
 
   
 

1 
 

Modelling the impact of rapid tests, tracing and distancing in lower-1 

income countries suggest that optimal policies vary with rural-2 

urban settings 3 
 4 
Xilin Jiang 1,2,3, Wenfeng Gong 4 *, Zlatina Dobreva5, Ya Gao 6, Matthew Quaife5, Christophe 5 
Fraser 1, Chris Holmes1,2,7 * 6 
 7 
1 Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of 8 
Oxford 9 
2 Department of Statistics, University of Oxford 10 
3 Wellcome Centre for Human Genetics, University of Oxford 11 
4 Bill & Melinda Gates Foundation, Seattle WA, USA 12 
5  Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, 13 
London, UK 14 
6  Department of International Health, Johns Hopkins University 15 
7 The Alan Turing Institute, London, UK  16 
 17 
*Corresponding authors:  18 
Wenfeng.Gong@gatesfoundation.org  19 

!""#$%%&'()*+',-.,/'012$#'3/'4*)5'!)'6)+$#)7+*1)78'9*)7):*78';$)+$#/'<1=,>?'@*)AB7)'20 

C1B+D'E17"/';D71A7)5'F*%+#*:+G3$*H*)5',...IJ/'4E; 21 

 22 
cholmes@stats.ox.ac.uk  23 
Address: Department of Statistics, University of Oxford, 24–29 St Giles', Oxford OX1 24 
3LB, UK 25 
 26 
 27 
 28 
Disclaimer: The findings and conclusions in this report are those of the authors and do not 29 
necessarily represent the official position of the Bill and Melinda Gates Foundation (BMGF). 30 
 31 
Financial & competing interests disclosure:  32 
Wenfeng Gong is an employee at the Bill and Melinda Gates Foundation. Xilin Jiang and Ya 33 
Gao served as consultants to the BMGF. The authors have no other relevant affiliations or 34 
financial involvement with any organization or entity with a financial interest in or financial 35 
conflict with the subject matter or materials discussed in the manuscript apart from those 36 
disclosed. 37 
  38 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 8, 2022. ; https://doi.org/10.1101/2021.03.17.21253853doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.03.17.21253853
http://creativecommons.org/licenses/by/4.0/


 
   
 

2 
 

Abstract 39 

 40 
Low- and middle-income countries (LMICs) remain of high potential for hotspots for COVID-19 41 
deaths and emerging variants given the inequality of vaccine distribution and their vulnerable 42 
healthcare systems. We aim to evaluate containment strategies that are sustainable and effective 43 
for LMICs. We constructed synthetic populations with varying contact and household structures 44 
to capture LMIC demographic characteristics that vary across communities. Using an agent-45 
based model, we explored the optimal containment strategies for rural and urban communities by 46 
designing and simulating setting-specific strategies that deploy rapid diagnostic tests, symptom 47 
screening, contact tracing and physical distancing. In low-density rural communities, we found 48 
implementing either high quality (sensitivity > 50%) antigen rapid diagnostic tests or moderate 49 
physical distancing could contain the transmission. In urban communities, we demonstrated that 50 
both physical distancing and case finding are essential for containing COVID-19 (average 51 
infection rate < 10%). In high density communities that resemble slums and squatter settlements, 52 
physical distancing is less effective compared to rural and urban communities. Lastly, we 53 
demonstrated contact tracing is essential for effective containment. Our findings suggested that 54 
rapid diagnostic tests could be prioritised for control and monitor COVID-19 transmission and 55 
highlighted that contact survey data could guide strategy design to save resources for LMICs. An 56 
accompanying open source R package is available for simulating COVID-19 transmission based 57 
on contact network models.  58 
  59 
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Introduction 60 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the COVID-61 

19, has rapidly spread worldwide since the end of 2019. 1 Inadequate vaccine distribution and 62 

insufficient healthcare resources have contributed to many low- and middle- income countries 63 

(LMICs) suffering more from the pandemic than affluent countries. 2 Many LMICs rely on 64 

testing, tracing and physical distancing to control and monitor COVID-19, 3,4 such as test, travel 65 

restriction, and testing and tracing programs, given the inequitable distribution of vaccines and 66 

medication. While contributing to COVID-19 control and surveillance, these non-pharmaceutical 67 

interventions (NPIs) may cause considerable damage to the economies as people put their life 68 

and work on hold. 5 Therefore, identifying effective NPIs for LMICs could prepare the 69 

government for new variants and peaks while easing the burden on the economy and society. 4 70 

 71 

Emerging immunity-escaping variants from LMICs alert us to the importance of consistent 72 

surveillance and containment of COVID-19. 6,7 Affordable and effective testing methods are 73 

crucial to reduce the economic burden of LMICs. Many COVID-19 containment policies rely on 74 

the real-time reverse transcription-polymerase chain reaction (RT-PCR), which can be 75 

challenging to implement in LMIC because of the limited clinical resources 8,9 and laboratory 76 

capacities. 10,11 The financial and lab personnel cost of maintaining large scale PCR testing would 77 

put a heavy burden on the vulnerable healthcare systems of LMICs. Therefore, it is essential to 78 

leverage alternative testing methods, such as rapid diagnostic tests (RDT) based on antigen 79 

detection, 12–14 which is cheaper and less resource-demanding. Additionally, community 80 

healthcare workers could perform contact tracing and quarantine to further mitigate the SARS-81 

CoV-2 transmission, which has been implemented successfully during HIV and Tuberculosis 82 

outbreaks. 15 Combining RDT, contact tracing and quarantine, we can increase the testing 83 

capacity, ensure early and accurate detection of infected cases, contain disease transmission, and 84 

reduce the speed of viral mutation accumulation.  85 

 86 

In this study, we evaluated the dynamics of COVID-19 transmission in younger populations that 87 

are typical of LMICs and the effectiveness of testing, tracing and distancing. We constructed 88 

synthetic contact networks using contact numbers and demographic structures in lower-income 89 
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communities. To capture the different infection rates across geographical locations, 16,17, we 90 

simulated SARS-CoV-2 transmission in various contact structures and captured the uncertainty 91 

of the epidemic sizes using bootstrap samples of contact networks.  We evaluated the realistic 92 

combined strategy involving test and tracing using PCR and RDT, advising patients to self 93 

isolate, and physical distancing. Our simulation results suggest the level of containment required 94 

to contain COVID-19 depends on contact frequency in the communities. We also showed that 95 

antigen RDT and symptom-based diagnosis could be deployed in several settings for better 96 

containment outcomes. To help researchers replicate results with demographics that are not 97 

included in our analysis and to update the results using properties of new variants, we released an 98 

open-source R package for contact network based transmission simulation which accommodates 99 

customised parameter settings. 100 

 101 

Material and methods 102 

Processing demographic data  103 

We cited the age distribution and household sizes from the United nation. 18,19  (Supplementary 104 

Table 1) We considered three age groups (0-14, 15-25 and 25+ years old) for simplicity and to 105 

capture the susceptibility of the younger population and contact structure differences between 106 

younger and older groups. We cited the contact survey data from a study in Uganda to compute 107 

age-specific contact matrices and contact distribution within households.20 To compare 108 

geographies that have different contact numbers, we simulated contact networks that correspond 109 

to LMICs using PERC survey data from Africa CDC. 21 When using the contact matrices in 110 

simulation, we scaled the contact matrix to match the average daily contact number under each 111 

setting. (Table 1)  112 

 113 

Agent-based modelling 114 

We used an agent-based model and configured the communities based on the age distributions 115 

and household sizes cited from a Uganda study. 20 We simulated populations using contact 116 

numbers that span a range of African countries. Additionally, we abstracted three representative 117 

community settings that have distinct demographics: (1) a rural community which represent 118 

geographies with low contact rates and medium household sizes; (2) an urban community which 119 
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represent geographies with high contact rates and medium household sizes; (3) a high density 120 

community which represent high contact number and large household sizes, which aim to 121 

capture communities such as slums and squatter settlements. (Table 1) For each setting, we 122 

simulated 20 synthetic populations, where each household was composed of at least one adult 123 

above age 25, and each household was assigned to a location on a two-dimensional plane. The 124 

contact networks for the synthetic population were configured for the corresponding household 125 

structure, age-specific contact matrices, and geographical clustering, using an Exponential 126 

Random Graph Model (ERGM). 22  See Supplemental Methods for details on the ERGM.  127 

 128 

After constructing the synthetic populations with contact and household structure, we randomly 129 

choose one of the 20 synthetic populations and simulated COVID-19 transmission initiated by 130 

importing 2 cases. At each time step of a simulated outbreak, one realised contact network of 131 

ERGM was sampled to represent the daily dynamic of contacts. (Figure 1) Infection events were 132 

sampled among the contacts proportional to the transmissibility multiplied by generation time, 133 

which is a Weibull distribution that has a mode on the day of onset. 23 The day of onset for each 134 

infected individual was sampled from the cited incubation time distribution 24. The susceptibility 135 

of the younger group (0-14 years old) was set to 50% of that of the older group (15+ years old). 136 
25,26 The death rate is set as 1% for the older group (25+ years old) and 0.2% for the younger 137 

group (0-25 years old). 27 Using the age-dependent susceptibility and basic reproduction number, 138 

we computed the next generation matrix and the transmissibility. (Supplementary Methods) At 139 

each infection event, we sampled whether an infected individual is asymptomatic using a 140 

Bernoulli distribution of probability equal to 30%. (Table 1)  For detailed parameterization of 141 

transmission dynamics, see Supplementary Methods.   142 

 143 

We tested if our model reflects the cited contact data and transmission dynamics by comparing 144 

the simulated contact distribution and generation time with the empirical data. (Figure 2) The age 145 

mixing contact matrix generated from ERGM is also compared to the survey data. 146 

(Supplementary Figure 1) We performed simulations that covered the range of contact numbers 147 

collected from Africa CDC. (Figure 3) We cautioned these contact numbers are sampled from a 148 

small proportion of the populations and should not be considered as representing the contact 149 

number for each entire nation.   150 
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 151 

NPI simulation 152 

We evaluated the impact of testing alone and in combination with other NPIs, which include 153 

contact tracing, quarantine, and physical distancing, for LMICs. (Figure 1B) The testing methods 154 

considered were PCR and antigen RDT. We simulated that only individuals with symptoms and 155 

agree to be tested will receive testing. In our simulation, an infected individual with symptoms 156 

will be discovered at a rate which is the product of four parameters: healthcare seeking rate, test 157 

consent rate, sampling success rate and lab sensitivity of the test. Values and sources of testing 158 

parameters were summarised in Table 2. 159 

 160 

Our simulation assumes a test is always performed with close contact tracing and quarantine, 161 

unless specified otherwise. We assumed only close contacts of confirmed cases who consent to 162 

be isolated will be traced. Therefore, the overall quarantine rate is determined by the product of 163 

three parameters: isolation consent rate of the infector, tracing success rate (we assumed a 164 

tracing success rate equal to 100% for members within the same household of the infector), and 165 

quarantine consent rate of the contacts. Physical distancing was modelled by reducing the 166 

number of contacts outside the households. We simulated the effect of physical distancing by 167 

reducing the non-household contact number by 20% to 80% with 20% increments. We 168 

approximate the effective reproduction number Re under physical distancing by scaling Re 169 

proportionally to the average daily contact numbers. 170 

 171 

In addition to individual containment measures, we also evaluated combined strategies based on 172 

current practice of COVID-19 testing. The combined strategies evaluated included 1) symptom-173 

based isolation + PCR testing, 2) symptom-based isolation + antigen RDT, 3) and symptom-174 

based isolation + PCR testing + antigen RDT. (Supplementary Table 3) In practice, it does not 175 

introduce extra cost to suggest individuals who show up at the test centre with symptoms to self 176 

isolate. Therefore we assumed all three containment strategies are accompanied by symptom 177 

based isolation, which has a low compliance rate (20%). All three strategies were replicated with 178 

and without physical distancing for 200 outbreak trajectories to estimate the average daily 179 

incidence number. We simulated each trajectory for 100 days to guarantee that the transmission 180 

extincts within the synthetic population.  181 
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 182 

Sensitivity analysis  183 

We performed sensitivity analyses for a list of parameters that could vary (Supplementary Table 184 

4) and used regression to evaluate the impact of changing these parameters on the epidemic 185 

sizes.  For the baseline conditions, we simulated outbreaks over grids of values for transmission 186 

and demographic variables that are assumed or could not be determined from literature. We 187 

computed R2 using the total infected number as the dependent variable to capture the proportion 188 

of variance explained by each variable. (Table 1). For the intervening conditions, we performed 189 

the same simulations over grids of values for testing and NPI variables. We computed the R2 190 

using infected numbers under three different intervention strategies as the dependent variables 191 

and testing/NPI variables in Table 2 as independent variables.  In total we have 2,028 simulation 192 

settings (3 community settings, 4 containing strategies and 169 values for the variables) which 193 

are listed in Supplementary table 5. For each simulation setting, we simulated 200 simulated 194 

trajectories of 100 days to obtain the bootstrap confidence interval (BCI) of the estimated 195 

infection numbers. 196 

 197 

The code generated during this study is bundled up, with an R-package available at: 198 

https://github.com/Xilin-Jiang/NetworkCOVID19. Please refer to the GitHub page for installing 199 

the package and setting parameters for replicating our results or performing other contact 200 

network based analysis.  201 

 202 

Role of the funding source 203 

The funders had no role in the study design, generating the data, data interpretation, generating 204 

the conclusion, writing of the manuscript, or the decision to submit the manuscript for 205 

publication. The corresponding author had full access to all the data in the study and the final 206 

responsibility for the decision to submit the paper for publication. 207 

Results 208 

Effectiveness of testing and physical distancing  209 
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To investigate the effectiveness of testing and physical distancing under different contact 210 

numbers based on survey data from African CDC. 21  We found moderate physical distancing 211 

(permitting 60% of non-household contacts) could contain the outbreaks for geographies when 212 

the contact number is below 11, with infection rate equal to 15.4% [95% BCI 13.5% - 17.2%]. 213 

(Figure 3B) Notably, for majority of LMIC countries considered, which have more than 20 close 214 

contacts per day, even strong physical distancing alone (permitting only 40% of non-household 215 

contacts) could not protect more than half of the population (infection rate = 53.5% [95% BCI 216 

50.9% - 56.0%]). Only strict lockdown that reduces non-household contact number to 20% of 217 

that of normal could contain the outbreaks. (contact number = 20: infection rate = 5.1% [95% 218 

BCI  4.4% - 5.9%]) 219 

 220 

RDT or PCR alone could only mitigate the transmission in communities with less than 20 221 

contacts, while combined with physical distancing, the mitigation effect increases, with 34.8% 222 

[95% BCI 33.3% - 36.3%]  infection rate under moderate physical distancing. (contact number = 223 

20, non-household contact rate= 60%) The mitigating effect increases as physical distancing gets 224 

stronger, with RDT slightly outperforming PCR tests. When simulating with a contact rate of 13, 225 

we found that using PCR or antigen RDT alone will isolate or quarantine more than 25% of the 226 

population and reduce the proportion of population infected as the isolation compliance rate 227 

increases. (Supplementary Figure 2A) When isolation compliance rates are at optimistic levels 228 

(90%), antigen RDT testing outperformed PCR and reduced the infection rate to 47.4% [95% 229 

BCI 45.8% - 49.1%].  230 

 231 

Combined strategies have varying performance in rural and urban communities 232 

 233 

Motivated by the improved containment effect of combining tests with social distancing, we 234 

further evaluated combined strategies based on practice. Firstly, we assume patients who show 235 

up at the test centre with symptoms will be advised to isolate and told their contact to isolate 236 

(symptome-based isolation), which is modelled at a low compliance rate (Table 2); Secondly, we 237 

assumed a patient could provide sample for both a RDT and a PCR test. To contrast the contact 238 

structure between populations, we focused on three representative communities abstracted from 239 

contact data. We found that the symptom+PCR has approximately similar performance as 240 
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symptom+RDT, while symptom+PCR+RDT has better performance in all three community 241 

settings. (Figure 4A, Supplementary Figure 3) In rural settings, either symptom+PCR or 242 

symptom+RDT could contain the outbreaks (symptom+PCR: 4.3% infected [95% BCI: 3.6% - 243 

4.9%], Supplementary Table 3). In urban settings, symptom+PCR+RDT could suppress infection 244 

rate to 32.6%  [95% BCI: 31.4% - 33.7%], while with physical distancing reduces non-household 245 

contact number by 40%, either symptom+PCR or RDT could contain the outbreaks. Notably, 246 

physical distancing could effectively flatten the curve in urban communities, (Supplementary 247 

Figure 3D) while the effect is less prominent in high density communities. Combined, these 248 

results show that affordable options such as RDT could be sufficient for low-density geographies 249 

similar to the rural settings, whereas testing and tracing programmes need to be combined with 250 

physical distancing to achieve containment in more densely populated areas similar to the urban 251 

settings.   252 

 253 

The distributions of infection rates show substantial uncertainty for rural communities and for 254 

urban communities when physical distancing is in place. (Figure 4A, Supplementary Table 3) 255 

These uncertainties suggest the outbreaks might have substantial variation in the epidemic sizes 256 

even for communities with similar demographics. To quantify the probability that imported cases 257 

do not start an outbreak, we defined the stochastic extinction events as the trajectories that 258 

infected less than 5% of the population. Under the three settings considered, the probability of 259 

stochastic extinction increases when testing, isolation and quarantine are implemented. In rural 260 

settings, symptom+RDT would increase the probability of stochastic extinction from 29% to 261 

70%. In urban settings,  the stochastic extinction events happened in 62% of the trajectories 262 

when physical distancing and symptom+RDT+PCR are implemented, which is a much larger 263 

proportion compared to 0.5% when no NPI is implemented.  In the high density settings, the 264 

stochastic extinction probability remains low even when physical distancing and 265 

symptom+RDT+PCR are all implemented (13.5%). We verified that the probability of stochastic 266 

extinction does not depend on simulated population size. (Supplementary figure 4) The 267 

possibility of achieving high stochastic extinction rates in rural and urban settings suggest 268 

consistent testing, tracing, and physical distancing could reduce the probability of full scale 269 

outbreaks resulting from imported cases.     270 

  271 
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The impact of RDT sensitivity, tracing and assumed parameters  272 

Sampling success rate, antigen loading, and kit technology could all impact on the sensitivity of 273 

antigen RDT. 28,29 When simulating combined strategies with varying antigen RDT sensitivity, 274 

our simulations show that the containment effect increases as the RDT sensitivity increases. 275 

(Figure 4B) To reach a similar containment effect as in Figure 4A, which assumes an antigen 276 

RDT sensitivity of 56% (70% sampling success rate and 80% kit sensitivity), the kits deployed 277 

should have a sensitivity above 40%.  278 

 279 

For the role of contact tracing, we found when the quarantine compliance rate increased from 280 

30% to 100% under the symptom+RDT+PCR strategy, the average infection rate reduced from 281 

15.7% to 9.5% in rural settings, from 53.2% to 36.5% in urban settings, and from 66.5% to 282 

49.5% in high density settings. (Figure 4C) Note only contacts that are of isolated infectors that 283 

are successfully traced are subject to the quarantine. Without close contact quarantine measures, 284 

the combination strategies show no significant effect on reducing infection numbers 285 

(Supplementary Figure 5). Moreover, we found that the number of infected individuals 286 

discovered by testing is less than those discovered by contact tracing when the contact quarantine 287 

compliance rate is above 25%. (Supplementary Figure 6A) 288 

 289 

The impact of other testing parameters on the containment outcomes are summarised in 290 

Supplementary table 3 using R2 and P-values (Supplementary Methods Section 4). Among these 291 

parameters, strong correlation between isolation consent rates and containing effectiveness are 292 

observed for all strategies and settings. Days from symptom onset to isolation, quarantine 293 

consent rate of contacts and tracing success rate are correlated with containing effectiveness in 294 

urban and high density settings, while less impactful in the rural settings. Additionally, we found 295 

that starting testing and quarantine after 10% of the population are infected could protect 31% of 296 

the healthy population under urban settings and 21% of the healthy population under the high 297 

density settings (Supplementary Figure 4B).  298 

 299 

Discussion 300 
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After two years since the beginning of the COVID-19 pandemic, special attention needs to be 301 

paid to LMICs as they suffer the most from global health inequality. Low vaccination rates and 302 

vulnerable health care systems in these countries could lead to overwhelming outbreaks and 303 

harbour new variants. 6,7,30 Our primary goal is to prioritise tools for LMICs to protect themselves 304 

against COVID-19, where we highlighted four interconnected elements: community knowledge, 305 

RDT, physical distancing, and contact tracing. These elements could be utilised to address two 306 

pressing challenges in LMICs. Firstly, how to design a cost-effective strategy for LMICs to 307 

reduce the financial burden of controlling the transmission of COVID-19? Secondly, how to 308 

design setting-specific surveillance or containment programmes that account for geographical 309 

variability in LMICs 17,31,32? We argue that community knowledge about demographics and 310 

contact structure is a valuable resource that could facilitate government decision making. For 311 

example, if a community is known to be densely populated and have crowded households, our 312 

results suggest that physical distancing is expected to be less effective there. As another example, 313 

if survey data suggested some communities have less indoor contacts than average, we would 314 

expect a light containment strategy such as mild physical distancing alone could work 315 

effectively, thus saving resources from an over-stringent strategy. In practice, policy makers 316 

could perform contact surveys in representative communities and use them to construct a 317 

classification system. Our analyses present the trends of transmission dynamics and containment 318 

effectiveness across different contact numbers and demographics. When used in combination 319 

with community knowledge, our results could guide policy design that achieves the best 320 

outcomes while saving resources.       321 

 322 

Antigen RDT has several desirable properties for application in LMICs. It is cheap, easy to 323 

distribute, has quick turnarounds, and doesn’t require lab facilities. LMICs require consistent 324 

containment to protect their health systems from being overwhelmed, which makes RDT an ideal 325 

choice to avoid huge financial costs. Specifically, RDT might be prioritised in resource-limited 326 

regions where contact number is low and performing PCR tests is prohibitive. Though containing 327 

power subjects to the test sensitivity and community scenario, our results suggested high quality 328 

kits that have a sensitivity above 50% will provide similar containment power shown in the 329 

simulation. However, the detrimental effect of false negative and false positive results might 330 
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negate the containment effects. 33 We suggest real world RDT application should be 331 

accompanied by careful sensitivity and false positivity evaluation.  332 

 333 

We also want to emphasise that policy design should serve its goals. If aiming at a zero-COVID 334 

policy, such as those deployed by China (as of March 5th, 2022), our results show that contact 335 

tracing is an essential element to implement, which relies on abundant personnel and quarantine 336 

capacities. However, if the goal is to flatten the curve to avoid overwhelmed health systems, 337 

mild-physical distancing is an effective measure which saves resources and might serve the 338 

young population of LMICs better. If the goal is to monitor the transmission for early alarm of 339 

new variants and prepare for outbreaks, mass RDT tests could detect abnormal outbreaks that 340 

link to new variants and auxiliary PCR tests could monitor prevalence of each variant. 341 

Successful containment strategy should apply community knowledge to serve the goal, whether 342 

it is suppressing, delaying, or monitoring the transmission of COVID-19.  343 

 344 

There are some limitations in our study. Firstly, our simulated population is an approximation to 345 

the communities in LMICs and is limited by the available empirical evidence from LMICs. 346 

Therefore, to apply our results to specific geography requires knowledge of the target population, 347 

including demographic and contact information. Secondly, like many simulation studies, we had 348 

to choose our parameters from empirical studies that are not consistent with each other. 34  This 349 

difficulty is most pronounced when we are setting the parameters for age-dependent 350 

susceptibility and asymptomatic rate of the infected. Lastly, Compared to simulations on larger 351 

networks that involve more sophisticated configuration such as schools and shopping malls, 35 352 

our strategy might not capture superspreading events that were reported. Future development of 353 

approximation methods might provide comparable accuracy while scaling to large populations.  354 
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https://github.com/Xilin-Jiang/NetworkCOVID19  362 
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Tables and Figures 373 

 374 

Parameter 
Sensitivity analysis range  Coefficient of determination 

References 

Rural Urban High density Rural Urban High density  

Population size 1000 0.005 (P = 0.222) 
0.001 (P = 

0.604) 

0.009 (P = 

0.109) 
36 

Number of initial 

infected patients 
2 0.24 (P = 0) 0.064 (P = 0) 0.022 (P = 0) Assumed 

Daily close contact 

number  
7 13 14 0.879 (P = 0) 0.806 (P = 0) 0.855 (P = 0) 20,37 

Average household 

size and 

distribution 

5 (Uganda) 5 (Uganda) 15 (India) NA 18,38 

Percentage of 

contact between 

members of the 

same household 

50% 23% 50% 0.001 (P = 0.381) 0.173 (P = 0) 0.199 (P = 0) 20,37 

Asymptomatic 

proportion  
30% (10%-90%) 0.001 (P = 0.22) 0 (P = 0.634) 0 (P = 0.887)  39,40 

Asymptomatic 

infection rate 
20% (10%-90%) 0 (P = 0.4) 

0.001 (P = 

0.119) 

0.002 (P = 

0.066) 
 Assumed 

Healthcare seeking 

rate  
70% 60% 0.001 (P = 0.403) 0 (P = 0.649) 

0.002 (P = 

0.176) 
Assumed 

Basic reproduction 

number (R0) 
1.45 2.7 2.9 NA 41 

Susceptibility for 

younger population 

(< 15 years old) 

50% NA 26 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 8, 2022. ; https://doi.org/10.1101/2021.03.17.21253853doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.17.21253853
http://creativecommons.org/licenses/by/4.0/


 
   
 

15 
 

Death rate for each 

age group 

0.2% (0-14 years old);  

0.2% (15-24 years old); 

1% (25+ years old); 

NA 27 

 375 

Table 1: Summary of population characteristics and transmission parameters and their impact on 376 

transmission. For parameters where the source is not available for at least one of the three 377 

community settings, we simulated models with different choices of values and used regression to 378 

evaluate their impact on model outputs. (Supplementary Table 4, Supplementary Methods 379 

Section 4) The coefficient of determination (R2) shows the proportion of variance in the infected 380 

number that is captured by the parameter; The P-values in the parentheses show the rate of type 381 

one error of rejecting the null hypothesis that the parameter is not correlated with infection 382 

number. Last column shows the sources for cited parameters. 383 

 384 

Parameter Symptom PCR Antigen RDT Data source 

Test consent rate 100% 80% Assumption 

Isolation consent rate 20% 90% Assumption 

Days from symptom onset 
to isolation (days) 1 5 1 Assumption 

Duration that close 
contacts are traced (days) 3 5 3 Assumption 

Tracing success rate (non-
household contacts) 85% 80% 85% Assumption 

Quarantine consent rate of 
contacts 50% 70% Assumption 

Sampling success rate NA 70% 29,42,43 

Lab sensitivity NA 100% 80% (10%-90%) 28,29,44 

Transmission rate after 
quarantine  Rural: 10%;  Urban: 10%; High density: 20% Assumption 

 385 

Table 2: Summary of testing and NPI parameters. Last column shows the sources for cited 386 

parameters; values of assumed parameters are used in the containment simulations in Figure 3 387 

and Figure 4, while separate sensitivity analyses are performed for each assumed parameter 388 

(Supplementary Table 3 and Supplementary Table 4). For rationales behind the chosen value for 389 

assumed parameters, see Supplementary Methods.  390 
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 391 
Figure 1: Schematic representation of methodology. A) For each parameter setting we simulated 392 

20 synthetic populations and inferred the contact network with ERGM, using age- and 393 

household-structured contact data. At each simulation step, a contact network is sampled from 394 

the ERGM, where we simulate the transmission of SARS-CoV-2. B) We evaluated the effect of 395 

physical distancing by reducing the sampling probability of non-household contacts. Testing, 396 

isolation, contact tracing, and quarantine are also simulated using the contact networks.  397 

 398 
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 399 
Figure 2: Properties of simulated outbreaks from the agent-based model. A) Example outbreak 400 

in a network composed of 1000 individuals, simulated under the urban setting without NPI. The 401 

left, middle and right panel show the distributions of infected individuals (red dots) on day 20, 402 

day 30 and day 40 from the day that initial cases are imported. For visualisation purposes we fix 403 

the network structure across days here, while in our analysis a different contact network is 404 

sampled each day. B) Comparison of the simulated contact number distribution with those 405 

computed from the cited Uganda survey data.24 The simulated contact number distribution is 406 

computed by sampling 100 daily contact realisations from each of the 20 synthetic populations. 407 

C) Comparison of generation time from simulation (red histogram) and that from cited Uganda 408 

survey data 24 (blue dotted curve).  409 
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 410 
Figure 3: Evaluation of containing strategies. A) Example of case finding and quarantine in one 411 

simulated outbreak trajectory with NPIs, where a moderate physical distancing reduces 40% of 412 

the contact outside the household and symptom+PCR testing is performed. The network 413 

structure is fixed for visualisation, while in simulation a contact network is different each day. B) 414 

Social distancing and tests have different containing effects over different geographies. Synthetic 415 

populations were constructed using a grid of contact numbers that covers several reference 416 

LMICs. Left panel shows simulation with different levels of physical distance, indicated by the 417 

percentage of non-household contacts that are still permitted (no physical distancing: 100%; 418 

strongest physical distancing: 20%).  The middle and right panel shows physical distancing 419 

combined with PCR or RDT tests respectively. The size and colour of the circle shows the mean 420 
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of infection rate of 200 simulated outbreaks. Numbers and quantiles of the distribution are in 421 

Supplementary Table 2.  422 

 423 

 424 
Figure 4: The impacts of testing strategies, sensitivity, and compliance rate on epidemic size 425 

vary with community settings. A) Infection rates under different combined strategies and in three 426 

abstracted community settings. Each dot represents one 100-day simulated outbreak and each 427 

box presents 200 simulated outbreaks, throughout all panels. Green boxes represent simulation 428 

with physical distancing (60% non-household contact permitted) and orange boxes show those 429 

without physical distancing. The quintiles of infection rate and mortality rate are summarised in 430 

Supplementary Table 3. B) Infection rates for each community setting when applying antigen 431 

RDT of various sensitivity. The blue boxes show the infection rate when applying the most 432 
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effective testing strategy identified in the upper panel, with different antigen RDT sensitivity. C) 433 

Infection rates for each community setting when different quarantine compliances rates of traced 434 

contacts are simulated. The blue boxes show the infection rates when simulating containment 435 

using the most effective testing strategy identified in the first panel.  In all three panels, one dot 436 

represents the epidemic size of one bootstrap trajectory. The red dashed line shows an infection 437 

rate at 5%, dots below which are defined as stochastic extinction events. 438 

 439 

  440 
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Supplementary Tables and Figures 441 

 442 
Supplementary Table 1: Summary of the demographic information used in the study. We used 443 

the age and household size distributions from Uganda, except for the household size distribution 444 

in high density communities, where we used data from Afghanistan, which has the largest 445 

average household size recorded by the United Nations. 18,19 446 

 447 
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 448 
Supplementary Table 2: Summary of the distributions of infection rates for that of Figure 3B. 449 

The mean of infection rates is computed from 200 simulated trajectories of 100 days for each 450 

setting. The range in the bracket shows the 10% and 90% quantiles of the infection rates from the 451 

200 bootstrap sample trajectories.  452 

 453 
Supplementary Table 3: Summary of the distributions of infection and mortality rate for three 454 

community settings. The mean of infection rate and mortality rates is computed from 200 455 

simulated trajectories of 100 days for each strategy. The range in the bracket shows the 10% and 456 

90% quantiles of the infection rates from 200 bootstrap samples.  457 

 458 

 459 

 460 

 461 

A) 462 
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 463 
B) 464 

 465 
C) 466 
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 467 
Supplementary Table 4: The impact of NPI parameter setting on the effectiveness of 468 

containment. Panel A-C shows sensitivity analysis under rural, urban and high density settings. 469 

The coefficient of determination (R2) shows the proportion of variance in the final infected 470 

number (under each containing strategy) that is captured by the testing parameters; The P-values 471 

in the bracket show the rate of type one error of rejecting the null hypothesis that the parameter is 472 

not correlated with outcome. 473 

 474 

 475 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 8, 2022. ; https://doi.org/10.1101/2021.03.17.21253853doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.17.21253853
http://creativecommons.org/licenses/by/4.0/


 
   
 

25 
 

 476 
Supplementary Table 5: Parameter settings for sensitivity analysis. The Description explains 477 

what variables are changed and rows contain the values of  each variable used for simulation. For 478 

each value we performed the simulation for baseline and three types of containing strategies 479 

under the rural, urban and high density settings.  480 

 481 

 482 

 483 
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 484 
Supplementary Table 6: Lack-of-fit test for the ERGM inference. We performed lack-of-fit 485 

tests of the target statistics for the four variables that alter the ERGMs. IDs correspond to 486 

Supplementary Table 3. For each value (bold), we compute the P-value by comparing the 20 487 

fitted networks with the input to the ERGMs. * shows the cases when the networks are rejected 488 

as good fits.  489 

 490 

 491 

 492 

 493 
Supplementary Figure 1: Comparison of fitted age-mixing contact matrix with those cited from 494 

survey data. The color scale shows the total number of contacts for each mixing within the 495 

populations.  496 

 497 

 498 
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 499 
Supplementary Figure 2 A) Proportion of populations that are infected (at the end of the 500 

trajectories) and under quarantine (max value throughout the trajectories) using PCR and antigen 501 

RDT as detection methods. The dots with bars show the mean value with 95% confidence 502 

interval from 200 simulated trajectories for each isolation compliance rate. B) Proportion of the 503 
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population infected when physical distancing blocks different proportions of non-household 504 

contacts. The box shows the corresponding effective reproductive number for the level of 505 

physical distancing. The combined effect of physical distancing with each testing method shown 506 

in B is plotted with different colours. 507 

 508 
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 509 
Supplementary Figure 3: Summary of averaged outbreak trajectories in rural, urban and high 510 

density settings. A-B) Averaged trajectories of outbreaks under rural setting and those with three 511 
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NPI containing strategies. Left panel shows the simulation without physical distancing and the 512 

right panel shows simulation with a physical distancing that blocks 40% of non-household 513 

contacts.  C-D) Same averaged trajectories under urban setting; Left panel shows simulation 514 

without physical distancing and right panel shows simulation with a physical distancing that 515 

blocks 40% of non-household contacts. E-F) Same averaged trajectories under high density 516 

community setting; Left panel shows simulation without physical distancing and right panel 517 

shows simulation with a physical distancing that blocks 40% of non-household contacts. The 518 

curves are the mean value of daily infected numbers for a synthetic population of 1000; The 519 

shaded area indicated the 95% confidence interval of the estimation; Both mean and confidence 520 

intervals are computed from 200 simulated outbreaks. 521 

522 
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 523 
Supplementary Figure 4:  Probability of stochastic extinction against simulated population size 524 

under the rural setting. 200 bootstrap outbreaks were simulated for each population size, with 525 

stochastic extinction probability computed as the proportion of outbreaks that have less than 50 526 

cases at the end of the 100th day.    527 

 528 

 529 
Supplementary Figure 5: Averaged trajectories when no close contact tracing is performed 530 

under rural, urban and high density settings. The curves are the mean value of daily infected 531 

numbers for a synthetic population of 1000; The shaded area indicated the 95% confidence 532 
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interval of the estimation; Both mean and confidence interval are computed from 200 simulated 533 

outbreaks. 534 

 535 

 536 
Supplementary Figure 6: Evaluation of close contact tracing and delayed responses. A) 537 

Proportion of total infected individuals who are either isolated by testing (red dots) or 538 

quarantined by tracing (green dots) varies as the compliance rate of quarantine a close contact of 539 

a confirmed case changes. B) Implementation of containing measures after a certain proportion 540 

of the population was infected could still protect a proportion of the population, compared to the 541 

circumstances with no intervention. All simulations are performed for rural, urban and high 542 

desnity settings. 543 

 544 

 545 

 546 
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