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Risk factors may affect the variability as well as the mean of health outcomes. Understanding this can 

aid aetiological understanding and public health translation, in that interventions which shift the 

outcome mean and reduce variability are preferable to those which affect only the mean. However, 

few statistical tools routinely test for differences in variability. We used GAMLSS (Generalised 

Additive Models for Location, Scale and Shape) to investigate how multiple risk factors (sex, 

childhood social class and midlife physical inactivity) related to differences in health outcome mean 

and variability. The 1970 British birth cohort study was used, with body mass index (BMI; N = 6,025) 

and mental wellbeing (Warwick-Edinburgh Mental Wellbeing Scale; N = 7,128) as outcomes. For 

BMI, males had a 2% higher mean than females yet 28% lower variability. Lower social class and 

physical inactivity were associated with higher mean and higher variability (6% and 13% 

respectively). For mental wellbeing, gender was not associated with the mean while males had 4% 

lower variability. Lower social class and physical inactivity were associated with lower mean yet 

higher variability (-7% and 11% respectively). This provides empirical support for the notion that risk 

factors can reduce or increase variability in health outcomes. Such findings may be explained by 

heterogeneity in the causal effect of each exposure, by the influence of other (typically unmeasured) 

variables, and/or by measurement error. This underutilised approach to the analysis of continuously 

distributed outcomes may have broader utility in epidemiological, medical, and psychological 

sciences. 
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Introduction 

What is health? Contrary to simplistic notions of it being defined as the absence of disease, it is now 

increasingly understood that most outcomes of public health significance are continuous in nature.1 

This applies to both physical and mental health outcomes.2 3 The use of binary endpoints, while 

having utility in clinical applications, should not hinder investigation of the influences of health 

outcomes which are ultimately continuous. Analysing the determinants of health using continuous 

rather than binary outcomes is beneficial both practically (with more statistical power and less 

information loss) and substantively (greater aetiological understanding). 

 

Studies into the effect on continuous outcomes of exposures, be they risk factors in observational 

studies or interventions in randomised trials,3 typically focus on mean differences in the outcome, 

using linear regression. However linear regression assumes homoscedasticity, i.e. that the variability 

of the outcome is unrelated to the exposure, and often this is not the case. It is possible to extend the 

regression analysis to model the variability as well as the mean, and this has benefits in terms of not 

only the model’s fit but also its interpretation. If for example the intervention in an intervention trial 

can be shown to reduce variability in the outcome, this could reasonably be viewed as evidence of 

intervention success4 that is independent of the intervention’s effect on the mean. Treatment for 

refractive vision errors—glasses, contact lenses, and/or corrective surgery—seeks to improve vision 

by shifting individuals towards a specified standard (eg, 20/20 vision).5 Successful treatments alter the 

mean refraction, but they are even more successful if they also reduce the substantial variability in 

refraction arising from the mix of short- and long-sighted individuals.  

 

Similarly, obesity interventions aim to reduce body mass index (BMI) and shift treated individuals 

from overweight (25-30 kg/m2), obese (>30 kg/m2) or severely obese (>45 kg/m2) to the normal range 

(20-25 kg/m2). However here the effect of the intervention on variability is often to increase it. Even if 

not formally tested, visual comparisons of outcome distributions of some influential trials suggest that 

weight loss interventions increase rather than reduce BMI variability,6 presumably since they are 

effective in some but not all participants.  

 

Understanding if and how risk factors influence variability in health outcomes has aetiological 

significance, consistent with the goal of epidemiological science to understand the distribution of 

health.7 Risk factors could feasibly affect outcome variability yet not affect the mean—for example,  

one study found that breastfeeding was not related to mean childhood BMI, yet was related to lower 

childhood BMI variability.8 Identifying associations between risk factors and outcome variability may 

also be useful to identify the absence or presence of heterogeneity in susceptibility to interventions or 

risk factors. Indeed, the finding that substantial increases in mean BMI in recent decades have been 
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matched by increases in BMI variability indicates that there may be differential susceptibility to the 

obesogenic environment.9 10  

 

Recent studies in biological,11 12 environmental13 and economic science14 15 16 have begun to examine 

how risk factors relate to the distribution of the outcome of interest. However, there have been few 

epidemiological applications of this approach to date;17 and fewer still that provide explanations for 

such findings, which are essential if such methods are to have utility. Indeed, one recent study which 

investigated the association between mental health symptoms and lower income explicitly avoided 

interpretation of its findings on variability, focusing instead on issues relating to the application of 

such methods.15  

 

Regression methods that allow variability to be modelled are uncommon. One particular method, 

Generalised Additive Models for Location, Scale and Shape (GAMLSS)18 has become the standard 

for constructing growth reference centiles,19 where the aim is to model the outcome’s distribution as a 

function of age. It defines the distribution in terms of distribution moments, i.e. the mean, variance, 

and optionally skewness and kurtosis. This allows for factors influencing the higher moments to be 

identified in just the same way as for the mean, and it provides a simple and elegant interface for 

modelling variability in epidemiology. 

 

Another arguably underutilised20 and related statistical approach to investigating risk factors for 

continuous outcomes is quantile regression. Recent epidemiological studies using this method have 

found that risk factors for higher BMI—particularly lower social class and physical inactivity—have 

sizably larger effect sizes at higher BMI centiles.21 22 This has potentially important policy 

implications—risk factors which have larger effects amongst those at highest health risk are likely to 

have a more favourable effect on population health than alternatives which do not.21 However, the 

reason for this phenomenon is not yet understood—it may be logically consistent with results of 

GAMLSS analyses in which risk factors influence outcome means, variability and/or skewness.  
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Our primary aim is explore factors affecting outcome variability in an epidemiological context. We 

investigate whether and how several established risk factors—sex, socioeconomic circumstances, and 

physical inactivity23—relate to differences in outcome mean and variability. We use two different 

continuous outcomes as examples, an indicator of adiposity (body mass index, BMI) and mental 

wellbeing. A second aim is to investigate whether these risk factors are additionally related to the 

skewness of the outcome distribution. Finally, we investigate the same risk factor and outcome 

associations using quantile regression models.  

 

Methods 

Study sample 

The 1970 British birth cohort study (1970c) consists of all 17,196 babies born in Britain during one 

week of March 1970, with 10 subsequent waves of follow-up from childhood to midlife.24 At the most 

recent wave (46 years), 12,368 eligible participants (those alive and not lost to follow-up) were 

invited to be interviewed at home by trained research staff—8,581 participants provided at least some 

data in this wave. At all waves, informed consent was provided and ethical approval granted. 

 

Health outcomes 

We selected two outcomes in midlife which capture different dimensions of health and are 

continuously distributed: adiposity (BMI), and mental wellbeing (Warwick-Edinburgh Mental 

Wellbeing Scale (WEMWBS)). BMI was measured at 46 years, and wellbeing at 42 years.25 

WEMWBS consists of 14 positively worded items—such as “I’ve been feeling optimistic about the 

future” and “…feeling cheerful”—measured on a five-point Likert scale, which are summed to give a 

total well-being score ranging from 14 to 70 (highest well-being).26  

 

Risk factors 

We chose three risk factors across different domains—each of them likely to independently influence 

health outcomes.23 They were coded as binary variables to simplify comparison of descriptive and 

GAMLSS results: sex (female/male), socioeconomic position (social class at birth; coded as non-

manual/manual), and a behavioural risk factor (reported physical activity at 42 years; reported days in 

which the participant took part in exercise for 30 mins or more in a typical week ‘working hard 

enough to raise your heart rate and break into a sweat’, coded as active (≥1 days)/inactive (0 days)). 

We examined if the binary split of risk factors influenced the inferences drawn—additional analyses 

were conducted with them coded instead as categorical variables (social class in 6 categories and 

physical inactivity from 0-7 days).  
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Analytical strategy 

To visually inspect the outcome distributions and their differences across risk factor groups, we first 

plotted separate kernel density estimates alongside relevant descriptive statistics (mean, standard 

deviation, and coefficient of variation (SD/mean)). We then used GAMLSS18 separately with each 

outcome, to formally investigate whether risk factors were associated with 1) differences in mean 

outcome and 2) differences in outcome variability.  

 

GAMLSS requires the underlying distributional family to be specified—in primary analyses we used 

the normal distribution (NO family), where the mean and standard deviation are modelled. By 

convention, variability is modelled on the log scale, where differences are fractional and can be 

multiplied by 100 and interpreted as percentage differences in variability.27 Mean differences were 

also expressed as percentage differences to aid comparability across outcomes and model estimates. 

  

We also used an alternative distribution family: the Box-Cox Cole and Green (BCCG family).28 This 

enabled us to examine the median (rather than the mean) and generalised coefficient of variation 

(rather than the SD), and in addition whether risk factors were associated with the skewness of the 

outcome distribution. Skewness here is quantified in terms of the Box-Cox power; the power 

transformation required to transform the outcome distribution to normality, where 1 indicates normal, 

0 log-normal and -1 inverse normal. A smaller Box-Cox power corresponds to more right skewness. 

 

To aid comparison of descriptive statistics and model estimation results, we first conducted analyses 

adjusting for each risk factor alone. We then adjusted for the risk factors jointly.  

 

Separately we fitted conditional quantile regression models to estimate risk factor and BMI 

associations at the lower, middle and upper quartiles of the outcome distribution, i.e. the 25th, 50th and 

75th centiles.  

 

All analyses were conducted using Stata v16 (StataCorp, Texas), and the gamlss package version 5.2-

0 in Rstudio 1.4.29  
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Results 

6,025 participants had valid data for BMI and all risk factors, and 7,128 for WEMWEBS. Mean BMI 

was 28.4 (SD = 5.5), and mean WEMWEBS 49.2 (8.3). Higher BMI was weakly associated with 

lower wellbeing (r = -0.08). BMI was moderately right-skewed (Figure 1) and WEMWEBS left-

skewed (Figure 2). Visual and descriptive comparisons of the BMI and wellbeing distributions by risk 

factor (Figures 1 and 2) suggest that differences in the outcome mean and variability are not always in 

the same direction.  

 
GAMLSS results for the binary risk factors are shown in Tables 1 and 2, with the results using the 

extra risk factor categories in Supplementary Tables 1 and 2. Associations were similar in the 

unadjusted and mutually adjusted analyses, so the former are described below. 

 

Body mass index 

Males had higher mean BMI yet lower variability than females—see Figure 1 and Table 1. The SD 

for BMI was lower in males (4.63) than females (6.10) i.e., a 27.6% difference (difference in log(SD) 

*100). This matches the estimate obtained from GAMLSS—males had 27.6% (SE: 1.8%) lower 

variability than females (Table 1).  

 

In contrast, lower social class and physical inactivity were both associated with higher mean BMI and 

higher BMI variability (Figure 1 and Table 1). Those from lower social class households had 3.9% 

(0.5%) higher BMI than those from non-manual classes, and 6.2% (1.9%) higher variability. 

Physically inactive participants had 3.3% (0.6%) higher mean BMI and 13.5% (2.0%) higher 

variability.  

 

The GAMLSS results were similar with the BCCG distribution family rather than the NO family 

(Table 1). That is, risk factors associated with higher mean BMI and higher SD were also associated 

with higher median BMI and higher COV. Male sex and lower social class were both associated with 

less skewness of the BMI distribution; the Box-Cox power was 0.5 (0.1) higher in males and 0.4 (0.1) 

higher for manual social class. Physical activity was not associated with outcome skewness.  

 

Mental wellbeing – Warwick-Edinburgh Mental Wellbeing Scale 

There was little evidence of sex differences in mean wellbeing, while males had marginally less 

variability than females—4.0% (1.7%) lower. Lower social class and physical inactivity were both 

associated with lower mean yet higher variability (Figure 1 and Table 2). Those from lower social 

class households had a 2.8% (0.4%) lower mean yet 7.3% (1.8%) higher variability. Physically 

inactive participants had 5.3% (0.48) lower mean yet 10.9% (1.9%) higher variability. These findings 

were similar in mutually adjusted analyses (Table 2). 



8 

 

The results were similar with the BCCG distribution family (Table 2). There was evidence suggesting 

that lower social class was associated with less skewness in the wellbeing distribution; sex and 

physical activity were not associated with outcome skewness. 

 

Comparison with quantile regression findings 

For BMI, the associations of lower social class and physical inactivity were stronger at upper 

quantiles (Table 3; e.g., manual social class had 3.37 (0.35) higher BMI at the 25th centile, 4.06 (0.54) 

at the median, and 4.82 (0.69) at the 75th); estimates at higher centiles were also estimated less 

precisely than at lower centiles (larger SE). In contrast sex differences were present at lower centiles 

but absent at the 75th. These findings corresponded with those from GAMLSS using the BCCG 

family, in which all BMI centiles are plotted by risk factor group (Figure 3). This comparison 

highlights the utility of GAMLSS—risk factor differences in the mean, variability, and skewness can 

each be quantified and thus visually depicted.  

 

For WEMWEBS, the associations of lower social class and physical inactivity were also stronger at 

lower quantiles (Table 3), yet had larger SE. Sex was not associated with WEMWEBS at any centile. 

These findings corresponded with those from GAMLSS (Figure 4).  
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Discussion 

Using an underutilised and little-known analytical approach (GAMLSS), we present empirical 

evidence to support the idea that risk factors can relate to sizable differences in outcome variability, in 

addition to differences in the outcome mean. Females had higher variability in BMI and mental 

wellbeing than males; lower social class and physical inactivity were each associated with higher 

variability in both BMI and mental wellbeing, despite having different directions of association with 

the mean (higher BMI yet lower mental wellbeing). 

 

Our findings add to an emerging literature which has investigated associations between risk factors 

and outcome variability. Studies11-17 have reported that risk factors associated with higher means are 

also associated with higher outcome variability. For example, Beyerlein et al (2008)17 found that 

multiple risk factors for high childhood BMI (such as more frequent television viewing and greater 

rapid infant weight gain) were related to both higher mean BMI and greater variability in BMI. 

However, previous studies have not utilised multiple outcomes or nationally representative samples, 

and have not systematically considered explanations for such findings or their implications.  

 

Our findings help to reconcile findings from GAMLSS with those using quantile regression17 21 22 

which have reported stronger effect sizes for BMI risk factors at higher BMI centiles. This finding is 

both consistent with and helps explain the GAMLSS findings. For instance, lower social class and 

physical inactivity are related to higher mean BMI, higher BMI variability, yet less BMI skewness; 

the net result is higher effect estimates at upper centiles which are less precisely estimated, as seen in 

quantile regression.  While both analytical approaches have merit, GAMLSS has a number of 

attractive features for use in aetiological research: it enables each distribution moment to be separately 

investigated, and uses predetermined distribution families which enable computation of sparsely 

distributed variables. 

 
Why are risk factors associated with differences in outcome variability? There are multiple possible 

explanations. First, it may represent the influence of unmeasured variables which influence the 

outcome—particularly at upper values—leading to both higher means and variability. Such additional 

variables could also be unmeasured effect modifiers which increases the strength of the risk factor 

effect at higher outcome centiles. Unmeasured factors such as genetic propensity to weight gain may 

for example modify the effect on weight gain of exposure to adverse socioeconomic circumstances.30 

Other environmental factors could operate similarly—such that the association between lower social 

class and higher BMI is weaker amongst those living in a local environment which is less 

‘obesogenic’ (i.e., conducive to more physical activity and lower energy intake).31 32 The net result of 

such divergent effects would be increased variability since the effects would range from zero to the 

upper bound of the effect. This explanation may also apply to mental wellbeing, given evidence for 
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the myriad environmental33 25 and genetic determinants34 35 which could modify the effects observed 

in the current study.  

 

Alternatively, between-person differences in confounding and/or measurement error may also lead to 

risk factors being associated with outcome variability. For example, in the present study physical 

activity was measured via a single item capturing reported activity of a moderate-vigorous intensity 

for at least 30 minutes per day; this is an imperfect reflection of the underlying exposure which may 

have a causal effect (e.g., total energy expenditure (across all intensities of activity) in the case of 

adiposity;36 or time spent in specific activities conducive to wellbeing in the case of mental 

wellbeing37). The net result would be higher variability in those reporting higher physical activity 

levels. A related issue is the extent to which the exposure captures the same ‘dose’ across participants 

in a given study. The physical activity measure used here counted the number of days that bouts of 

activity lasted at least 30 minutes; this likely reflects substantial variability in the level of exercise 

actually undertaken, thus leading to greater differences in outcome variability. This could partly 

explain the associations of lower social class with greater outcome variability, since social class is one 

dimension of socioeconomic position, such that there may be substantial between-person variation in 

other dimensions (eg, parental education, income and/or wealth38 39) which may each influence 

outcomes, leading to greater variability. 

 
The study highlights the fact that analyses by GAMLSS and quantile regression lead to very similar 

results at the selected quantiles of the outcome distribution—see Figures 3 and 4. However GAMLSS, 

by analysing the whole distribution, can in some cases provide more efficient estimates of the 

quantiles. Compare for example the standard errors of the median as obtained by the BCCG family 

(Tables 2 and 3) and quantile regression (Table 4); for BMI the standard errors of around 0.5 are 

broadly similar the two ways, but for WEMWEBS the GAMLSS standard errors are appreciably 

smaller. 

 

Strengths and limitations 

Strengths of this study include the analytical approach used (GAMLSS) to empirically investigate 

differences in outcome variability. While differences in variability can be informed by descriptive 

comparison (e.g., comparing SD values), GAMLSS additionally enables computation of estimates of 

precision and incorporates multivariable specifications (e.g., confounder or mediator adjustment; and 

inclusion of interaction terms). The use of the 1970 birth cohort data is an additional strength, 

enabling investigation of multiple risk factors and two largely orthogonal yet important continuous 

health outcomes. The national representation of this cohort is also advantageous—highly distorted 

sample selection can bias conventional epidemiological results (i.e., mean differences in outcomes),40 

and may also bias comparisons of outcome variability. 
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The study also has limitations. As in all observational studies, causal inference is challenging despite 

the use of longitudinal data. Associations of social class at birth with outcomes for example could be 

explained by unmeasured confounding—this may include factors such as parental mental health. This 

is challenging to falsify empirically owing to a lack of such data collected before birth. In contrast, 

sex is randomly assigned at birth, and thus its associations with outcomes are unlikely to be 

confounded. However, sex differences in reporting may bias associations with mental wellbeing. 

Physical activity and mental wellbeing were ascertained at broadly the same age, so that associations 

between the two could be explained by reverse causality; existing evidence appears to suggest bi-

directionality of links between physical activity and both outcomes.41 42 Finally, attrition led to lower 

power to precisely estimate smaller effect sizes (e.g., gender differences in mental wellbeing) or 

confirm null effects. Such attribution could potentially bias associations—those in worse health and 

adverse socioeconomic circumstances are disproportionately lost to follow-up.43 44 The focus of 

principled approaches to handle missing data in epidemiology has been on the main parameter of 

interest—typically beta coefficients in linear regression models—and further empirical work is 

required to investigate the potential implications of (non-random) missingness for the variability and 

other moments of the outcome distribution. 

 

Potential implications 

This study used an underutilised approach to empirically investigate associations between risk factors 

and outcome variability in a single cohort study. Thus, our findings require replication and extension 

in other datasets across other risk factors and health outcomes. Future studies should also seek to 

explain their findings, and where possible falsify potential explanations. Understanding how risk 

factors relate to and/or cause differences in outcome variability is not a standard part of 

epidemiological training, and it entails additional analytical and conceptual complexity. Thus, with 

greater application of these tools an emerging consensus on best practice should develop. In the first 

instance we recommend both descriptive and formal investigation, and that analysts carefully consider 

the use of both absolute (e.g., SD) and relative (e.g., CoV) differences in variability. Since the CoV is 

fractional standard deviation (eg, SD/mean or log SD), its suitability of use depends on the a priori 

anticipated relationship between the mean and variance. 

 

In the context of randomised controlled trials, the finding of variability in treatment effects between 

individuals has been used to justify individualised approaches to treatment (personalised medicine). It 

is beyond the scope of the current article to discuss the tractability of this for complex outcomes in 

which treatment effects are unpredictable.45 Trials are designed typically to detect only mean 

differences in outcomes;46 nevertheless, additionally presenting outcome variability before and after 

treatment would be helpful to better appraise intervention effects.4 GAMLSS provides a useful 
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framework with which to formally investigate this, even where the homoscedasticity assumption does 

not hold (i.e., where risk factors or treatment groups differ in their outcome variance). Where there are 

multiple potential efficacious interventions, further studies could meta-analyse existing trials to 

identify the types of intervention which additionally reduce outcome variability.  

 
Conclusion 

We provide empirical support for the notion that risk factors or interventions can either reduce or 

increase variability in health outcomes. This finding is consistent with results from quantile regression 

analysis where a risk factor vs outcome association is stronger (or lower) at higher outcome centiles. 

Such findings may be explained by heterogeneity in the causal effect of each exposure, by the 

influence of other (typically unmeasured) variables, and/or by measurement error. This underutilised 

approach to the analysis of continuously distributed outcomes may have broader utility in 

epidemiological, medical, and psychological sciences. 
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Kernel density plots for BMI and WEMWEBS by risk factor group: 

 

 

Figure 1. Kernel density plots for body mass index, stratified by risk factor group. Note: CoV = 

coefficient of variation (SD/mean). 
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Figure 2. Kernel density plots for mental wellbeing, stratified by risk factor group. Note: COV = 

coefficient of variation (SD/mean). 
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Figure 3. Plots of body mass index (BMI) centile by risk factor group. Plotted lines are calculated 

using GAMLSS estimation results of the entire outcome distribution; points at the 25th, 50th, and 75th 

centiles are estimated using quantile regression models. 

 

 

 

Figure 4. Plots of mental wellbeing (Warwick-Edinburgh Mental Wellbeing Scale, WEMWEBS) 

centiles by risk factor group. Plotted lines are calculated using GAMLSS estimation results of the 

entire outcome distribution; points at the 25th, 50th, and 75th centiles are estimated using quantile 

regression models. 
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Table 1. Risk factors in relation to body mass index: differences in mean, variability and 

skewness estimated by GAMLSS (n = 6,025)  

 

  

NO distribution family  BCCG distribution family 

Risk factor % Mean SD Median CoV Skewness* 
Female (ref) 52.4% 28.1 6.10 26.9 .217 -0.86 
Male 47.6%  28.7 4.63 28.2 .161 -0.38 
    Unadjusted difference, % (SE)  1.9 (0.49) -27.6 (1.82) 4.1 (0.49) -23.0 (1.87) 0.48 (0.12) 
    Adjusted# difference, % (SE)  2.2 (0.48) -27.4 (1.83) 4.5 (0.49) -22.6 (1.87) 0.54 (0.12) 
       
Non-manual (ref) 36.3% 27.7 5.21 27 .188 -0.85 
Manual social class 63.7%  28.8 5.55 28 .193 -0.47 
    Unadjusted difference, % (SE)  3.9 (0.51) 6.2 (1.89) 4.3 (0.51) 6.1 (1.95) 0.38 (0.12) 
    Adjusted# difference, % (SE)  3.8 (0.48) 5.6 (1.90) 4.2 (0.49) 5.6 (1.95) 0.39 (0.12) 
       
Physically active (ref) 73.0% 28.1 5.22 27.4 .186 -0.61 
Inactive  27.0%  29.1 5.98 28.3 .206 -0.52 
    Unadjusted difference, % (SE)  3.3 (0.58) 13.5 (2.05) 2.9 (0.60) 10.5 (2.1) 0.09 (0.13) 
    Adjusted# difference, % (SE)  3.3 (0.56) 12.1 (2.06) 3.1 (0.57) 9.4 (2.1) 0.12 (0.13) 
 
#Estimates mutually adjusted for sex, social class and physical inactivity. 
 
*Skewness is estimated as the Box-Cox power (that is, the power required to transform the outcome 
to a normally distribution); differences are the absolute difference in Box-Cox power in each 
subgroup estimated by GAMLSS. GAMLSS estimates multiple distribution moments simultaneously; 
thus, differences may not exactly correspond to descriptive comparisons reported above.  
 
NO: normal distribution family; BCCG: Box-Cox Cole and Green distribution family: SD: standard 
deviation; CoV: coefficient of variation (SD/mean); GAMLSS: Generalized Additive Models for 
Location, Scale and Shape.  
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Table 2. Risk factors in relation to mental wellbeing (WEMWEBS): differences in mean, 

variability and skewness estimated by GAMLSS (n = 7,128)  

 

  

NO distribution family  BCCG distribution family 

Risk factor % Mean SD Median COV Skewness* 
Female (ref) 52.8% 49.2 8.48 50 0.172 1.67 
Male 47.2%  49.1 8.15 50 0.166 1.70 
    Unadjusted difference, % (SE)  -0.2 (0.4) -4.0 (1.7) -0.3 (0.4) -3.6 (1.9) 0.03 (0.11) 
    Adjusted# difference, % (SE)  -0.6 (0.4) -3.6 (1.7) -0.7 (0.4) -2.7 (1.9) 0.00 (0.11) 
       
Non-manual (ref) 34.8% 50.1 7.91 51 0.158 1.80 
Manual social class 65.2%  48.7 8.50 49 0.175 1.60 
    Unadjusted difference, % (SE)  -2.8 (0.4) 7.3 (1.8) -2.9 (0.4) 10.9 (2.0) -0.20 (0.12) 
    Adjusted# difference, % (SE)  -2.5 (0.4) 6.1 (1.8) -2.7 (0.4) 9.8 (2.0) -0.24 (0.12) 
       
Physically active (ref) 72.4% 49.9 7.98 51 0.160 1.68 
Inactive  27.6%  47.3 8.90 48 0.188 1.54 
    Unadjusted difference, % (SE)  -5.3 (0.48) 10.9 (1.9) -5.2 (0.5) 16.2 (2.1) -0.12 (0.12) 
    Adjusted# difference, % (SE)  -5.3 (0.48) 9.8 (1.9) -5.1 (0.5) 15.1 (2.1) -0.10 (0.12) 
 
#Estimates mutually adjusted for sex, social class and physical inactivity. 
 
*Skewness is estimated as the Box-Cox power (that is, the power required to transform the outcome 
to a normally distribution); differences are the absolute difference in Box-Cox power in each 
subgroup estimated by GAMLSS. GAMLSS estimates multiple distribution moments simultaneously; 
thus, differences may not exactly correspond to descriptive comparisons reported above.  
 
NO: normal distribution family; BCCG: Box-Cox Cole and Green distribution family: SD: standard 
deviation; CoV: coefficient of variation (SD/mean); GAMLSS: Generalized Additive Models for 
Location, Scale and Shape.  
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Table 3. Risk factors in relation to body mass index (BMI) and mental wellbeing (WEMWEBS): 

percentage differences at multiple points of the outcome distribution estimated by quantile 

regression  

 

Outcome Risk factor 25th centile 50th centile 75th centile 
BMI Male vs female (ref) 7.2 (0.53) 5.1 (0.46) 0.1 (0.61) 
 Manual vs Non-manual (ref) 3.4 (0.35) 4.1 (0.54) 4.8 (0.69) 
 Inactive vs active (ref)  1.6 (0.56) 3.4 (0.51) 3.8 (0.88) 
     
WEMWEBS Male vs female (ref) -0.0 (0.67) 0.0 (0.58) -0.0 (0.68) 
 Manual vs Non-manual (ref) -4.5 (1.05) -2.1 (0.97) -1.8 (0.28) 
 Inactive vs active (ref)  -7.1 (0.90) -6.2 (0.75) -3.6 (0.89) 

 

Note: results show the percentage difference (log-transformed x 100) in BMI or WEMWEBS 
(standard errors in parenthesis) at different centiles of the outcome distribution; estimates are mutually 
adjusted.  
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Supplementary Table 1. Risk factors in relation to body mass index (BMI): differences in mean, 

variability and skewness estimated by GAMLSS (n = 6,025)  

 

  

NO distribution family  BCCG distribution family 

Risk factor % Mean 
difference, 
% (SE) 

SD difference, 
% (SE) 

Median 
difference, 
% (SE) 

CoV 
difference, % 
(SE) 

Skewness 
difference* 

Social class        
I professional 6.8 Ref Ref Ref Ref Ref 
II intermediate 14.9 4.1 (1.01) 16.5 (4.25) 3.2 (1) 9.8 (4.39) -0.2 (0.3) 
III non-manual 14.7 4.7 (1) 12.7 (4.25) 4.5 (0.99) 9.0 (4.36) 0.1 (0.29) 
III skilled manual 46.1 6.9 (0.87) 17.1 (3.78) 6.7 (0.87) 12.1 (3.87) 0.2 (0.26) 
IV partly skilled 12.6 8.5 (1.06) 23 (4.36) 8.7 (1.08) 19.1 (4.44) 0.6 (0.29) 
V Unskilled  5.0 9.3 (1.32) 17.8 (5.44) 9.8 (1.37) 14.5 (5.5) 0.7 (0.36) 
Physical activity days/week active       
≥6 days 13.4 Ref Ref Ref Ref Ref 
5 9.5 0.5 (0.97) 3.2 (3.88) 0.4 (1) 0.6 (3.94) -0.2 (0.26) 
4 8.0 0.1 (1.03) -0.2 (4.08) 0.1 (1.04) -2.5 (4.15) -0.2 (0.27) 
3 15.1 0.7 (0.84) -6.8 (3.43) 0.9 (0.87) -8.1 (3.48) -0.2 (0.24) 
2 15.1 1.7 (0.85) -3.6 (3.43) 1.8 (0.87) -7 (3.5) -0.3 (0.24) 
1 11.9 1.2 (0.94) 3.5 (3.68) 1 (0.94) -1.3 (3.73) -0.1 (0.24) 
0 days 27.0 4 (0.79) 10.7 (3.06) 4 (0.82) 6 (3.09) 0 (0.2) 
 

Estimates mutually adjusted for sex, social class and physical inactivity. 
 
*Skewness is estimated  as the Box-Cox power (that is, the power required to transform the outcome 
to a normally distribution); differences are the absolute difference in Box-Cox power in each 
subgroup estimated by GAMLSS. GAMLSS estimates multiple distribution moments simultaneously; 
thus, differences may not exactly correspond to descriptive comparisons reported above.  
 
NO: normal distribution family; BCCG: Box-Cox Cole and Green distribution family: SD: standard 
deviation; CoV: coefficient of variation (SD/mean); GAMLSS: Generalized Additive Models for 
Location, Scale and Shape.  
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Supplementary Table 2. Risk factors in relation to mental wellbeing (WEMWEBS): differences 

in mean, variability and skewness estimated by GAMLSS (n = 7,128)  

 

  

NO distribution family  BCCG distribution family 

Risk factor % Mean 
difference, 
% (SE) 

SD difference, 
% (SE) 

Median 
difference, 
% (SE) 

CoV 
difference, % 
(SE) 

Skewness 
difference* 

Social class        
I professional 6.2 Ref Ref Ref Ref Ref 
II intermediate 14.4 -1.0 (0.88) 0.3 (4.06) -1.1 (0.89) 2.7 (4.53) -0.3 (0.31) 
III non-manual 14.3 -1.8 (0.88) 0.0 (4.06) -1.9 (0.9) 2.7 (4.54) -0.2 (0.31) 
III skilled manual 46.5 -3 (0.79) 5.6 (3.62) -3.2 (0.8) 10.6 (4.04) -0.4 (0.27) 
IV partly skilled 13.6 -5.2 (0.92) 7.2 (4.09) -5.6 (0.95) 15.3 (4.56) -0.5 (0.29) 
V Unskilled  5.1 -5.7 (1.16) 3.3 (5.05) -5.7 (1.2) 10.7 (5.68) -0.3 (0.39) 
Physical activity days/week active       
≥6 days 13.6 Ref Ref Ref Ref Ref 
5 9.6 0.8 (0.82) -7.5 (3.54) 0.7 (0.85) -7.4 (3.92) 0.0 (0.24) 
4 7.9 3.0 (0.86) -6.5 (3.77) 2.5 (0.9) -6.8 (4.09) -0.3 (0.26) 
3 14.9 1.8 (0.72) -10 (3.14) 1.9 (0.74) -12.8 (3.52) 0.3 (0.22) 
2 14.6 0.9 (0.72) -12 (3.16) 0.7 (0.75) -11.9 (3.5) 0.0 (0.22) 
1 11.8 -1.8 (0.79) -5.8 (3.34) -2 (0.82) -2.8 (3.7) -0.1 (0.22) 
0 days 27.6 -4.5 (0.7) 3.2 (2.79) -4.5 (0.72) 8.4 (3.12) -0.1 (0.18) 
 

Estimates mutually adjusted for sex, social class and physical activity. 
 
*Skewness estimates are the box-cox power in each subgroup (that is, the power required to transform 
the outcome to a normally distributed variable); differences are the absolute difference in box-cox 
power in each subgroup estimated by GAMLSS. 
 
NO: normal distribution family; BCCG: Box-Cox Cole and Green distribution family: SD: standard 
deviation; COV: coefficient of variation (SD/mean); GAMLSS: Generalized Additive Models for 
Location, Scale and Shape (GAMLSS).  
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