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Abstract 

Previous COVID-19 prognostic models have been developed in hospital settings, and are not 

applicable to COVID-19 cases in the general population. There is an urgent need for prognostic 

scores aimed to identify patients at high risk of complications at the time of COVID-19 diagnosis.  

The RDT COVID-19 Observational Study (RCOS) collected clinical data from patients with 

COVID-19 admitted regardless of the severity of their symptoms in a general hospital in India. We 

aimed to develop and validate a simple bedside prognostic score to predict the risk of hypoxaemia or 

death.  

4035 patients were included in the development cohort and 2046 in the validation cohort. The 

primary outcome occurred in 961 (23.8%) and 548 (26.8%) patients in the development and 

validation cohorts, respectively. The final model included 12 variables: age, systolic blood pressure, 

heart rate, respiratory rate, aspartate transaminase, lactate dehydrogenase, urea, C-reactive protein, 

sodium, lymphocyte count, neutrophil count and neutrophil/lymphocyte ratio. In the validation 

cohort, the area under the receiver operating characteristic curve (AUROCC) was 0.907 (95% CI, 

0.892-0.922) and the Brier Score was 0.098. The decision curve analysis showed good clinical utility 

in hypothetical scenarios where admission of patients was decided according to the prognostic index. 

When the prognostic index was used to predict mortality in the validation cohort, the AUROCC was 

0.947 (95% CI, 0.925-0.97) and the Brier score was 0.0188. 

If our results are validated in other settings, the RCOS prognostic index could help improve the 

decision making in the current COVID-19 pandemic, especially in resource limited-settings. 
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Introduction  

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has high morbidity 

and mortality [1]. Since late 2019, the rapid spread of SARS-CoV-2 has put an enormous pressure on 

national health systems worldwide.  

The clinical spectrum of coronavirus disease 2019 (COVID-19) produced by SARS-CoV-2 is wide. 

In a large study from China including 72314 cases, 81% had a mild disease, 19% had a severe 

disease with deterioration of the respiratory function, and 2.3% died [2]. In many medical domains, 

prognostic multivariable prediction models have been developed with the aim to help healthcare 

professionals in their decision making [3]. To date, more than 100 COVID-19 prognostic models 

have been reported [4]. However, the vast majority of them have been developed in overwhelmed 

hospital settings from developed countries where the mortality and the proportion of patients with 

severe disease was high, and they might not be applicable to COVID-19 cases in the general 

population.  

The objective of this study was to develop and validate a pragmatic prognostic score to predict the 

risk of mortality or hypoxaemia in patients with COVID-19 who were admitted in a hospital 

regardless the severity of their symptoms. We hypothesized that the population of the study is similar 

to the general population of COVID 19 cases, and that the prognostic score could be applied in non-

hospital settings, where the majority of cases are mild and the proportion of severe cases is relatively 

small.  

Methods 

Source of data and participants  

The Rural Development Trust (RDT) COVID-19 observational study (RCOS) is a retrospective 

observational study of patients diagnosed with COVID-19 and admitted from April 17, 2020 to 

November 19, 2020 in the RDT General Hospital in Bathalapalli, Anantapur District, Andhra 

Pradesh, India. During this time, the hospital was designated as a COVID-19 centre and was utilized 

exclusively to treat patients who had a positive SARS-Cov-2 reverse transcriptase polymerase chain 
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reaction (RT-PCR) or antigen test. During this time, to reduce the risk of transmission in the 

community, patients with mild symptoms were also admitted for isolation. As per Government rules, 

even patients with mild symptoms could not be discharged at least until 10 days passed from the 

symptom onset or the first positive SARS-CoV-2 test. 

For the study, we used routinely collected data (demographics, laboratory investigations, and vitals) 

entered in the hospital information system (HIS). Comorbidities of patients were not entered in the 

HIS and, therefore, could not be used in the prognostic models. The study was performed according 

to the principles of the Declaration of Helsinki. The associated Ethics Committee approved the study 

and waived the need for informed consent. The methodology of the study followed the guidelines for 

transparent reporting of a multivariable prediction model for individual prediction or diagnosis 

(TRIPOD) [5]. For the sample size, we took a practical approach by using all available data to 

maximize the power of the statistical analysis [6]. 

Outcome and independent predictors 

We aimed to develop a prognostic model with variables collected at the time of hospital admission 

that could be utilized to identify COVID-19 patients who were at higher risk of complications. We 

decided to use a composite endpoint including in-hospital mortality or hypoxaemia as the primary 

outcome of the study. Hypoxaemia was defined as having oxygen saturation below 93% or the need 

of oxygen support to maintain saturation above 93% [2, 7]. We selected a priori set of potential 

predictors according the availability of data in the HIS and whether the variables had shown to 

influence the outcome of COVID-19 in previous studies [8–13].  

Model development and validation 

The dataset was split in two. Development of the model was performed with data from patients 

admitted from April 17 to August 31, 2020 (development cohort), while model validation was 

performed with patients admitted from September 1 to November 19, 2020 (validation cohort).  
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Assuming missing at random, missing values were imputed using chained equations in 10 datasets, 

each with 10 iterations [14, 15].  The outcome was included as a predictor in the imputation of the 

development cohort but not in the validation cohort.  

Because our primary objective was to develop a pragmatic bedside risk score that did not demand 

complex calculations, we decided to categorize continuous variables [12]. Model development was 

performed in four stages. In the first stage, we made an initial selection of predictors based on the 

goodness of fit between the outcome and predictors using generalised additive models (GAM). 

Categorical predictors were entered as linear components in the models, and continuous predictors 

were smoothed using penalised thin plate splines [16]. In the second stage, we selected optimal cut-

off values to categorize continuous variables based on visual inspection of the GAM models [17]. In 

the third stage, to reduce the risk of model overfitting, we used least absolute shrinkage and selection 

operator (LASSO) regression with theory-driven penalization to select predictors and their cut-off 

values to be included in the final model [18]. In the fourth stage, we used the coefficients from the 

logistic regression models to construct the prognostic index.  

One common problem when comparing laboratory data is that laboratory values are highly 

dependent of the methodology used, and data normalization is needed. Usually, clinical laboratories 

have normal ranges that enclose 95% of values in a healthy population. In settings where the 

laboratory normal range differs substantially from our values, we recommend using the lower or 

upper normal limits of their laboratory as the reference to calculate the prognostic scores, although 

other forms of normalization are also possible [19]. 

Predicted probabilities of the outcome in the development and validation cohorts were calculated by 

fitting logistic regression models with the prognostic score as the only independent variable in each 

imputed dataset, and using Rubin’s rules to combine the results [15]. Discrimination of the 

prognostic index was assessed using the area under the receiver operating characteristic curve 

(AUROCC) with confidence intervals (CI) obtained through 2000 bootstrap samples [5]. Calibration 
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was assessed with the Brier score and graphically by inspecting the smoothed relationship between 

the predicted and observed risk [5]. Clinical utility was assessed using decision curve analysis [20]. 

As the concept of  net benefit can be difficult to grasp [21], we described an hypothetical scenario 

where the prognostic index was used to decide whether patients needed admission in the hospital. 

Risk groups were formed based on the predicted probability of the outcome: low risk (<5%), 

intermediate-low risk (5-10%), intermediate-high risk (10-20%), high risk (20-40%) and very high 

risk (>40%). We performed several sensitivity analyses. We checked the performance of the model 

using complete case data, segregated by gender, and using mortality as the outcome.  

Results  

Model development 

During the study period, 6123 patients with COVID-19 were admitted in the hospital (Figure 1). 

Forty-two patients were excluded, 4035 patients were included in the development cohort and 2046 

in the validation cohort. The overall average hospital length of stay was 6.92 days (median 6, 

interquartile range [IQR] 4 to 8). The median age was 48 years (IQR 34 to 59) and 2348 (38.6%) 

were female. Differences between the development and the validation cohort are described in Table 

1. The primary outcome occurred in 961 (23.8%) patients in the development cohort and in 548 

(26.8%) in the validation cohort. 

The model development is described in detail in the Supplementary Material. From the initial 20 

predictor candidates, seven were excluded at the initial stage (Table S1). All remaining predictors 

were continuous variables, and were categorized using GAM to select the optimal cut-off values 

(Figures S1-S3 and Table S2). The final selection of cut-off values and variables was performed 

using LASSO logistic regression (Table S3), and coefficients were used to produce the prognostic 

scores (Table S4). The prognostic index ranged from 0 to 32 and included 12 variables: age, systolic 

blood pressure, heart rate, respiratory rate, aspartate transaminase, lactate dehydrogenase, urea, C-

reactive protein, sodium, absolute lymphocyte count, absolute neutrophil count and 
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neutrophil/lymphocyte ratio (Table 2). Table 2 also includes the reference range in our laboratory 

and suggested normalization values based on the upper and lower normal limits.  

In the development cohort, the AUROCC was 0.907 (95% CI, 0.896-0.918) (Figure S4) and the Brier 

score was 0.0935. Calibration-in-the-large was 0.01 and the slope was 1.007 (Figure S5). Based on 

the predicted probability of the outcome we created the following risk groups: low risk (index 0, 1, 

or 2), intermediate-low risk (index 3 or 4), intermediate-high risk (index 5 or 6), high risk (index 7 or 

8) and very high risk (index 9 or above) (Table 3). 

Model validation 

In the validation cohort, the AUROCC was 0.907 (95% CI, 0.892-0.922) and the Brier score was 

0.098 (Figure 2 upper panel). Calibration-in-the-large was 0 (95% CI, -0.14 to 0.14) and the slope 

was 1 (95% CI, 0.91-1.09) (Figure 2 middle panel).  Nearly 50% of cases had a prognostic index of 3 

or less (Figure 2 lower panel and Table S5). The predicted risk for the primary outcome increased 

rapidly for prognostic scores between 5 and 10, and then had a progressive reduction (Figure 2 lower 

panel, Figure S6 and Table S5). Sensitivity, specificity, negative predictive value and positive 

predictive value of the prognostic model in the validation cohort are presented in Figure 3. In 

general, the proportion of patients with outcome by risk group was slightly larger than in the 

development cohort (Table 3).  

Decision curve analysis is reported in Figure 4. The net benefit describes the performance of the 

model to identify true positives over true negatives [21]. Decisions curve analysis can be used to 

decide whether to initiate an intervention (e.g. to start a particular medication or to request a 

diagnostic test). However, to better understand the clinical use of the predictive model, we created a 

hypothetical scenario where patients were admitted (the “intervention”) according to the predicted 

probability of the outcome given by the prognostic index. We compared the performance of the 

model with two other possible scenarios: admit all patients (unlimited resources) or admit none 

(there are no free beds in the hospital). Actually, these two scenarios represent extreme situations 
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that can occur in the real world. If the bed occupancy is high because of a sudden spike in the 

number of COVID-19 cases, we could select a higher prognostic index threshold for admission to 

optimize resources. If the incidence of COVID-19 cases comes down and the bed occupancy is low, 

we could be more permissible and reduce the prognostic score cut-off for admission. The selection of 

the threshold probability represents the trade-off between the benefit and the cost of the intervention. 

The net benefit of the predictive model was positive and above the net benefit of other alternatives 

(admit all or admit none) up to threshold probabilities above 90%, which are hardly justifiable in real 

life (Figure 4 upper panel). If we consider patients who did not develop the outcome did not need 

admission, the numbers of unnecessary admissions avoided is presented in the lower panel of Figure 

4. For example, using a prognostic index of 7 or more as the threshold for admission, we could have 

reduced nearly 50% the number of the admissions. 

In a sensitivity analysis using only complete cases, the results were almost identical (AUROCC was 

0.907, 95% CI 0.893-0.922); Brier score 0.0977). The model performed slightly better in female 

cases (AUROCC 0.921, 95% CI, 0.896-0.945; Brier score 0.078) than in male cases (AUROCC 

0.899, 95% CI 0.88-0.918; Brier score 0.109). The prognostic index showed excellent accuracy 

(AUROCC 0.947; 95% CI, 0.925-0.97) and calibration (Brier score 0.0188; calibration-in-the-large 

0.0006, 95% CI, -0.315 to 0.316; slope 1.001, 95% CI, 0.816-1.188) to predict mortality. The 

performance of the model to predict mortality is described graphically in Figure 5 and Figures S7-S8.  

Discussion  

In this study, we present a pragmatic multivariable prognostic index that showed good discrimination 

calibration, and clinical utility in a cohort that could be considered representative of COVID-19 

cases diagnosed in the community. The variables included in the RCOS prognostic index are readily 

available in most healthcare settings with basic laboratory infrastructure, and the index does not 

require complex calculation. It could be used to optimize resources in overwhelmed health systems, 

identifying patients who are more likely to develop complications and need hospital admission or 
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closer ambulatory monitoring. Optimal utilization of resources is especially important in low and 

middle income countries, where public health facilities are overburden and unable to accommodate 

the high number of cases who need hospitalisation in the current COVID-19 pandemic.  

Current therapy of COVID-19 focus on patients who have already developed complications [22]. 

Previous studies have shown that the highest level of viral replication occurs around the first day of 

symptoms, and 95% of hospitalized patients have negative viral cultures after 15 days of symptoms 

[23]. Current evidence suggests that antiviral and antibody therapy are more effective if started early, 

during the first days of symptoms [24, 25]. The RCOS prognostic index could be used to escalate 

therapy in patients with higher risk of complications. The index could also help identify high risk 

groups in targeted randomized clinical trials investigating early interventions aimed to reduce 

morbidity or mortality of COVID-19.  

Strengths and limitations 

In COVID-19 cases, hypoxemia usually appears within five to ten days of symptoms [26–28]. In our 

study, patients were admitted regardless of the severity of symptoms and were not discharged before 

ten days passed from symptom onset. In the development cohort, 23.8% of the patients developed 

hypoxaemia or died, which is similar to the proportion of severe cases found in a large cohort from 

China [2]. This suggests that the model was developed in a population representative of COVID-19 

in the community. However, the validation cohort had a larger proportion of patients with 

hypoxaemia than the development cohort, and both predicted and observed risk were higher than 

expected in some of the risk groups, suggesting a selection of more severe cases in the validation 

cohort as the clinical pressure to be admitted increased because the number of COVID-19 cases 

spiked in the region during the study period. When implementing the prognostic index in populations 

with lower (e.g. primary health centre) or higher (e.g. emergency department) expected risk, the use 

of risk groups may overestimate (primary health centre) or underestimate (emergency department) 

the real risk of complications. Although classifying patients in risk groups can still be useful as an 
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initial reference, our results suggest that users of the prognostic index should try to estimate the 

predicted probability of the outcome in their settings. 

The prognostic model was not developed to predict complications in hospital settings with high 

mortality. Still, the excellent performance of the prognostic index to predict mortality suggests that it 

could be a helpful companion to other severity predictors such as oxygen saturation or PaO2/FiO2 

ratio to identify patients who are more likely to require ventilator or critical care support [29], but 

new studies are needed to confirm this hypothesis. 

The study has several limitations. Unlike other COVID-19 prognostic models, the RCOS prognostic 

index does not include comorbid conditions of the patients [4]. It is possible that including 

comorbidity predictors could improve the performance of the model. This a single centre study, and 

validation was performed in the same setting as the development. However, we used data from a 

different period of time to validate our model, which is a stronger approach compared to other forms 

of internal validation, and can be considered intermediate between internal and external validation 

[5].  

Conclusion 
Prognostic models are able to transform complex clinical situations into a single dimension 

numerical value. In this study, we present a prognostic score that demonstrated excellent 

discrimination and calibration to predict complications and mortality in a population of COVID-19 

cases that included a large proportion of mild cases. If our results are validated in other settings, the 

RCOS prognostic index could help optimize resources in overstretched healthcare systems and 

improve clinical decisions in COVID-19 patients diagnosed in the community who are at higher risk 

of developing complications. 
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Table 1. Characteristics of patients in the development and the validation cohorts 

  Development cohort   Validation cohort   

  

Median (IQR)  

or No (%) Missing 

Median (IQR)  

or No (%) Missing 

Age-years 48 (34-60) 9 47 (33-58) 0 

Systolic BP-mm Hg 120 (110-120) 1111 120 (110-120) 4 

Diastolic BP-mm Hg 80 (70-80) 1111 80 (70-80) 4 

Heart rate-min 88 (82-92) 1112 86 (80-90) 5 

Respiratory rate-min 20 (20-22) 1117 20 (20-22) 5 

Temperature-°F 99 (99-99) 1110 99 (98-99) 5 

AST-IU/L 25 (18-36) 16 22 (17-31) 3 

ALT-IU/L 27 (18-42) 18 26 (18-40) 3 

Albumin-g/dL 4.5 (4.2-4.8) 18 4.6 (4.3-4.9) 3 

LDH- IU/L 385 (269-495) 7 375 (284-467) 1 

Creatinine-mg/dL 0.8 (0.7-1) 6 0.7 (0.6-0.8) 3 

Urea-mg/dL 22 (17-29) 7 22 (18-29) 3 

C-reactive protein-mg/dL 0.5 (0.2-3) 5 0.5 (0.3-2.8) 1 

Sodium-mmol/L 141 (139-143) 5 141 (139-143) 3 

Haemoglobin-g/dL 13 (12-14) 82 13 (12-14) 0 

Platelet count-×10^9/L 265 (207-333) 82 304 (243-364) 0 

White cell count-×10^9/L 7 (5.5-9.1) 82 6.9 (5.4-9) 0 

Neutrophil count-×10^9/L 4.5 (3.3-6.2) 82 4.4 (3.3-6.2) 0 

Lymphocyte count-×10^9/L 1.9 (1.4-2.6) 82 1.9 (1.4-2.4) 0 

Neutrophil/Lymphocyte  ratio 2.3 (1.6-3.7) 82 2.3 (1.6-3.8) 0 

Female gender 1593 (39.5) 0 752 (36.8) 0 

Deaths 172 (4.3) 0 53 (2.6) 0 

Hypoxaemia 959 (23.8) 0 545 (26.6) 0 

IQR, interquartile range; BP, blood pressure; ALT, Alanine transaminase; AST, Aspartate 

transaminase; LDH, Lactate dehydrogenase 
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Table 2 – The RCOS prognostic index 

  Reference range Prognostic score 

Age (years)     

40-49   1 

50-59   2 

60-69   3 

>=70   4 

Systolic BP (mm Hg) >= 140    1 

Heart rate (pm) >=100    1 

Respiratory rate (pm) >=22    2 

AST-IU/L 0 to 40   

40-79 1 to 2 x UNL 1 

>=80 >2 x UNL 2 

LDH- IU/L 207 to 414   

700-899 1.69 to 2.17 x UNL 1 

>=900 >2.17 x UNL 2 

Urea-mg/dL 15 to 39   

40-49.9 1 to 1.25 x UNL 2 

>=50 >1.25 x UNL 3 

C-reactive protein-mg/dL 0 to 0.5   

0.5-0.9 1 to 1.99 x UNL 1 

1-1.9 2 to 3.99 x UNL 2 

2-3.9 4 to 7.99 x UNL 3 

4-5.9 8 to 11.99 x UNL 4 

6-8.9 12 to 17.99 x UNL 5 

9-11.9 18 to 23.99 x UNL 6 

>=12 >=24 x UNL 7 

Sodium-mmol/L <135 135 to 148 1  

Lymphocyte count-×10^9/L 1 to 5   

<0.8  3 

0.8-0.999  1 

Neutrophil count-×10^9/L 1.2 to 8   

8 - 9.9  1 

>=10  2 

Neutrophil/Lymphocyte  ratio     

3-3.9   1 

4-5.9   2 

6-7.9   3 

>=8   4 

BP, blood pressure; pm, per minute; AST, Aspartate transaminase; LDH, Lactate dehydrogenase; UNL, upper 

normal limit; LNL lower normal limit. 
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Table 3 – Proportion of patients who experienced the study outcome (death or hypoxaemia) segregated 

by risk group 

  Development Validation 

Risk group No patients (%) Outcome (%) N patients (%) Outcome (%) 

Low (0-2) 1314 (32.57) 37 (2.82) 755 (36.9) 21 (2.78) 

Intermediate-low (3-4) 832 (20.62) 36 (4.33) 392 (19.16) 43 (10.97) 

Intermediate-high (5-6) 533 (13.21) 70 (13.13) 253 (12.37) 42 (16.6) 

High (7-8) 340 (8.43) 95 (27.94) 157 (7.67) 58 (36.94) 

Very high (>8) 1016 (25.18) 723 (71.16) 489 (23.9) 384 (78.53) 
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Figure 2 – Discrimination (upper panel), calibration (middle panel), distribution of cases (lower panel 

histogram) and predicted probability of death or hypoxaemia (lower panel line) of the predictive model 

in the validation cohort. 
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Figure 3 – Sensitivity, specificity, negative predictive value and positive predictive value in the 

validation cohort. 
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Figure 4 – Decision curves. Net benefit (upper panel) and number of intervention avoided (lower panel) 

in the validation cohort. 
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Figure 5 – Discrimination (upper panel), calibration (middle panel), distribution of cases (lower panel 

histogram) and predicted probability (lower panel line) of the model to predict mortality in the 

validation cohort. 
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