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ABSTRACT 

 
To simulate how the number of COVID-19 cases increases versus time, various data sets   and different 
mathematical models can be used. In particular, previous simulations of the COVID-19 epidemic 
dynamics in Ukraine were based on smoothing of the dependence of the number of cases on time and 
the generalized SIR (susceptible-infected-removed) model. Since real number of cases is much higher 
than the official numbers of laboratory confirmed ones, there is a need to assess the degree of data 
incompleteness and correct the relevant forecasts. We have improved the method of estimating the 
unknown parameters of the generalized SIR model and calculated the optimal values of the parameters. 
It turned out that the real number of diseases exceeded the officially registered values by about 4.1 
times at the end of 2020 in Ukraine. This fact requires a reassessment of the COVID-19 pandemic 
dynamics in other countries and clarification of world forecasts. 
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                  Introduction 

        The studies of the COVID-19 pandemic dynamics are complicated by incomplete information 

about the number of patients (e.g., reported by WHO [1]), a very large percentage of whom are 

asymptomatic. In the early stages of the pandemic, there was also a lack of tests and knowledge about 

the specifics of the infection spread. Because of this, there are more and more evidences of COVID-19 

patient appearances before the first officially-confirmed cases [2-6]. These hidden periods of the 

epidemics in different countries and regions were estimated in [7-11] with use of the classical SIR 

model [12-14] and the statistics-based method of the parameter identification developed in [15, 16]. In 

particular, first COVID-19 cases probably have appeared already in August 2019 [9-11].   

        For Ukraine, different simulation and comparison methods were based on official accumulated 

number of laboratory confirmed cases [17, 18] (these figures coincided with the official WHO data sets 

[1], but WHO stopped to provide the daily information in August 2020) and the data reported by Johns 
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Hopkins University (JHU) [19]. In particular simple comparisons of epidemic outbreaks in Ukraine 

neighboring countries can be found in [20-22]. The classical SIR model was used in [7-11, 23-25]. The 

weakening of quarantine restrictions, changes in the social behavior and the coronavirus activity caused 

changes in the epidemic dynamics and corresponding parameters of models. To detect and simulate 

these new epidemic waves, a simple method of numerical differentiations of the smoothed number of 

cases and generalized SIR model were proposed and used in [11, 26-30]. In particular, nine epidemic 

waves in Ukraine were calculated [11, 26-30]. Since the Ukrainian national statistics does not look 

complete (see, e.g., the results of total staff testing in two schools and two children gardens in the 

Ukrainian city of Chelnytskii, [31]), there is a need to assess the extent of this incompleteness and 

determine the true size of the COVID-19 epidemic in Ukraine, which became the subject of this article. 

 

Data 

           We will use the data set regarding the accumulated numbers of confirmed COVID-19 

cases in Ukraine from national sources [17, 18]. The corresponding numbers Vj  and moments of 

time tj (measured in days) are shown in the supplementary Table A. It must be noted that this 

table does not show all the COVID-19 cases occurred in Ukraine. Many infected persons are not 

identified, since they have no symptoms. For example, employees of two kindergartens and two 

schools in the Ukrainian city of Chmelnytskii were tested for antibodies to COVID-19, [31]. In 

total 292 people work in the surveyed institutions. Some of the staff had already fallen ill with 

COVID-19 or were hospitalized. Therefore, they were tested and registered accordingly. In the 

remaining tested 241 educators, antibodies were detected in 148. Therefore, the number of 

identified patients (51) in these randomly selected institutions was 3.9 times less than the actual 

number (51+148) of COVID-19 cases. Many people know that they are ill, since they have 

similar symptoms as other members of families, but avoid making tests. Unfortunately, one 

laboratory confirmed case can correspond to several other cases which are not confirmed and 

displayed in the official statistics. The number of cases in Ukraine reported by COVID-19 Data 

Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins 

University (JHU) [19] is 2-3 % higher than the Ukrainian national statistics [17, 18] yields (see 

[30]). Nevertheless, the special simulations will demonstrate a significant incompleteness of both 

data sets.  

 
                    Generalized SIR model 

The classical SIR model for an infectious disease [12-14] was generalized in [11, 27-30]  to 

simulate different epidemic waves. We suppose that the SIR model parameters are constant for every 

epidemic wave, i.e. for the time periods: * *
1, 1,2,3,...i it t t i   . Than for every wave we can use the 

equations, similar to [12-14]: 
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Here S is the number of susceptible persons (who are sensitive to the pathogen and not 

protected); I is the number of infected persons (who are sick and spread the infection); and R is the 

number of removed persons (who no longer spread the infection; this number is the sum of isolated, 

recovered, dead, and infected people who left the region). Parameters i  and i  are supposed to be 

constant for every epidemic wave.  

         To determine the initial conditions for the set of equations (1)–(3), let us suppose that at the 

beginning of every epidemic wave *
it : 

                                          
*( )i iI t I , *( )i iR t R , *( )i i i iS t N I R                                                    (4)  

 

                                                       iN S I R                                                                                (5) 

 

In [11, 27-30] the set of differential equations (1)-(3) was solved by introducing the function  

   

                                        ( ) ( ) ( )V t I t R t  ,                                                                            (6)                    

 

corresponding to the number of victims or the cumulative confirmed number of cases. For many 

epidemics (including the COVID-19 pandemic) we cannot observe dependencies ( ), ( )S t I t  and ( )R t  

but observations of the accumulated number of cases Vj corresponding to the moments of time tj 

provide information for direct assessments of the dependence ( )V t . The corresponding analytical 

formulas for this exact solution can be written as follows:  

 

                                    
* *( , , , , ) ( )i i i i i i iF V N I R t t   ,                                                      (7) 
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                                                       S=Ni - V ,       R=V-I                                                                 (9) 
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        Thus, for every set of parameters , , ,i i i iN I R   and a fixed value of V , integral (8) can be 

calculated and the corresponding moment of time can be determined from (7). Then functions I(t)  and 

R(t)  can be easily calculated with the use of formulas (9). The saturation levels  iS  ; i i iV N S    

(corresponding the infinite time moment) and the final day of the i-th epidemic wave (corresponding 

the moment of time when the number of persons spreading the infection will be less then 1) can be 

calculated with the use of equations available in [11, 27-30].   

 

                  Parameter identification procedure 

         In the case of a new epidemic, the values of its parameters are unknown and must be identified 

with the use of limited data sets. For the second and next epidemic waves (i > 1), the moments of time  

*
it  corresponding to their beginning are known. Therefore the exact solution (7)-(9) depend only on 

five parameters - , , , ,i i i i iN I R   , when the registered number of victims Vj is the random realization of 

its theoretical dependence (6). If we assume, that data set Vj is incomplete and there is a constant 

coefficient  1i  , relating the registered and real number of cases during the i-th epidemic wave: 

 

                                                          ( )j i jV t V ,                                                                         (10) 

 

 the number of unknown parameters increases by one. 

          Then the values Vj , corresponding to the moments of time tj and relationship (10) can be used in 

eq. (8) in order to calculate  *
, ( , , , , , )i j i j i i i i iF F V N I R   for every fixed values of , , , ,i i i i iN I R    and 

then to check how the registered points fit the linear dependence (7) which can be rewritten as follows: 

 

                         
*( , , , , , )i i i i i iy F V N I R t       ;  i   , *

i it                               (11) 

                                                      

 We can calculate the parameters   and  , by treating the values *( , , , , , )j i i i i i i iy F V N I R    and 

corresponding time moments tj as random variables. Then we can use the observations of the 

accumulated number of cases and the linear regression in order to calculate the coefficients  and  


  

of the regression line  

                                                                   y t  


                                                                   (12) 

 

using the standard formulas (see, e.g., [32]). Values  and  


  can be treated as statistics-based 

estimations for parameters   and   from relationships (11). 
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       The reliability of the method can be checked by calculating the correlation coefficients ri  (see e.g., 

[13]) for every epidemic wave and checking how close are their values is to unity. We can use also the 

F-test [13] for the null hypothesis that says that the proposed linear relationship (11) fits the data set. 

Similar approach was used in [7-11, 15, 16, 23-30, 33, 34]. To calculate the optimal values of 

parameters , , , ,i i i i iN I R  , we have to find the maximum of the correlation coefficient for the linear 

dependence (11).  

        The exact solution (7)-(9) allows avoiding numerical solutions of differential equations (1)-(3) and 

significantly reduces the time spent on calculations. A new algorithm [11, 29, 30] allows estimating the 

optimal values of SIR parameters for the i-th epidemic wave directly (without simulations of the 

previous waves). To reduce the number of unknown parameters, we can use the relationship              

i i iV I R   which follows from (6) and (10). To estimate the value iV , we can use the smoothed 

accumulated number of cases [11, 26-30] 
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and the relationship  i i iV V  following from (10) (i corresponds to the moment of time *
it ). One more 

relationship  
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can be obtained with the use of (5) and formula 
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SI
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                                                                    (15) 

 
 (following from (2) and (3)). To estimate the average number of new cases dV/dt  at the moment of 
time *

it in eq. (14), we can use the numerical differentiation of (13): 

 

                                                           1 1

1

2
i

i i

t t

d V
V V

dt  


                                                         (16) 

and relationship (10). Thus we have only three independent parameters i ,
 

iN  and i . To calculate the 

value of parameter i , some iterations can be used (see details in [11]). 

       

Results 

        The optimal values of parameters and other characteristics of the ninth COVID-19 pandemic wave 

in Ukraine are listed in Table 1 for two cases. For SIR simulations we have used the same period of 

time Tc : December 11-24, 2020 and corresponding  values of Vj  and tj   from Table A. In the first case 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 27, 2021. ; https://doi.org/10.1101/2021.03.19.21253938doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.19.21253938


we assumed that the numbers of registered cases coincide with the real one ( 9 =1). A similar SIR 

simulation of the 9th epidemic wave in Ukraine has already been reported in [30], but now we have 

managed to find a new (larger in value) maximum of the correlation coefficient. 

       The last column of Table 1 illustrate the results of SIR simulations with the non-prescribed value 

of 9 . The maximum of the correlation coefficient was achieved at 9 =4.1024. This result testifies 

that the main part of the epidemic in Ukraine is invisible. At the end of 2020 the real numbers of 

COVID-19 cases probably were more than 4 times higher than registered ones. The real final size of 

the ninth epidemic wave 9V   is expected to be around 6 million. Unfortunately, we cannot wait for the 

end of the pandemic before the summer of 2022 (if vaccinations will not change this sad trend). 

         Knowing the optimal values of parameters, the corresponding SIR curves can be easily calculated 

with the use of exact solution (7)-(9) and compared with the pandemic observations after Tc. The 

results are shown in Figure by different colors. Black and blue lines and markers correspond to the case 

9 =4.1024. The solid black line shows complete accumulated number of cases (visible and invisible); 

the dashed line represents the complete number of infected persons multiplied by 5, i.e. I(t)x5; dotted 

black line represent the derivative dV/dt (which is an estimation of the real daily number of new cases) 

calculated with the use of  (15) and multiplied by 100. The red dotted line shows the dependence V(t) 

for the case 9  =1 (assuming that all the cases are registered). The red “circles”, “triangles”, and “stars” 

correspond to the accumulated numbers of cases registered during period of time taken for SIR 

simulations Tc , before Tc, and after Tc, respectively (taken from Table A). The blue dotted line 

represents dependence
 

9( ) /I t  . The blue crosses show the estimation of the derivative (16) multiplied 

by 9100 .  

 

Discussion 

      According to the results of our study, we can only say that in the case of suitability of the 

generalized SIR model, the value 9 =4.1024 and other optimal values of its parameters (given in the 

last column of Table 1) are the most reliable (provide the maximum value of the correlation 

coefficient). Therefore, we used additional methods to verify the calculations and showed some results 

in Fig. The blue dotted line represents dependence
 

9( ) /I t  which must be close to the registered 

number of cases (red markers). The coincidence is very good. Significant deviations began to appear 

only in March 2021, which can be explained by the beginning of the next (tenth) epidemic wave in 

Ukraine.  The blue crosses show the estimation of the real daily number of new cases (derivative (16) 

multiplied by 9100 ) and have to be close to the  black dotted line. Significant deviations began to 

appear only in mid-February 2021, which can be explained canceling the lockdown on January 24, 
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2021. May be the beginning of the tenth epidemic wave is connected also with the starting the lessons 

at schools and universities and mutations of the coronavirus.  

 

Characteristics     9th epidemic wave, 
              i=9,  

     1i  (without  

            optimization) 

   9th epidemic wave,  
             i=9,  

    4.1024i    

Ii  148,390.742887927 
 

668,766.512528977 
 

Ri 732,364.542826359 

 

2,944,443.97158531 

Ni 2,960,000 

 

12,307,200 

i  
2,275,096.81932990 9626720.00517470 

 

i  3.48830042313868e-08 

 

7.59399763733452e-09 

 

i  0.0793622119754996 

 

0.0731052889745776 

 

1/ i  12.6004552432172 

 

13.6789008569236 

 

                ri 0,998201733486790 

 

0.998205208046402 

 

iS   1,530,454 6,372,870 

iV  1,429,546 5,934,330 

Final day of  the 

epidemic wave 

April 17, 2022 July 24, 2022 

   

Table 1.  Calculated optimal values of SIR parameters and other characteristics of the ninth 

COVID-19 pandemic wave in Ukraine. 

 

           The calculated coefficient of epidemic visibility 9 =4.1024 correlates with the results of testing 

employees of two kindergartens and two schools in the Ukrainian city of Chmelnytskii [31] which 

revealed the value 3.9. Probably that large discrepancy between registered and actual number of cases 

occurred not only in Ukraine. For example, total testing in Slovakia (65.5% of population was tested on 

October 31- November 1, 2020) revealed a number of previously undetected cases, equal to about 1% 

of the population [35]. On November 7 next 24% of the population was tested and found 0.63% of 
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those infected [36]. According to the WHO report at the end of October, the number of detected cases 

in Slovakia was also approximately 1% of population [1].  

Figure. Visible (red) and real (black) COVID-19 epidemic dynamics in Ukraine. 
Red markers show accumulated numbers of cases Vj from Table A. “Circles” correspond to the 
accumulated numbers of cases taken for calculations (during period of time Tc); “triangles” – numbers 
of cases before Tc; “stars” – number of cases after Tc. Blue and black colors correspond to the case 

9 =4.1024; the blue “crosses” show derivative (16) multiplied by 9100 ; the blue dotted line 

represents dependence
 

9( ) /I t  . Numbers of victims V(t)=I(t)+R(t) – black solid lines; numbers of 

infected and spreading I(t) multiplied by 5 – dashed; derivatives dV/dt (eq. (15)) multiplied by 100 – 
dotted. The red dotted line represents dependence

 
9( ) /I t   for the case 9 =1.  

 

 

           Many authors are and will be trying to predict the COVID-19 pandemic dynamics in many 

countries and regions [7-11, 16, 23-30, 37-102].  The results of this study indicate that reliable 

estimates of its dynamics require consideration of incomplete data and constant changes of the 

conditions (quarantine restrictions, social distancing, coronavirus mutations, etc.).  
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Supplementary materials 

Day in   
Decem- 

ber 
2020, 

tj 
 

Number 
of cases, 

 Vj 

Day in 
Janu-
ary 

2021 
 

Number of 
cases, 

 Vj  

Day in 
Febru-

ary  
2021 

 

Number of 
cases, 

 Vj  

 Day in 
March  
2021 

 

Number of 
cases, 

 Vj 

1 758264 1 1069517 1 1223879 1 1357470 
2 772760 2 1074093 2 1227164 2 1364705 
3 787891 3 1078251 3 1232246 3 1374762 
4 801716 4 1083585 4 1237169 4 1384917 
5 813306 5 1090496 5 1241479 5 1394061 
6 821947 6 1099493 6 1244849 6 1401228 
7 832758 7 1105169 7 1246990 7 1406800 
8 845343 8 1110015 8 1249646 8 1410061 
9 858714 9 1115026 9 1253055 9 1416438 
10 872228 10 1119314 10 1258094 10 1425522 
11 885039 11 1124430 11 1262867 11 1438468 
12 894215 12 1130839 12 1268049 12 1451744 
13 900666 13 1138764 13 1271143 13 1460756 
14 909082 14 1146963 14 1273475 14 1467548 
15 919704 15 1154692 15 1276618 - - 
16 931751 16 1160682 16 1280904 - - 
17 944381 17 1163716 17 1287141 - - 
18 956123 18 1167655 18 1293672 - - 
19 964448 19 1172038 19 1299967 - - 
20 970993 20 1177621 20 1304456 - - 
21 979506 21 1182969 21 1307662 - - 
22 989642 22 1187897 22 1311844 - - 
23 1001132 23 1191812 23 1317694 - - 
24 1012167 24 1194328 24 1325841 - - 
25 1019876 25 1197107 25 1333844 - - 
26 1025989 26 1200883 26 1342016 - - 
27 1030374 27 1206412 27 1347849 - - 
28 1037362 28 1211593 28 1352134 - - 
29 1045348 29 1216278      - - - - 
30 1055047 30 1219455 - - - - 
31 1064479 31 1221485 - - - - 

 

Table A. Cumulative numbers of laboratory confirmed Covid-19 cases in Ukraine Vj  according to the 

national statistics, [7, 8]. 
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