
Title: A seq2seq model to forecast the COVID-19 cases, deaths and reproductive R numbers in US 
counties 
 
Authors:  Yanli Zhang-James1, Jonathan Hess1, Asif Salekin2, Dongliang Wang3, Samuel 
Chen4, Peter Winkelstein5, Christopher P Morley3,6 and Stephen V Faraone1,7  
 
Affiliations: 

1. Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, 
Syracuse, New York 

2. Department of Electrical Engineering and Computer Science, Syracuse University, 
Syracuse, New York 

3. Department of Public Health & Preventive Medicine, SUNY Upstate Medical University, 
Syracuse, New York 

4. School of Medicine, SUNY Upstate Medical University, Syracuse, New York 
5. Institute for Healthcare Informatics, SUNY University at Buffalo, Buffalo, New York, USA. 
6. Department of Family Medicine, SUNY Upstate Medical University, Syracuse, New York 
7. Department of Neuroscience and Physiology, SUNY Upstate Medical University, 

Syracuse, New York  
 
Corresponding author: 
 

Yanli Zhang-James, MD PHD 
Research Associate Professor 
Department of Psychiatry and Behavioral Sciences 
 
SUNY Upstate Medical University 
3732B Neuroscience Research Building 
505 Irving Ave. Syracuse, NY 13210 
Phone: 315-464-3441 
Email: Zhangy@upstate.edu 

  
 
 
Short running title: US county COVID-19 Forecast 
 
Key words: Covid-19, Deep Learning, Machine Learning, Gated Recurrent Unit, Pandemic 
Forecasting, epidemic transmission 
 
  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.14.21255507doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.04.14.21255507
http://creativecommons.org/licenses/by/4.0/


Abstract 
The global pandemic of coronavirus disease 2019 (COVID-19) has killed almost two million 
people worldwide and over 400 thousand in the United States (US). As the pandemic evolves, 
informed policy-making and strategic resource allocation relies on accurate forecasts. To predict 
the spread of the virus within US counties, we curated an array of county-level demographic and 
COVID-19-relevant health risk factors. In combination with the county-level case and death 
numbers curated by John Hopkins university, we developed a forecasting model using deep 
learning (DL). We implemented an autoencoder-based Seq2Seq model with gated recurrent 
units (GRUs) in the deep recurrent layers. We trained the model to predict future incident cases, 
deaths and the reproductive number, R.  For most counties, it makes accurate predictions of 
new incident cases, deaths and R values, up to 30 days in the future. Our framework can also 
be used to predict other targets that are useful indices for policymaking, for example 
hospitalization or the occupancy of intensive care units. Our DL framework is publicly available 
on GitHub and can be adapted for other indices of the COVID-19 spread.  We hope that our 
forecasts and model can help local governments in the continued fight against COVID-19.  
 

Introduction 
The global pandemic of COVID-19, first identified from an outbreak in Wuhan, China at the end 
of December 2019, has drastically changed our societies and economies all over the world. As 
of the beginning of 2021, the virus has infected more than 86 million people and claimed almost 
two million lives across the globe. The US has reported approximately 24% of the world's total 
cases and 19% of the world's total deaths and has been reporting the highest numbers of daily 
new infections across the world since November 2019. The cooler weather, the reopening of 
schools and businesses in the fall, holiday travel and gatherings, and the evolving 
infectiousness of the virus have contributed the rapidly rising cases in many regions.  
 
Accurate forecasting models are essential for government policymaking during the fight against 
the virus.  A variety of methodologies have been used to forecast the spread of COVID-19. Most 
have used traditional epidemiological models such as the susceptible-infected-removed (SIR), 
or Susceptible-Exposed-Infectious-Removed (SEIR) models. These models use ordinary 
differential equations and rely on assumptions such as the transmission characteristics of the 
virus. Machine learning and deep learning methods have also been used.  They provide a 
complementary, data-driven approach that does not rely on epidemiological assumptions. The 
most important prerequisite for deep learning models is access to a large amount of data from 
which to learn. While deep learning models were limited by the availability of the data in the 
early months, the long-stretch of the pandemic worldwide has, unfortunately, provided ample 
data for more accurate modeling and longer-term forecast.  
 
Many teams and methods have been used to model and forecast the spread of the pandemic. 
Currently, over 50 teams from the globe are participating in the COVID-19 Forecast Hub 
(www.covid19forecasthub.org), led by the Reich Lab at the University of Massachusetts.  The 
Forecast Hub coordinates with the US Centers for Disease Control and Preventions (CDC) to 
generate weekly forecasts of cases, deaths, and hospitalizations in the US for up to four weeks 
in the future. The ensemble forecast, which uses the median prediction across a few dozen of 
eligible models, are published weekly on the CDC website (Ray, Wattanachit et al. 2020). Most 
of the forecasts focus on national and state outcomes.  Only a few teams have generated 
forecasts for US counties. The weekly published ensemble models only forecast incident cases 
at the county-level.  They do not forecast deaths or other outcomes.  
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The main goal of this study was to improve the accuracy of county-level forecasts and to 
increase the types of outcomes forecast at the county level to include R values and deaths.  
Another strength of our model is the inclusion of multimodal predictors. We curated an array of 
relevant demographic indicators such as population density, rural/urban ratios, and a number of 
chronic health risk factors that have been linked to the risk of more severe COVID-19 infections. 
We demonstrate that our model learned patterns of input features to make accurate predictions 
of new incident cases, deaths, and R values up to 30 days in the future. Our framework can also 
be used to predict other targets that are useful indices for policymaking, for example 
hospitalization or the occupancy of intensive care units (ICU). 

Methods 
 
Data source 
The time series for daily cumulative cases and deaths were downloaded from the COVID-19 
Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins 
University (Dong, Du et al. 2020). Incident cases and deaths were generated from the 
cumulative series and seven-day moving averages (7-MA) were used as input sequences for 
the prediction models. 
 
We computed the daily reproduction number, R, time series using a sliding weekly window for 
each county based on the methods described in Cori, et al (2013) and implemented in the R 
Statistical Software package EpiEstim. Negative numbers in the incident cases series due to 
reporting errors were set to 0.  R indicates how fast the virus is spreading by computing the 
average number of secondary cases of disease caused by a single infected individual during the 
whole infectious period. Higher R values that are above 1 indicate the increasing spread of the 
virus in the community.  The goal of epidemic control is to bring the R values to below 1 (as 
close to 0 as possible). 
 
Google has released data on daily mobility score changes reflecting the effects of social 
distancing and local lockdown measures, as well as school and business status. The Google 
Community Mobility Reports (https://www.google.com/covid19/mobility/) contain percentages of 
movement changes over six types of communities: retail & recreation, grocery & pharmacy, 
parks, transit, workplaces, residential regions. The changes were based on “baseline” values 
reported from January – February 2020.  We computed a single daily mobility score by 
averaging the percentage changes from five categories (retail & recreation, grocery & pharmacy, 
parks, transit, workplaces) and the negative values of residential changes. All six categories 
showed highly significant correlations and are also significantly correlated with the mean daily 
mobility score. The daily mean mobility scores were missing in 24% of the days, for which we 
used the mean daily mobility scores of the previous scores. Mobility scores prior to February 15, 
2020 were considered to be baseline, therefore set to 0%.  
 
Population size, population density, rural/urban ratio, and other demographic information such 
as sex, age and racial composition, were obtained from the 2019 National and State Population 
Estimates from the US Census Bureau. The numbers of ICU beds (per 1,000 population) were 
obtained from the 2019 Kaiser Family Foundation Survey (KFF). Other health risk factors, such 
as differential use of preventive services (preventable hospitalization rate, insurance coverage, 
mammograph and flu vaccine immunization rates), chronic health conditions (diabetics, smoking 
and obesity), socioeconomic factors (household income, poverty, education, housing density, 
unemployment rate), as well as an air quality index, were obtained from the Behavioral Risk 
Factor Surveillance System (BRFSS).  A total of 28 county-level variables are included as base-
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line features. All data were linked by counties’ 5-digit FIPS (Federal Information Processing 
Standards) codes. 
 
Seq2Seq Model 
 
Our prediction model used the Sequence-to-sequence learning framework (Seq2Seq) that 
powers language-processing applications like Google Translate (Sutskever et al., 2014).  The 
Seq2Seq algorithm trains a model to convert sequences from one domain (e.g. past COVID-19 
cases and deaths, resident mobility, or infection numbers, etc.) to sequences in another domain 
(e.g. future COVID-19 cases). Seq2Seq generation is flexible in that input sequences and 
output sequences can have different lengths. However, the information on the entire input 
sequence is required in order to predict the target sequence.  
 
Seq2Seq uses feed-forward recurrent neural networks (RNNs) that are specialized for mapping 
sequences. Our Seq2Seq model (shown in Figure 1), uses Gated Recurrent Units (GRUs, Dey 
and Salem 2017) in the RNN layers. The model is consisting of three parts: an encoder, an 
encoding vector (generated from the input sequence), and a decoder (Cho et al., 
2014;Sutskever et al., 2014). Our Seq2Seq model takes ‘m’ days data as input and predicts 
COVID-19 cases for ‘n’ future days. The encoder generates a comprehensive aggregated 
representation of the input ‘m’ days of the sequence. Our encoder implementation is a stack of 
‘m’ GRU units, where each unit accepts input features (i.e., COVID-19 daily cases, mobility and 
deaths, etc.) from a single day of the input sequence, aggregate the information, and 
propagates the aggregated information forward via hidden state hi to the next GRU unit in the 
sequence. The final hidden state produced from the encoder represents the encoding of the 
entire input sequence. This vector aims to encapsulate the information for all input elements in 
order to help the decoder make accurate predictions. The generated encoding is provided as 
the initial hidden state input of the decoder. That means, hm+1=s1 in the Figure 1. The decoder 
predicts the output sequence taking ‘Encoding of the input sequence’ as input. It is a stack of ‘n’ 
GRU units where each unit (jth unit) predicts an output/prediction of COVID-19 cases (for the jth 
future day). Each GRU unit accepts a hidden state from the previous unit and produces an 
output as well as its own hidden state. 
 
The power of this model lies in the fact that it can map sequences of different lengths to each 
other. The ith inputs and jth outputs are not necessarily correlated and the sequence lengths 
can differ. 
 
Model selection and hyperparameter tuning 
Hyperparameter tuning for the Seq2Seq model was carried out using the Keras API (version 
2.3.1), the TensorFlow library (version 1.14.0) and HyperOpt (Bergstra, Yamins et al. 2013). 
The encoder and decoder have two layers.  Our search space included layer sizes ranging from 
three to 5000. We used the Adam optimizer and tuned the learning rate and decay in the range 
of 1e-6~1e-2. We tuned the L2 regularization parameter in the range 1e-7 – 1e-3.  L2 
regularization was applied to both the weights and biases.  We tuned the mini-batch size in the 
range 4 – 256. Early stopping was used to avoid overfitting. Models were trained using the 
mean square error (MSE) as the loss function. The best model hyperparameters were chosen 
based on the lowest validation loss. We inspected both the training and validation losses to 
ensure that models were not overfitting.  
 
Learning and remembering a long input sequence can be challenging for a recurrent network. 
Short input sequences, on the other hand, may not provide enough information for learning 
patterns and making accurate forecasts. To determine the optimum input sequences, we used 
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HyperOpt to search the above hyperparameter spaces for three input sequence sizes: 60, 90 
and 120 days of input data (cases, deaths, Google mobility, and R values).  The model 
predicted outcomes for each day over the next 30 days. The optimum input sequence length 
was determined as the one that resulted in models with the lowest validation losses. 
 
Model training and forecast evaluation 
From the 3242 counties (or county-equivalents) in the US states and territories, 2780 had data 
on the input features we selected for modelling. We randomly split these counties into training 
(n=1983, 71.3%), validation (n=398, 14.3%) and test sets (n=399, 14.4%). We used the training 
and validation sets for the hyperparameter search and for learning the model weights and 
biases. As Supplementary Figure 1 shows, the input sequences were generated from the whole 
series of data on a N-day sliding window letting N be the best length of input days. For each 
county, day 1 was determined as the first day when the first case was reported in the county. 
Models were trained on stacks of input sequences with the fixed optimum length N to predict the 
next 30 days of outcomes. Training stopped when the validation MSE did not decrease over two 
consecutive epochs.  We evaluated model performance on the test set using data up to 
November 30, 2020. Accuracy metrics include the relative error (RE= (predicted value-observed 
value)/observed value), and the interclass correlation coefficient between the predicted and the 
observed values using a two-way random effect model (ICC(2,1)). In addition to examining the 
prediction accuracy for the test set on the days that we had data from the training and validation 
set to train the model, we also examined the model’s performance as a historical evaluation by 
comparing the forecasted values at a given date with the actual values that were reported later. 
For the historical performance, we reported Pearson’s correlation coefficient (Pearson’s r) and 
RE for the November 30 forecast to evaluate how well the model predicted future cases or 
deaths over the next 30 days.  
 
Finally, using our 30-day forecast, we generated the 4-week ahead weekly forecast (total 
weekly incident cases) that we submited to the COVID-19 Forecast Hub for inclusion in the 
CDC ensemble model. We compared the historical performance of our forecast with that of the 
CDC ensemble model as well as the models of the individual participating teams on two 
forecasting dates, November 23 and 30, 2020.  In addition to the ICC(2,1) correlation 
coefficients between each team’s forecasted values with the actual reported values and the REs, 
we also reported the absolute relative errors (ARE= absolute(predicted value-observed 
value)/observed value), the median of which represented the overall degree of deviation of 
predicted values from the observed values better than the median of REs.  

Results 
Determine the optimum input sequence length 
The initial hyperparameter space search for models using various length of input sequences 
showed that the lowest training and validation MSEs were achieved by using 90 days of input 
sequences (Supplementary Figure 2).  Using either shorter (60 days) or longer (120 days) input 
resulted in higher training and validation MSEs. Therefore, we built overlapping sliding windows 
of 90 days from the input sequences to train the model for predicting the next 30 days as 
illustrated in Supplementary Figure 1.  
 
Test set evaluation 
Model predicted incident cases for subsequent 30-day periods were in highly significant 
agreement with the seven day moving average for the actual reported cases (Figure 2A, 
ICC(2,1) = 0.47, 95%CI: 0.43-0.50, F=36.83, p<0.0001).  Model predicted incident deaths were 
also in highly significant agreement with the seven-day moving average of the actual reported 
deaths (Figure 2B, ICC(2,1) = 0.32, 95%CI: 0.29-0.36, F=10.36, p<0.0001). Figure 2B highlights 
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several outliers (as red dots). These were due to an irregularity of death reporting in Passaic 
county, New Jersey on June 25, 2020 (Figure 2C). Excluding Passaic county, ICC(2,1) was 
0.38 (95%CI: 0.34 - 0.43, F=14.6, p<0.0001).  The R values predicted from our model were also 
highly significantly correlated with the R values calculated from the actual cases (ICC(2,1) = 
0.57, 95%CI: 0.53-0.61, F=13.37, p<0.0001, Figure 2D). 
 
The relative errors (REs) are plotted in Figure 2E. The median REs are close to 0 for both 
incident cases (-0.04) and R values (0.01), despite that statistically they are significantly 
different from 0 (p<.0001) due to the large sample sizes. On the contrary, the median RE is -
0.89 for incident deaths, and RE distribution is significantly deviated from 0, indicating that our 
model is significantly under-predicting deaths.   
 
 
Forecast evaluation 
The performance of the model was evaluated using the later reported cases and deaths. Using 
the forecasts generated on November 30 as an example, we show in Supplementary 3A that 
the daily predicted cases from all counties for the future 30 days were significantly correlated 
with the seven-day moving average of actual reported cases. Over the 30 days, Pearson’s r 
declined slowly but remained highly significant, with the highest correlation of r = .98 found for 
the first day to ~.70 for the furthest forecast days (all p<.001). Supplementary Figure 3B shows 
the predicted deaths vs the actual deaths. The daily correlation r ranged from 0.87 to 0.63 (all 
p<.001).  Supplementary Figure 3C shows the predicted R values versus the R calculated from 
the actual cases. The daily correlation r ranged from 0.64 - 0.29 (all p<.001).  
 
Examination of the RE distributions (Supplementary Figure 3D) shows accurate case forecasts 
based on their consistent and small RE values that are close to 0 (median RE -0.06). Deaths 
forecasts, although having a smaller RE quantile range, consistently deviated from 0 in the 
negative direction (median RE -0.76). The R values have very small quantile ranges and an 
overall median RE (-0.008) close to zero.   
 
Similar results were found for forecasts generated on other dates (not reported). The 30-day 
ahead forecasts is updated weekly on Mondays and is archived in our GitHub repository 
(https://ylzhang29.github.io/UpstateSU-GRU-Covid/).  
 
Comparison with other models 
We compared our model forecast results at two time points, November 23 and November 30, 
with the corresponding results from the CDC ensemble model and individual models from the 
participating teams. Twelve teams and their models have reported forecasts for US counties, 
including the CDC ensemble model. Only case forecasts have been reported from these teams. 
Note that our forecasts at these two dates were not submitted and included in the ensemble 
model. The total numbers of counties forecasted by each team/model and their median REs are 
summarized in Supplementary Table 1.  
 
To compare the models on the forecasts of the same set of counties, we excluded three teams 
that reported < 50% of the total counties. Nine teams/models, including the ensemble models 
were compared with our model using only the common set of counties that all models reported 
forecasts on.   Figure 3A plots the AREs distributions of the two forecasts on each of the four 
weeks ahead from these nine models and our model. Figure 3B plots the overall median AREs 
for each team over the four weeks ahead forecast. Table 1 lists additional evaluation metrics 
including both median RE and median ARE. The Wilcoxon rank-sum test was used to compare 
our model’s ARE with other models’ ARE (see Table 1). Table 2 shows the ICC(2,1) between 
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the predicated and actual cases for each models’ forecast. Overall, these results showed that 
while all models were able to produce accurate forecasts that were in significant agreements 
with the actual observed values, there are still large prediction uncertainties in many counties, 
evidenced by the large RE and ARE medians (deviation from 0). The prediction uncertainties 
increase as the forecast interval increases (Figure 3B).  
 
Comparison with nine CDC models showed that overall, our model yielded comparable or better 
accuracies than most models including the Ensemble model, particularly for short-term 
forecasts.  

Discussion 
 
Realtime, accurate, and robust forecasting for the virus spread within the local government 
jurisdictions such as US counties is crucial for decision making. To contribute the CDC’s effort 
of generating an accurate and aggregated ensemble forecasting, we developed a multi-target 
Seq2Seq model to forecast several important indictors of COVID-19's infection spread for the 
next 30 days.  On average, our model generated accurate forecasts of daily incident cases, 
deaths, and the reproductive R numbers for the US counties.  
 
Our model was better for predicting incident cases than for predicting incident deaths and R 
values. Our county-level cases forecast has been submitted and included in the CDC’s 
ensemble model since January 4, 2021.  Although the accuracies for forecasted deaths and R 
values are lower than for cases, these forecasts were in highly significant agreement with the 
actual reported numbers as the interclass correlation results showed.  Ensemble model has 
been used as an effective method of leveraging the power from each individual independent 
model and reducing the overall uncertainty (Reich, McGowan et al. 2019, Ray, Wattanachit et al. 
2020). However, there is currently no coordinated efforts for creating an ensemble for county-
level forecasts of death.  No other models that attempted to forecast R values.  Our model is 
one of the first to provide the real-time and accurate forecast of the county-level death and the 
first to forecast R values.  
 
Uncertainty in forecasting models is common as had been observed in influenza epidemic and 
other serious outbreaks such as the Ebola, and Zika viruses (Eisenberg, Eisenberg et al. 2015, 
Moran, Fairchild et al. 2016, Kobres, Chretien et al. 2019, Zimmer, Leuba et al. 2019). Many 
complex and unknown features contribute to virus spread, disease severity and mortality. It is 
also common to have many irregularities and unforeseen discrepancies in the reporting process 
and database curation, which adds additional noise to the data and poses challenges for 
accurate forecasting. While the factors that contributed to our forecast errors and uncertainties 
remain to be clarified, including other local parameters, such as hospitalization and ICU 
saturation rates, and data from local nursing homes, may help to improve forecast accuracy for 
incident deaths. However, these data are not readily available for many counties. The COVID-
19 pandemic continues in the US and throughout the world with substantial uncertainty in the 
next months due to the appearances of new strains and the logistics of vaccinating entire 
populations.  Having data about these variables at the county level could improve forecasts in 
the future. 
 
One important limitation to consider when interpretating the forecasting results is that the 
attempt to calculate pandemic projections, such as ours and others, was based upon only the 
observation of emergent cases. However, case reporting is not uniform across entities. In the 
US, much of the information about cases is collected and collated at the level of the county or 
large municipalities, which then report to a state department of health, and which in turn report 
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to national repositories. One entity may put a strong emphasis on testing individuals who 
present with symptoms, whereas another may have implemented a widespread asymptomatic 
surveillance policy. How and which cases are identified can be dramatically affected by such 
policy differences and testing strategies, which were largely influenced by non-objective policy 
decisions and human interpretation during the course of the pandemic. In short, our machine 
learning model, as well as most other forecasting models of COVID-19, only learns to predict 
the reported cases (or deaths and other indices), which were likely biased with non-objective 
influences that were not uniform across reporting entities. 
  
Since January 4, 2021, we have updated our forecast of deaths and R numbers in our Github 
repository each Monday (https://ylzhang29.github.io/UpstateSU-GRU-Covid/).  Visualization of 
several useful metrics that are derived from our forecasts are provided on the GitHub page to 
facilitate understanding.  These visualizations include projections of cases and deaths for all 
counties that had forecasts, and US maps of all counties to show the percentage of change in 
deaths and R values, and weekly cases and deaths per 100,000 population in future weeks. 
The code for our model’s deep learning algorithm is also available in our repository. 
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Figure 1. Sequence-to-sequence learning framework1 
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Figure 2. Test set results of cases and deaths. 
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Figure 3. A. Comparison of ARE distribution of our model with nice additional models that 
reported to CDC, including the ensemble model. B. Median AREs for each team/model were 
plotted over four-week ahead forecasts.  

A.  
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B.  

 
 
*For model names and team information, see CDC’s COVID-19 forecast model descriptions: 
https://github.com/cdcepi/COVID-19-Forecasts/blob/master/COVID-
19_Forecast_Model_Descriptions.md 
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Supplementary Figure 1. ML setup. 
A. Model selection, tuning and testing process 

 
B. Making Forecast. 
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Supplementary Figure 2.  HyperOpt results of various input lenghth. 
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Supplementary Figure 3. A. Daily predicted cases (y axis) vs actual cases (x axis) over the next 
30 days from the forecast date Nov 30th, 2020. B. Daily predicted deaths (y axis) vs actual 
deaths (x axis) over the 30 days forecast. C. Daily predicted R values (y axis) vs R calculated 
from the actual cases (x axis) over the 30 days forecast. D. Relative Error distributions.  
A. 

  

xt 
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B. 
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C. 
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D. 
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Table 1. Comparisons of county-level case forecast from different teams and models. Total numbers of counties that are present in 
all models are listed for each week’s forecast.  RE, median relative errors. ARE, median absolute relative error. 

Nov 23 Forecast 

 
Week 1  

(Counties in all models N=2737) 
Week 2  

(Counties in all models N=2740) 
Week 3  

(Counties = in all models N=2738) 
Week 4  

(Counties in all models N=2736) 

Team RE 
(Median) 

ARE 
(Median) 

ARE differ from 
UpstateSU 

RE 
(Median) 

ARE 
(Median) 

ARE differ from 
UpstateSU 

RE 
(Median) 

ARE 
(Median) 

ARE differ from 
UpstateSU 

RE 
(Median) 

ARE 
(Median) 

ARE differ from 
UpstateSU 

Columbia -0.02 0.36 p<.0001 -0.15 0.44 p<.0001 -0.21 0.50 p<.0001 -0.23 0.55 p<.0001 

Ensemble 0.02 0.24 p=.070 -0.13 0.31 p<.0001 -0.19 0.42 p=.006 -0.15 0.49 p=.387 

ISU 0.17 0.34 p<.0001 -0.02 0.35 p=.829 -0.11 0.44 p=.195 -0.08 0.50 p=.871 

JHU_APL 0.01 0.39 p<.0001 -0.06 0.55 p<.0001 -0.06 0.66 p<.0001 0.06 0.76 p<.0001 

JHU_IDD -0.38 0.40 p<.0001 -0.45 0.47 p<.0001 -0.46 0.50 p<.0001 -0.47 0.53 p=.008 

LANL 0.06 0.30 p<.0001 0.00 0.41 p<.0001 -0.05 0.48 p=.066 -0.08 0.55 p<.0001 

LNQ 0.05 0.22 p<.0001 -0.05 0.28 p<.0001 -0.04 0.38 p<.0001 0.04 0.45 p=.001 

UGA_CEID 0.06 0.25 p=.317 -0.11 0.32 p=.003 -0.18 0.44 p=.417 -0.15 0.51 p=.552 

UpstateSU -0.09 0.25 NA -0.21 0.35 NA -0.21 0.45 NA -0.11 0.50 NA 

UVA 0.07 0.31 p<.0001 -0.10 0.40 p<.0001 -0.14 0.50 p<.0001 -0.10 0.58 p<.0001 

Nov 30 Forecast 

 
Week 1 

 (Counties in all models N=2764) 
Week 2 

 (Counties in all models N=2762) 
Week 3  

(Counties in all models N=2761) 
Week 4  

(Counties in all models N=2750) 

 
RE 

(Median) 
ARE 

(Median) 
ARE differ from 

UpstateSU 
RE 

(Median) 
ARE 

(Median) 
ARE differ from 

UpstateSU 
RE 

(Median) 
ARE 

(Median) 
ARE differ from 

UpstateSU 
RE 

(Median) 
ARE 

(Median) 
ARE differ from 

UpstateSU 

Columbia -0.17 0.31 p<.0001 -0.27 0.41 p<.0001 -0.25 0.46 p=.019 -0.13 0.48 p<.0001 

Ensemble -0.18 0.26 p<.0001 -0.24 0.36 p=.282 -0.21 0.42 p=.319 -0.05 0.48 p<.0001 

ISU 0.00 0.29 p<.0001 -0.07 0.35 p=.788 -0.04 0.42 p=.536 0.13 0.50 p=.067 

JHU_APL -0.19 0.36 p<.0001 -0.25 0.47 p<.0001 -0.28 0.56 p<.0001 -0.15 0.64 p<.0001 

JHU_IDD -0.49 0.50 p<.0001 -0.50 0.51 p<.0001 -0.47 0.51 p<.0001 -0.37 0.50 p=.013 

LANL -0.22 0.33 p<.0001 -0.26 0.41 p<.0001 -0.22 0.48 p<.0001 -0.09 0.52 p=.914 

LNQ -0.25 0.28 p<.0001 -0.30 0.37 p=.053 -0.23 0.40 p=.005 -0.04 0.45 p<.0001 

UGA_CEID -0.16 0.27 p<.0001 -0.22 0.38 p=.004 -0.18 0.46 p=.017 -0.02 0.53 p=.450 

UpstateSU -0.12 0.20 NA -0.14 0.35 NA -0.11 0.43 NA 0.04 0.52 NA 

UVA 0.00 0.33 p<.0001 -0.06 0.40 p<.0001 -0.05 0.51 p<.0001 0.10 0.59 p<.0001 
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Table 2. Interclass correlation coefficients (ICC(2,1)) between the predicated and actual cases for all models.  
Nov 23 Forecast 

Team Week 1 Week 2 Week 3 Week 4 

Columbia 0.97(F=67.87, p<.0001) 0.92(F=25.60, p<.0001) 0.82(F=10.24, p<.0001) 0.71(F=5.95, p<.0001) 

Ensemble 0.98(F=84.19, p<.0001) 0.94(F=30.15, p<.0001) 0.83(F=10.91, p<.0001) 0.67(F=5.13, p<.0001) 

ISU 0.93(F=29.80, p<.0001) 0.80(F=9.25, p<.0001) 0.60(F=4.01, p<.0001) 0.42(F=2.47, p<.0001) 

JHU_APL 0.93(F=28.18, p<.0001) 0.83(F=10.98, p<.0001) 0.64(F=4.57, p<.0001) 0.54(F=3.34, p<.0001) 

JHU_IDD 0.95(F=43.42, p<.0001) 0.90(F=20.69, p<.0001) 0.80(F=9.14, p<.0001) 0.65(F=4.75, p<.0001) 

LANL 0.96(F=55.26, p<.0001) 0.95(F=42.28, p<.0001) 0.87(F=14.87, p<.0001) 0.73(F=6.33, p<.0001) 

LNQ 0.98(F=83.62, p<.0001) 0.96(F=45.66, p<.0001) 0.86(F=13.58, p<.0001) 0.76(F=7.27, p<.0001) 

UGA_CEID 0.97(F=64.10, p<.0001) 0.90(F=18.33, p<.0001) 0.74(F=6.63, p<.0001) 0.59(F=3.91, p<.0001) 

Upstate 0.97(F=65.34, p<.0001) 0.87(F=15.22, p<.0001) 0.71(F=5.84, p<.0001) 0.56(F=3.58, p<.0001) 

UVA 0.93(F=30.08, p<.0001) 0.90(F=18.10, p<.0001) 0.78(F=8.21, p<.0001) 0.61(F=4.17, p<.0001) 

Nov 30 Forecast 

Team Week 1 Week 2 Week 3 Week 4 

Columbia 0.92(F=24.08, p<.0001) 0.73(F=6.60, p<.0001) 0.55(F=3.49, p<.0001) 0.55(F=3.43, p<.0001) 

Ensemble 0.94(F=31.66, p<.0001) 0.81(F=9.53, p<.0001) 0.72(F=6.21, p<.0001) 0.74(F=6.62, p<.0001) 

ISU 0.92(F=25.39, p<.0001) 0.76(F=7.22, p<.0001) 0.58(F=3.77, p<.0001) 0.56(F=3.52, p<.0001) 

JHU_APL 0.96(F=51.02, p<.0001) 0.90(F=18.13, p<.0001) 0.84(F=11.59, p<.0001) 0.82(F=10.27, p<.0001) 

JHU_IDD 0.87(F=14.63, p<.0001) 0.77(F=7.69, p<.0001) 0.67(F=5.11, p<.0001) 0.72(F=6.18, p<.0001) 

LANL 0.96(F=47.14, p<.0001) 0.92(F=25.00, p<.0001) 0.84(F=11.65, p<.0001) 0.81(F=9.47, p<.0001) 

LNQ 0.93(F=30.31, p<.0001) 0.79(F=8.77, p<.0001) 0.66(F=4.85, p<.0001) 0.69(F=5.51, p<.0001) 

UGA_CEID 0.93(F=28.56, p<.0001) 0.79(F=8.59, p<.0001) 0.64(F=4.57, p<.0001) 0.64(F=4.61, p<.0001) 

Upstate 0.96(F=53.56, p<.0001) 0.79(F=8.78, p<.0001) 0.58(F=3.74, p<.0001) 0.50(F=3.02, p<.0001) 

UVA 0.84(F=11.33, p<.0001) 0.80(F=9.06, p<.0001) 0.81(F=9.56, p<.0001) 0.87(F=14.62, p<.0001) 

 
*The ICC(2,1) reported in this table are only for counties that are present in all team/models at each forecast, as those in Table 1. 
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Supplementary Table 1. Median relative errors for county-level case forecast from different teams. 
 

Forecast Date Nov 23, 2020 Forecast Date Nov 30, 2020 
Numbers of 

Counties 
Predicted 

Median REs* Numbers of 
Counties 
Predicted 

Median REs 

Team Name Week 1 Week 2 Week 3 Week 4 Week 1 Week 2 Week 3 Week 4 

CMU 188 17.8% 19.4% 35.4% 37.5% 188 -6.3% 2.5% 25.1% 51.5% 

Columbia 2743 -1.7% -15.2% -21.4% -22.9% 2767 -17.1% -26.5% -25.1% -12.6% 

Ensemble 2769 2.2% -12.7% -19.0% -15.2% 2769 -18.1% -24.4% -21.0% -4.9% 

ISU 2769 16.7% -2.1% -10.5% -7.5% 2769 0.0% -6.7% -4.2% 13.3% 

JHU_APL 2769 1.0% -5.9% -5.9% 6.4% 2769 -18.9% -25.2% -27.4% -14.8% 

JHU_IDD 2769 -37.9% -45.0% -46.2% -47.3% 2769 -49.3% -50.0% -47.3% -37.0% 

LANL 2768 6.2% -0.6% -5.3% -7.8% 2768 -22.3% -26.0% -21.5% -8.5% 

LNQ 2769 5.3% -5.5% -4.2% 4.4% 2769 -25.0% -30.3% -22.7% -3.7% 

UCLA 1233 -4.7% -41.6% -59.9% -67.0% 865 -15.8% -27.3% -26.4% -20.0% 

UGA_CEID 2769 6.3% -11.2% -18.3% -14.7% 2769 -15.7% -21.8% -17.9% -2.4% 

UMass_MB 457 10.4% 2.9% 1.0% 18.7% 457 -20.2% -31.6% -27.3% -21.0% 

UVA 2767 7.3% -10.2% -13.6% -9.9% 2767 0.0% -6.3% -4.9% 10.2% 

UpstateSU 2769 -8.9% -20.7% -21.2% -10.5% 2769 -11.7% -14.0% -10.6% 4.1% 
 
 

*Relative Errors (REs) = (predicted – observed)/observed values. 
*This table included all counties that were reported by each team/model. 
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