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ABSTRACT 

BACKGROUND. In the last decades, neuroimaging studies have attempted to unveil the neurobiological 

markers underlying pediatric psychiatric disorders. However, children diagnosed with such disorders are 

likely to receive an additional diagnosis in the following years. Yet, the vast majority of neuroimaging 

studies focus on a single nosological category, which limit our understanding of the shared/specific neural 

correlates between these disorders. Therefore, we aimed to investigate the transdiagnostic neural signatures 

through a novel meta-analytical method. METHOD. A data-driven meta-analysis was carried out which 

grouped similar experiments topographic map together, irrespectively of nosological categories and task-

characteristics. Then, activation likelihood estimation meta-analysis was performed on each group of 

experiments to extract spatially convergent brain regions. RESULTS. One hundred forty-seven 

experiments were retrieved (3199 subjects): 79 attention-deficit/hyperactivity disorder, 32 

conduct/oppositional defiant disorder, 14 anxiety disorders, 22 major depressive disorders. Four significant 

groups of experiments were observed. Functional characterization suggested that these groups of aberrant 

brain regions may be implicated internally/externally directed processes, attentional control of affect, 

somato-motor and visual processes. Furthermore, despite that some differences in rates of studies involving 

major depressive disorders were noticed, nosological categories were evenly distributed between these four 

sets of regions. Additionally, main effects of task characteristics were observed. CONCLUSIONS.  By 

using a data-driven meta-analytic method, we observed four significant groups of aberrant brain regions 

that may reflect transdiagnostic neural signature of pediatric psychiatric disorders. Overall, results of this 

study underscore the importance of studying pediatric psychiatric disorders simultaneously rather than 

independently. 

KEYWORDS: conduct disorder; attention-deficit hyperactivity disorder; anxiety 

disorder; major depressive disorder; meta-analysis; neuroimaging; transdiagnostic. 
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1. INTRODUCTION 

The most prevalent child psychiatric disorders include Attention-deficit/hyperactivity 

disorder (ADHD), Conduct/Oppositional Defiant Disorder (CD/ODD), anxiety disorders 

(ANX) and depressive disorders (DEP) and affect approximately 3.4%, 5.7%, 6.5% and 

2.6% of children and adolescents in the world, respectively (1). More importantly, 

evidence suggest that comorbidity between these pediatric psychiatric disorders is the 

norm rather than the exception. In fact, children with ADHD, CD/ODD, ANX or DEP are 

likely to being diagnosed with one of these four disorder as a comorbid condition (2-9). 

Indeed, comorbidity is reported in 51.6-83% of cases, whereas between 3 to 25.8% have 

received two or more comorbid psychiatric conditions. Although these four diagnostic 

entities show large comorbidities in children and adolescent, theoretical 

pathophysiological models that take into account this high level of comorbidity remain 

largely limited (10).  

In the last decade, there has been a growing body of literature suggesting that several 

genetic (11-15) and environmental risk factors (15-17) which increase the risk for a wide 

range of psychiatric disorders & psychopathologies may be non-specific. Likewise, 

recent meta-analyses of structural and functional magnetic resonance imaging studies 

have shown that adult psychiatric disorders may share several neurobiological deficits 

(18-22). For instance, during cognitive control tasks, transdiagnostic neural signatures 

have been identified, which  involve the fronto-insular cortex (FIC), the dorsolateral 

prefrontal cortex and the dorsal anterior cingulate cortex (dACC) to anterior 

midcingulate/pre-supplementary motor area (aMCC/pre-SMA) and inferior parietal 
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lobule (21). Similarly, adult patients with psychiatric disorders shared prominent deficits 

in the FIC, amygdala, thalamus and dorso- and ventro-medial PFC during emotion 

processing tasks (22). Although some differences have been noticed between patients 

with and without psychotic disorders (21, 22), the search for shared/specific 

neurobiological features is of great interest for our current understanding of the 

psychophysiological mechanisms underlying psychiatric disorders. 

In neuroimaging literature on childhood/adolescent, studies or meta-analyses that 

aimed to uncover the specific/transdiagnostic neurobiological markers have been scarce. 

Indeed, a large majority of task-based fMRI studies has focused on a single psychiatric 

disorder, therefore limiting our ability to identify common/specific neurobiological 

markers. Additionally, recent transdiagnostic fMRI meta-analyses have excluded 

disorders which predominantly emerge in childhood/adolescence such as ADHD and 

CD/ODD (21, 22). Nevertheless, past meta-analyses and literature reviews on ADHD 

(23-28), CD/ODD (29-33). ANX (34-39) and DEP (40-47) appear to show qualitatively 

similar deficits in the anterior insula, medial and lateral prefrontal cortex, amygdala and 

anterior to midcingulate cortex. Yet, there is a clear need for meta-analytical evidence of 

transdiagnostic neural signatures in children and adolescents.  

Despite the fact that these results may provide substantial insight for our 

understanding of transdiagnostic neural signatures, classical meta-analytical approaches 

are prone to important biases. Indeed, authors’ categorization of groups of interest, 

categorization of fMRI tasks and the choice of task contrast may significantly alter 

results. In comparison to the classical meta-analytic approach which seeks to identify 

dysfunctional brain regions in predefined groups of interest, the reverse inference meta-
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analytical method rather aims to discover groups of interest in a dysfunctional brain 

region. As such, this novel approach may address the limitations of the classic approach 

by searching for common/specific neural signatures irrespective of the task-

characteristics or the nosological categories. To our knowledge, only one study has 

investigated transdiagnostic features across adult samples through a reverse-inference 

meta-analytical method. In fact, the authors observed that when examining diagnosis 

distribution across brain regions, none of the 56 regions (subcortical and cortical) showed 

a significant effect of diagnosis across whole-brain studies (48). However, selectively 

examining diagnosis distribution region after region may yield over-optimistic conclusion 

about their transdiagnostic characteristics. Given that a single region may be implicated 

in a wide range of cognitive processes, examining transdiagnostic signatures using a 

region-of-interest method blurs our ability to capture that co-activation topography may 

actually differ between psychiatric disorders and reflect functional differences in 

cognitive processes between disorders. To our knowledge, a meta-analysis aiming to 

examine transdiagnostic (or specific) groups of regions associated with pediatric 

psychiatric disorders has never been performed. 

Here, we carried out a meta-analysis that primarily aimed to identify groups of 

aberrant brain regions across psychiatric disorders using a data-driven meta-analytical 

method. Results from past meta-analyses on adult samples (21, 22) and disorder-specific 

meta-analyses and literature reviews (23-41) suggest that transdiagnostic features may be 

expected in FIC (anterior insula/vlPFC), medial and lateral prefrontal as well as in the 

dorsal anterior and anterior midcingulate cortex. However, considering that deficits in the 

amygdala is systematically observed in past meta-analyses on adult ANX (35, 36) and 
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DEP (40-47), but less extensively in CD/ODD (29-33) and not found in ADHD (23-28), 

we hypothesized that the former region would be more closely linked to ANX and DEP 

than the latter disorders. 

 

2. METHODS 

2.1. Identification of included studies 

Our search focused primarily on four diagnostic categories (ADHD, CD/ODD, ANX, 

DEP) since they all show high comorbidity with each other (2-9). Since meta-analyses 

and literature reviews on these disorders have been published recently, we extracted data 

from reference lists of ANX (36, 37, 39), DEP (40, 41, 49), CD/ODD (31), ADHD (28). 

Inclusion criteria were: (1) original manuscript from a peer-reviewed journal, (2) 

functional MRI studies that included a fMRI task, (3) use of a whole-brain methodology 

(i.e., studies using region-of-interest were excluded), (4) < 18 years old participants 

meeting criteria for at least one of the following pediatric psychiatric disorder: (a) 

Attention deficit with/or without hyperactivity; (b) Disruptive disorder (Conduct disorder 

and/or Oppositional Defiant Disorder); (c) Anxiety disorders (i.e., Posttraumatic Stress 

Disorder, Generalized Anxiety Disorder, Social Anxiety Disorder) and/or (d) Unipolar 

Major Depressive Disorder.  

 

2.2. ALE Method 

ALE approach was used in the current coordinate-based meta-analysis in order to 

extract spatially convergent peaks across pediatric psychiatric disorders (GingerALE 

version 3.0.2, http://www.brainmap.org/ale/). Study results were extracted, irrespectively 
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of the direction (decreased/increased) of the diagnosis or task-contrast effect, to create an 

aberrant activation map. Two experiments from the same study were considered as 

distinct if they included two different samples or two different fMRI tasks. Each 

experiment’ pooled task-contrasts was manually annoted and categorized if they 

included: a cognitive component (i.e., response inhibition, attentional processes); an 

emotional component (i.e., response to positive stimuli; to negative stimuli; to both). 

These categorizations were not mutually exclusive (e.g., emotional go-no/go or Stroop). 

Rates of boys in each sample and percentage of subjects that received medication were 

also extracted for each experiment. Coordinates of experiments that were reported 

originally in Talairach stereotaxic space were converted into MNI (Montreal Neurologic 

Institute) space before using them in the analyses.  

First, a modeled activation map (MA) was created by modeling coordinate foci 

(x,y,z) with a spherical Gaussian probability distribution, weighted by the number of 

subjects in each experiment. This is performed to account for spatial uncertainty due to 

template and between-subject variance (50), and ensure that multiple coordinates from a 

single experiment does not jointly influence the modeled activation value of a single 

voxel. Voxel-wise ALE scores were then computed as the union of MA maps, which 

provide a quantitative assessment of convergence between brain activation across 

experiments. Then, these maps were cut off by a cluster-forming threshold. In fact, the 

size of the supra-threshold clusters was compared against a null distribution of cluster 

sizes derived from artificially created datasets in which foci were shuffled across 

experiments, but the other properties of original experiments (e.g., number of foci, 

uncertainty) were kept. Finally, this resulted in calculating the above chance of observing 
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a cluster of the given size (51). In the current study, we use the following statistical 

threshold: a voxel-level cluster forming threshold of p<0.001 and a cluster-level family-

wise correction (pFWE < 0.05), with 5,000 permutations (52).  

 We performed a disorder-specific meta-analysis using these “classical” steps of 

the ALE method for each diagnostic group, separately. 

 

2.4. Neurobiologically-driven Meta-analytical procedure 

2.4.1. Modeled Activation & Cross-Correlation Matrix (Step 1 & 2) 

Modeled activation (MA) map was created for each experiment (2mm3 resolution) 

(Figure 1, Step 1). Each resulting MA map was converted into a 1D feature vector of 

voxel values (i.e., 2mm3 grey matter mask in MNI space) and concatenated together to 

form an experiment (e) by voxel matrix (v) (147 experiments x 226,654 voxels). Pairwise 

Spearman’s rank correlation was performed between the 1D feature vector of each 

experiments to obtain spatial similarity between maps (e by e symmetric correlation 

matrix) (Figure 1, Step 2). 

2.4.2. Correlation-Matrix-Based Hierarchical Clustering (Step 3) 

In order to extract data-driven groups of experiments that showed similar brain 

topographic map, we performed a Correlation-Matrix-Based Hierarchical Clustering 

(CMHC) analysis, as previously used on meta-analytic data (53, 54). The CMHC was 

carried out using correlation distance (1 – r) (Figure 1. Step 2) and average linkage 

method. We thus repeated the CMHC for a range of 2 to 15 MAGs. The optimal number 

of MAGs was determined by comparing frequently used metrics in fMRI clustering (i.e., 

silhouette and calinski-harabasz indices, variation of information & adjusted rand index) 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2021. ; https://doi.org/10.1101/2021.03.18.21253910doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.18.21253910
http://creativecommons.org/licenses/by-nc/4.0/


(55), for each of the 2-15 MAGs (See Supplementary Material for more information). 

More precisely, we used a 90% subsampling resample strategy (without replacement, 

5000 iterations). This implied that we randomly removed 10% of experiments, iteratively, 

to perturbate the ability to group the most correlated experiments with each other, 

successively. Then, for K range, each metric was compared against a null distribution. To 

do so, 5,000 datasets were created artificially by shuffling foci locations across 

experiments but preserving original experiments’ properties (e.g., number of foci, sample 

size). The average of each metric (i.e., silhouette and calinski-harabasz indices) derived 

from true dataset, was normalized using this null distribution (AverageTRUE – 

AverageNULL / STDNULL) and then plotted for K range (2-15 MAGs). This improves our 

ability to select the optimal K by taking into account the probabilities of getting a certain 

metric value in a random spatial arrangement. Given that the ground truth class labels are 

unknown, we compared, for each K, the consistency (adjusted rand index) and shared 

information distance (variation of information) between LabelTRUE with the LabelNULL 

then averaged across the 5000 iterations. These metrics were then plotted for K range. A 

local minimum in the plot suggests a decrease in overlap between both sets of labels. 

After finding the optimal number of MAGs, the most stable label solution was 

found by grouping experiments that were labelled similarly across the 5,000 subsampling 

iterations. More precisely, we calculated the hamming distance between each 

experiment’s label ids (147 experiments by 5000 iterations ids) to calculate the 

proportion of disagreement between two experiments’ set of labels. A CMHC was 

performed on a final 147-by-147 experiments’ distance matrix, representing the distance 
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between each pair of experiments. We then used the determined most optimal number of 

MAGs to extract the most stable label ids.  

Finally. MAGs with less than 10 experiments were considered as outliers and 

excluded from further analyses, since analyses involving < 10 experiments drastically 

increases the risk that a single experiment drives the results (52). All these analyses were 

performed using Scikit-learn (version 0.21.3) in Python (version 3.7.4) (56). 

 

2.4.3. Meta-Analytical Groupings (Step 4) 

Experiments (e) within each meta-analytical grouping (MAG) were then meta-

analytically processed (Step 4), using the activation likelihood estimate (ALE) algorithm 

(GingerALE version 3.0.2) (50, 51). This was performed to extract significant peaks 

convergence across each MAG (derived from Step 3). To examine under- and 

overrepresentations of nosological categories, task and sample characteristics within each 

MAG, we carried out one-tailed binomial tests comparing their prevalence with their base 

rate (across all experiments). Main effects of diagnosis, task and sample characteristics 

between MAGs were investigated through chi-squares (X2) and Kruskal-Wallis (H) tests. 

Literature bias was also assessed to compare differences between nosological categories 

in terms of task and sample characteristics (See Supplementary Material). 

Finally, for each MAG, we extracted functional characterization using the 

Behavioral Analysis plugin of the Multi-Image Analysis GUI (57). A Z-score was 

calculated using binomial tests for 83 paradigm classes and 51 behavioral subdomains 

across more than 10,000 experiments. A z-score higher or equal to 3 is considered 

significant (i.e., equaling p<0.05 Bonferroni corrected for multiple comparisons).   
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3. RESULTS 

3.1. Identified studies and characteristics 

 A total of 124 original studies met the inclusion criteria for the meta-analysis, of 

which 11 involved more than one sample and 8 comprised two or more distinct fMRI 

task contrasts. This resulted in 147 experiments (1030 foci) involving 3199 cases that 

were compared to 3024 healthy controls. Also, mean age of cases was 13.8 years old 

(SD=2.25) and the average rate of boys across samples was 71.67%. (see Supplementary 

Table for complete list of studies and their respective characteristics). Interestingly, 

disorder-specific studies showed significant literature bias regarding the choice of 

neurocognitive task domains, average of sex ratio, and the average of prescribed 

medication per samples (See Supplementary Table). 

 

3.2. Classical ALE Meta-analyses per-disorder category 

 Meta-analyses were performed across all foci, independently of the activation 

direction, for ANX (46 foci, 14 experiments, 293 subjects), DEP (103 foci, 22 

experiments, 388 subjects), ADHD (700 foci, 79 experiments, 1892 subjects) and CD 

(197 foci, 32 experiments, 626 subjects). However, each disorder-specific meta-analysis 

revealed no significant spatial convergence (See Supplementary Material for results using 

uncorrected threshold). Nonetheless, we observed peak convergence in dorsal/perigenual 

ACC (MNI x=-8, y=38, z=8, maximum ALE score = 0.0167, 129 voxels) for the 

internalizing category (ANX+DEP) and pre-SMA (x=4, y=26, z=44, maximum ALE 
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score=0.0279, 147 voxels) for the externalizing category (ADHD+CD/ODD). 

Additionally, merging experiments across pediatric psychiatric disorders, we observed a 

significant cluster that included voxels of the right anterior MCC and the pre-

supplementary motor area (x=4, y=24, z=42, ALE score=0.021, 323 voxels). Despite the 

fact that ADHD (57.14%) and CD/ODD (35.71%) largely contributed to this specific 

brain region, proportions did not significantly differ from their respective base rate. 

Furthermore, no significant differences were observed regarding nosological categories 

nor task-characteristics. However, Mann-Whitney U revealed a significant sex effect, 

indicating that the aMCC/pre-SMA may be associated with higher average rates of boys 

across samples (M=69.7% versus M=91.77%; U=479.0; p=0.003). No other significant 

differences were observed. 

- Insert Figure 2 About Here – 

 

3.3. Neurobiologically-driven meta-analysis 

3.3.1. Clustering Solution 

 Clustering solutions were investigated for a range of K = 2-15 MAGs with 

resampling method (90% subsamples and 5,000 iterations). Average of the 5,000 

iterations metric values for each K were plotted. Despite that the Calinski-Harabasz index 

exhibited a monotonic behavior (constantly increasing), the silhouette index showed a 

stable solution at K=8. Furthermore, aRI plot showed lowest scores at K=3 and K=8, 

while the greatest increases in variation of information were observed moving from K=2 

to K=3, from K=6 to K=7 and K=7 to K=8. Based on these results, the solution with 8 

MAGs was found as the most optimal (See Supplementary Figure 1).  
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Of the 8 MAGs, 4 comprised less than 10 experiments (n=8, 3, 2 & 1, 

respectively). These were excluded from further analyses. The remaining 4 MAGs 

represented 90.58% of total sample of experiments (133 experiments out of 147): MAG1 

(577 subjects, 21 experiments and 120 foci), MAG2 (1848 subjects, 87 experiments, 708 

foci), MAG3 (197 subjects, 13 experiments, 52 foci), MAG4 (278 subjects, 12 

experiments, 113 foci) (Figure 2).  

- Insert Figure 3 About Here 

 

3.3.2. ALE Meta-analysis 

ALE meta-analysis was performed across experiments in each of the four MAGs, 

separately, to examine spatial convergence across similar experiments (p<0.001 voxel-

level, p<0.05 cluster-level FWE-corrected). As shown in Table 1 and Figure 3, 

experiments of the MAG-1 had convergent peaks in the right rostrodorsal dorsomedial 

PFC (dmPFC) and the left caudal dmPFC (see (58)), the left cerebellum (Lobule VI), the 

right dorsolateral prefrontal cortex (dlPFC, see Cluster 5, Brodmann area (BA) 9/46d, 

(59)) and the middle temporal gyrus (MTG). The ALE meta-analysis for MAG2 included 

the right anterior MCC (BA32’, see (60, 61)) and the pre-supplementary motor area, the 

left amygdala (encompassing the hippocampus and parahippocampus) and the left aMCC 

(BA24 a’-b’, see (60, 61)). Regarding the MAG3, significant aberrant map revealed 

spatial convergence in the right posterior precentral (BA4p) to postcentral gyri (BA2-3), 

the right supramarginal gyrus, inferior parietal lobule, human IntraParietal area 2 and the 

left postcentral gyrus (BA2) and the inferior parietal lobule (PFt area, see (62)). Finally, 

spatial map of MAG-4 included occipital/cerebellar regions such as bilateral ventral 
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extrastriate cortex (right area hOc3v-hOc4v and left hOc4v, (63)), bilateral fusiform 

gyrus (Area FG4), bilateral Lobule VI, left calcarine gyrus (Area hOc1) as well as right 

posterior middle/inferior temporal gyrus (hOc1). 

- Insert Table 1 About Here – 

 

3.3.3. Functional characterization of MAGs 

Functional characterization of MAGs (i.e., MAG-wide & cluster-specific) was 

performed to examine their relationships with behavioral domains and paradigms of the 

BrainMap database (see Figure 3, Supplementary Material): 

MAG1: Experiments mainly included response inhibition (7) and reward 

decision-making tasks (5, e.g., monetary incentive delay task, Colorado balloon game). 

Functional characterization using the BrainMap database yielded no significant 

behavioral/paradigm classes. However, bilateral dmPFC and anterior MTG/STG were 

positively associated (Z>3.0) with social cognition/theory of mind, and negative related 

(Z<-3.0) with action execution. Interestingly the left Lobule VI show positive association 

with action execution and negative relationship with social cognition, whereas dlPFC was 

related to action inhibition. In sum, this MAG may be characterized by deficits of co-

occurrent brain regions subserving social cognition during cognitive & reward decision-

making tasks. 

MAG2: Experiments within this MAG primarily included task contrasts 

comprising an emotional component (k=42) of which 24 used negative emotional stimuli 

(e.g., negative emotional faces). Other main task domains were attentional, cognitive 

control and reward tasks. MAG2 was characterized by a wide range of behavioral 
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subdomains and paradigms from the BrainMap Database including attention, face 

monitoring & discrimination and explicit episodic memory. Furthermore, the right 

aMCC/pre-SMA (Attention) shared similar cognitive domains with left amygdala (Face 

Monitoring/Discrimination) such as explicit memory, semantic monitoring and positive 

emotions/reward. Also, the right aMCC/pre-SMA and the left dACC (Somesthesis pain) 

were both associated with pain monitoring & discrimination paradigm and somesthesis 

pain domain. However, the left amygdala and the left dACC did not share any behavioral 

subdomains or paradigms. Thus, given these findings, the co-occurrence of the dACC, 

aMCC/pre-SMA and the amygdala may be implicated in stimulus-driven attentional 

control. 

MAG3: Experiments within this MAG included a variety of cognitive and 

sensorimotor tasks (e.g., finger sequencing, anti-saccade, mental rotation, nback). Using 

the BrainMap Database, we observed that MAG3 was significantly associated with action 

execution and finger tapping/button press. Region-specific analyses revealed that the 

three regions, the right posterior precentral/postcentral (Action Execution), the right SMG 

(Action Execution) and left postcentral (Action Execution), shared action execution, 

finger tapping and somesthesis behavioral domains. Additionally, only the right 

precentral and the left postcentral clusters were both associated with tactile monitoring. 

In sum, brain regions of this MAG may encompass sensorimotor/action execution 

processes.  

MAG4: Finally, experiments from the MAG4 mainly included various cognitive 

tasks (10). Functional characterization using the BrainMap database revealed significant 

associations with vision, passive viewing and speech execution. Region-specific analyses 
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revealed that all but the calcarine were related to vision. Furthermore, the right 

pMTG/ITG, the left pITG/FF and the right lobule VI shared face 

monitoring/discrimination, passive viewing, vision shape and covert naming domains. In 

short, MAG4 may reflect co-occurrent deficits in brain regions involved in visual 

processing during cognitive tasks. 

-  Insert Table 2 About Here – 

 

3.3.4. Phenotype Assessment 1: Nosological Categories 

MAG1 was less likely to include DEP samples (X2 = 4.16, p=0.041), compared to 

all the other MAGs. Indeed, proportions of DEP samples in MAG1 was significantly 

lower than its base rate (0% versus 15.00%, one-tailed p=0.028) (see Table 2). 

Considering the between-disorder literature bias revealed that the lower rates of DEP 

samples in MAG1 were replicated when restricting experiments to those using an 

emotional task contrast and mixed sex samples (Supplementary Material) 

Additionally, MAG2 had more DEP samples than other MAGs (X2 = 8.43, 

p=0.004). However, compared to its base rate, proportion of DEP samples was not 

significantly overrepresented in MAG2 (20.7% versus 15.0%, one-tailed p=0.123) (see 

Table 2). After considering the between-disorder literature bias, we observed that the 

higher rates of DEP samples in MAG2 was replicated when restricting experiments to 

those using a cognitive task contrast or an emotional task contrast but also in experiments 

with only medication naïve sample and in mixed sex samples (Supplementary Material) 

 

3.3.5. Phenotype Assessment 2: Task & Sample Characteristics 
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 First, we observed that the rate of experiments within the MAG1 that included a 

positive emotional stimulus was higher than other MAGs (X2 = 8.62, p=0.003), and 

significantly overrepresented compared to its base rate (28.6% versus 11.6%, one-tailed 

p=0.028) (see Table 2). 

Additionally, experiments in MAG2 were less likely to include positive emotional 

task contrast (X2 = 3.97, p=0.046) and marginally associated with greater experiments 

with negative emotion task contrast (X2 = 3.31, p=0.069) (see Table 2), compared to other 

MAGs. However, proportions of these task domains were not statistically different than 

their base rates.  

MAG3 had significantly lower rate of general emotional stimuli compared to 

other MAGs (X2 = 4.20, p=0.040), which was marginally lower compared to its base rate 

(37.5% versus 48.3%, one-tailed p=0.059). Other characteristics did not reach statistical 

significance, compared to their base rates.  

Also, despite that the MAG1 had significantly higher rate of medication-naïve 

subjects, compared to its base rate (one-tailed p=0.018), MAGs did not differ in rates of 

experiments with medication-naïve samples (X2 = 2.25, p=0.522), in the average rate of 

prescribed medication (Kruskal-Wall H=2.74, p=0.433). No differences were observed 

concerning the rate of mixed sex samples (X2 =1.90, p=0.594) and in the average rate of 

boys in samples (Kruskal-Wall H=2.40, p=0.493). 

 

4. Discussion 

The current meta-analysis was carried out to examine the shared and/or specific 

neural correlates of pediatric psychiatric disorders (ADHD, CD/ODD, ANX & DEP).  To 
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do so, we used a novel data-driven meta-analytical method that aimed to extract groups 

of experiments which show similar brain topographic maps. We identified 4 significant 

MAGs, which comprised co-occurrent deficits in brain regions that may share features 

with (1) internally/externally directed processes; (2) attentional control of emotions, (3) 

action execution and (4) visual processes. More importantly, we found 

underrepresentation of DEP samples in MAG1 but overrepresentation of samples in 

MAG2. No other significant differences in nosological categories between MAGs we 

found.  

MAG1 included bilateral dmPFC, dlPFC, MTG/STG and Lobule VI. More 

precisely, we observed that dmPFC-MTG/STG were involved in social cognitions, 

whereas dlPFC and Lobule VI were characterized as action inhibition and execution, 

respectively. We also found main task-effect of the utilization of a positive emotional 

stimulus. Interestingly, several findings suggest that during some cognitively demanding 

tasks, brain regions involved in internally directed processes (e.g., dmPFC & anterior 

MTG/STG) flexibly shifts their activity to enable goal-directed processes (e.g., dlPFC & 

Lobule VI) (64-66). Given these data, deficits in brain regions involved in MAG1 may 

reflect a failure to disengage internal processes at the cost of goal-directed processes (67). 

Interestingly, our results suggest that these co-occurrent deficits (i.e., dmPFC, 

dlPFC, Lobule VI and MTG/STG) are less likely to be reported in that DEP samples 

given that none of the DEP samples was grouped in MAG1. However, a recent study has 

shown lower thickness in regions spanning the MAG1 (i.e., encompassing the fronto-

parietal and default-mode network) associated externalizing but also internalizing factors 

(68). Furthermore, meta-analytical evidence suggests dysconnectivity between the 
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default-mode and dorsolateral prefrontal cortex (fronto-parietal network) in DEP (69). 

Given that these findings were observed in adult samples and that anticorrelation between 

these processes varies from childhood from adulthood (70), it is possible that these 

deficits may rather be observed in adulthood DEP. Additionally, DEP samples did not 

frequently use positive emotional stimuli (k=3 out of 22), which was found to be main 

task-characteristic of MAG1. As such, this may suggest that the lack of relationship 

between MAG and DEP may be explained by task differences. Considering the small 

sample size involved, we cannot completely rule out the possibility of such deficits in 

children with DEP. 

The largest MAG (MAG2, k=87) was constituted of the aMCC/pre-SMA, 

amygdala and dACC. This MAG was mainly characterized by attention, face monitoring 

and explicit episodic memory, using the BrainMap database. Interestingly, deficits in 

these brain regions were associated with higher rates of DEP samples, in comparison with 

other MAGs. This is somewhat expected given the large number of meta-analytical 

evidence consistently showing aberrant activation in these particular regions during 

negative emotional tasks in adult with major depression (42-47). However, no effect was 

observed in ANX samples, potentially due to the limited sample size. Nonetheless, 

deficits in these regions were also observed across adult ANX & DEP samples, during 

negative emotion processing (20, 22, 71). In addition, we observed a marginally 

significant association between this MAG and negative emotional stimuli, indicating a 

possible task-effect. In fact, although rates of ADHD (50%), CD/ODD (20%) did not 

differ between other MAGs, evidence suggests that these disorders may also show 

deficits in MAG2 regions, particularly during emotion processing tasks (31, 72) which 
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correlates with general psychopathology score (68, 73, 74). In sum, this MAG may 

reflect general deficits in emotional lability, inherent to DEP, yet frequently observed in 

children/adolescent with ADHD (75) and/or CD (76). 

 We also found deficits in brain regions (e.g., pre- and postcentral gyrus) 

subserving action execution/finger tapping tasks (MAG3). This MAG was less likely to 

comprise emotional tasks, which is consistent with the fact that emotional tasks usually 

require less motor execution. Interestingly, deficits in similar regions (i.e., somato-motor 

network) were also observed in a recent study showing significant transdiagnostic 

association with general maladaptive functionality (77). Although deficits in these 

regions are currently not well understood, sensory deficits such as tactile perception and 

body awareness are often reported in children with pediatric psychiatric disorders (78-

82). It is thus possible that abnormalities in MAG3 may reflect deficits in tactile 

perception, crucial for accurate performance of purposeful movements (83) such as in 

cognitive tasks. 

Finally, we found evidence of early processing deficits across disorders (MAG4). 

However, this MAG was not specifically associated with sample- or task-characteristics. 

Recent studies have shown replicable structural alterations in brain regions spanning this 

MAG. In fact, the authors demonstrated, through two different samples comprising 1246 

(84) and 875 (85) subjects, that the general psychopathology factor score was associated 

with deficits in occipital (i.e., Lingual, Calcarine cortex) and cerebellum regions. These 

regions are implicated in variety of visual functions such as detecting relevant changes in 

the environment (e.g., visual oddball) (86, 87). Thus, MAG4 may mirror several 

dysfunctional processes in early visual processing, including gazing at task-irrelevant 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2021. ; https://doi.org/10.1101/2021.03.18.21253910doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.18.21253910
http://creativecommons.org/licenses/by-nc/4.0/


stimuli. For example, during face-emotion tasks, the number and duration of fixation to 

the eye regions have been reported to be significantly lower in ADHD with and without 

CD  (88), in childhood psychopathic traits (89), in ODD/CD (90-92), anxiety disorders 

(93-95) (96)) and depression (97, 98). Likewise, deficits in the ability to filter out 

irrelevant stimuli are also observed in continuous performance test (99) and visual search 

tasks (98) in these populations. 

In the classical transdiagnostic approach, we observed significant overlaps in the 

aMCC/pre-SMA. Furthermore, we found that externalizing disorders (i.e., ADHD, 

CD/ODD) were associated with deficits in the pre-SMA, whereas internalizing disorders 

(i.e., ANX, DEP) yielded aberrant activity in the dorsal/perigenual ACC. These concur 

with recent transdiagnostic findings in adult samples showing aberrant activation during 

cognitive control tasks (dACC & aMCC (21)). It is worth mentioning that in children 

diagnosed with a psychiatric disorder, more than half will receive, at least, an additional 

diagnosis than their primary one in the following years (100-105). Also, comorbidity 

rates are higher within externalizing (between CD/ODD & ADHD) and internalizing 

(between DEP and ANX) disorders than between these broad categories. However, it 

remains unknown whether this high comorbidity rate in children is due to a common 

vulnerability (e.g., shared risk factors) or the presence of cross-cutting criteria (e.g., 

impulsivity, neuroticism). Hence, this issue unequivocally needs to be tackled in the 

future. In addition, we observed no significant peak convergence across each of the 

disorder-specific meta-analysis. Indeed, this lack of convergence concurs with results 

from recent meta-analyses which revealed similar results in CD/ODD, ADHD and DEP, 

using a somewhat conservative threshold (p<0.001, cFWE<0.05) (28, 31, 106). These 
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null findings were also observed even when examining specific neurocognitive task 

domains. Despite that this lack of convergence might have been attributable to a number 

of between-study differences (e.g., stimulus, sex effect, statistical threshold, sample size), 

one possibility that deserves careful attention is the within-disorder heterogeneity. 

Indeed, it is generally well accepted that DSM-derived categories comprise subfactors 

that are characterized by different psychological processes (107-112). Thus, this plurality 

in criteria substantially increases the risk of finding distinct set of symptoms while still 

meeting the diagnostic threshold (from 42 [GAD] to 116,200 [ADHD] theoretical set of 

criteria, (113, 114). Therefore, we could not rule out the possibility that increasing the 

sample size in meta-analyses, which also increase the between-sample heterogeneity, 

may reduce the ability to detect robust findings. In sum, irrespectively of the nosological 

categories or task-characteristics, we found 4 significant groups of aberrant brain regions 

in children/adolescent with a psychiatric disorder, which comprised relatively similar 

rates of ADHD, ANX, CD/ODD (and DEP to a lesser extent).  

 

LIMITATIONS 

 First, we performed cluster analysis across pediatric psychiatric disorders and 

across fMRI paradigms. Since there were limited data available to perform domain-

specific analyses, it is possible that our results may have been altered by literature bias 

(see Supplementary Material) concerning the use of particular neurocognitive task 

domains per diagnosis category. However, subanalyses were carried out to examine these 

confound effects. In the following years, as more samples using different tasks domains 

will be available, more precise analyses will be possible. Second, the limited sample size 
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for the ANX samples (k=14) may have explained the null findings in classical disorder-

specific meta-analysis as well as the lack of over/underrepresentation across MAGs. It 

has been recommended that a sample size greater than 17 experiments are required to 

achieve good statistical power in classical meta-analyses. Finally, we used hierarchical 

clustering with spearman correlation as distance measure and average linkage algorithm. 

Although these parameters are frequently utilized in studies using similar meta-analytical 

approaches, it is possible that the most optimal set of parameters would have been 

specific to our study.  

 

CONCLUSIONS 

 In sum, we observed transdiagnostic neural signatures across common pediatric 

psychiatric disorders. More particularly, the identified groups of co-occurrent deficits 

spanned brain regions that share features with internally/externally directed processes, 

emotional lability, somato-motor & visual processes. We also observed that DEP samples 

were less likely to display aberrant co-activation map involving internally/externally 

directed processes, but more likely to exhibit deficits in brain regions implicated in 

attentional control of emotions. Also, these MAGs did not specifically fit particular 

neurocognitive domains. Indeed, they rather involved multiple subprocesses (e.g., Self-

reflective & Execution/Inhibition; Threat system & Attentional Control). Thus, future 

studies may benefit from examining the task-based functional connectivity between 

subprocesses and their relationship between psychopathologies. Our study also 

underscores the need for studying pediatric psychiatric disorders simultaneously rather 
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than independently, as well as studying the within-disorder heterogeneity and the high 

rates of comorbidity among children with psychiatric disorders. 
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Figure 1. Workflow of the current study. Step 1: Creation of a MA map for each experiment, weighted 

by sample size. Step 2: Pairwise Spearman Rho correlation was performed between every MA map. Step 

3: Clustering analysis was performed on the correlation matrix to extract groups of experiments sharing 

similar MA map. Step 4: ALE meta-analysis was conducted on experiments within each group. Phenotype 

assessment was then carried out to investigate under/over-representativeness of disorders, sample and task 

characteristics across identified groups.  
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Figure 2. Hierarchical clustering of aberrant activation maps. This dendrogram represents the final 

hierarchical clustering model which grouped experiment showing similar aberrant activation maps. The 4 

significant meta-analytical groupings (MAGs) represented 90.58% of total sample of experiments: MAG1 

(green) = 21 experiments and 577 subjects; MAG2 (black) = 87 experiments (1848 subjects); MAG3 = 13 

experiments (197 subjects) & MAG4 (cyan) = 12 experiments (278 subjects). 
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Figure 3. ALE meta-analysis on each significant meta-analytical grouping (MAGs). Images are shown 

for left hemisphere (lateral), superior view and right hemisphere (lateral) respectively. ALE images were 

thresholded at p<0.001 at the voxel-level and pFWE > 0.05. Word clouds were generated using BrainMap 

database terms (Behavioral Subdomains & Paradigm). Font size represents Z-score associated with the 

whole MAG (all words are significant p=0.05 with Bonferroni correction). 
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Table 1. ALE meta-analysis results of each significant groups of experiments  

MAGs Clusters Size (mm3) 

MNI 

Coordinates ALE Cluster Breakdown 

X Y Z 
        

MAG1 1 2456 14 46 28 0.0175 R dmPFC (rostrodorsal) 

 2 1152 -16 56 22 0.0154 L dmPFC (caudal) 
 3 1096 -24 -60 -28 0.0177 L Cerebellum (Lobule VI) 

 4 1048 30 40 46 0.0164 R dlPFC 

 5 848 58 -8 -18 0.0216 R MTG/STG 
        

MAG2 1 1352 8 18 40 0.0243 R aMCC (Area 32')/pre-SMA 

 2 1296 -20 -10 -16 0.0272 L Amygdala 
 3 1040 -2 12 22 0.0321 L dACC (Area 24a'-b') 
        

MAG3 1 976 34 -26 52 0.0125 R Pre-/Postcentral gyri (Area 2-3 & 4p) 

 2 800 46 -34 44 0.0133 R Supramarginal gyrus (Area 2, PFt) 

 3 720 -42 -32 42 0.0112 L Postcentral gyrus (Area 2, PFt) 
        

MAG4 1 2336 20 -78 -12 0.0172 R Lingual (h0c3v) 

 2 1224 -18 -66 -24 0.0159 L Cerebellum (Lobule V1) 

 3 968 44 -58 -4 0.0168 R pMTG 

 4 912 -44 -48 -14 0.0151 L pITG 

 5 736 -8 -62 6 0.0186 L Calcarine Cortex 
 6 728 40 -52 -26 0.0155 R Cerebellum (Lobule VI) 

Note. MAG = Meta-analytical Grouping; PFC = Prefrontal Cortex; dmPFC = dorsomedial PFC; dlPFC = dorsolateral PFC; MTG = 

Middle Temporal Gyrus; STG = Superior Temporal Gyrus; aMCC = anterior MidCingulate Cortex; pre-SMA = pre-supplementary 

motor area; dACC = dorsal anterior cingulate cortex; IPL = Inferior Parietal Lobule; SPL = Superior Parietal Lobule; pMTG = posterior 

MTG; pITG = posterior ITG.  
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Table 2. Characteristics of Experiments across meta-analytical groupings 

Characteristics 

Total (n=147)  

MAG1  

(k=21)  

MAG2  

(k=87)  

MAG3  

(k=13)  

MAG4 

(k=12) 

n %  n %  n %  n %  n % 

Nosological Categories              
ADHD 79 53.7%  14 66.7%  43 49.4%  8 61.5%  8 66.7% 

CD 32 21.8%  4 19.0%  17 19.5%  4 30.8%  3 25.0% 

ANX 14 9.5%  3 14.3%  9 10.3%  0 0.0%  1 8.3% 

DEP 22 15.0%  0*† 0.0%  18† 20.7%  1 7.7%  0 0.0% 

Task-contrast Domain               
Cognitive 88 59.9%  10 47.6%  53 60.9%  9 69.2%  10 83.3% 

Response Inhibition 44 29.9%  7 33.3%  29 33.3%  3 23.1%  4 33.3% 

Attention 23 15.6%  1 4.8%  13 14.9%  3 23.1%  3 25.0% 

Emotion 71 48.3%  12 57.1%  42 48.3%  3* 23.1%  5 41.7% 

Positive 17 11.6%  6*† 28.6%  7* 8.0%  0 0.0%  1 8.3% 

Negative 37 25.2%  4 19.0%  24 27.6%  1 7.7%  2 16.7% 

Both 16 10.9%  2 9.5%  10 11.5%  2 15.4%  2 16.7% 

Sample Characteristics               
Medication-Naïve 61 41.5%  14† 66.7%  40 46.0%  6 46.2%  5 41.7% 

Average Med per sample - 26.7%  - 35.2%  - 26.3%  - 19.4%  - 20.9% 

Mixed Sex Sample 95 64.6%  12 57.1%  60 69.0%  7 53.8%  8 66.7% 

Average Boys per Sample - 71.7%  - 77.6%  - 71.4%  - 76.1%  - 61.1% 

Note. * represent significant difference compared to its base rate (one-tailed p<0.05). † represents significant differences between 

MAGs (p<0.05) 
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