler 0.657 0.785 0.128 

RheuArth 0.632 0.500 -0.132 

Breast_Cancer 0.658 0.698 0.040 

Prostate_Cancer 0.691 0.721 0.030 

Continuous    

Phenotype Observed R2 Estimated R2 Difference 

Intelligence 0.008 0.023 0.015 

BMI 0.081 0.074 -0.007 

Height 0.110 0.156 0.046 
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Table 3. Comparison between observed and estimated case probabilities across polygenic 
score quantiles for binary phenotypes. Estimated values are based on the lassosum 
estimated AUC/R2 of the polygenic score. 

Binary       

Phenotype 
Mean Abs. 

Diff. 
Mean Abs. 
Diff. of SD 

N Ncas Ncon Skewness 

Depression 1.5% NA 49999 24999 25000 NA 

T2D 3.4% NA 49999 14888 35111 NA 

CAD 4.3% NA 49999 25000 24999 NA 

IBD 38.6% NA 49999 3461 46538 NA 

MultiScler 43.7% NA 49999 1137 48862 NA 

RheuArth 40% NA 49999 3408 46591 NA 

Breast_Cancer 12.5% NA 49999 8512 41487 NA 

Prostate_Cancer 11.1% NA 50000 2927 47073 NA 

Continuous       

Phenotype 
Mean Abs. 

Diff. of 
Mean 

Mean Abs. 
Diff. of SD 

N Ncas Ncon Skewness 

Intelligence 1.9% 1.5% 50000 NA NA 0.144 

Height 0.2% 2.5% 49999 NA NA 0.117 

BMI 0.3% 6% 49999 NA NA 0.592 
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Figures 

 
Figure 1. Comparison of observed and estimated probability of being a case across 20 
DBSLMM polygenic score quantiles. Estimated values are based on either the observed 
polygenic score AUC, or the lassosum estimated AUC.  
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Figure 2. Comparison of observed and estimated phenotype mean and standard deviation 
across 20 DBSLMM polygenic score quantiles. Estimated values are either based on the 
observed polygenic score R2, or the lassosum estimated R2. 
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Figure 3. Shiny app implementing absolute scale conversion for binary phenotypes. 
Parameters reflect prevalence of schizophrenia and AUC of the schizophrenia polygenic score 
(Pardiñas et al., 2018). 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.16.21255481doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.16.21255481
http://creativecommons.org/licenses/by-nd/4.0/


 
Figure 4. Shiny app implementing absolute scale conversion for normally distributed 
phenotypes. Parameters reflect mean and SD of IQ, and R2 of educational attainment 
polygenic score for IQ (Allegrini et al., 2019). 
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