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Abstract

Modeling the dynamics of COVID-19 pandemic spread is a challenging and relevant
problem. Established models for the epidemic spread such as compartmental epidemio-
logical models e.g. Susceptible-Infected-Recovered (SIR) models and its variants, have
been discussed extensively in the literature and utilized to forecast the growth of the
pandemic across different hot-spots in the world. The standard formulations of SIR
models rely upon summary-level data, which may not be able to fully capture the
complete dynamics of the pandemic growth. Since the disease spreads from carriers to
susceptible individuals via some form of contact, it inherently relies upon a network
of individuals for its growth, with edges established via direct interaction, such as
shared physical proximity. Using individual-level COVID-19 data from the early days
(January 30 to April 15, 2020) of the pandemic in India, and under a network-based
SIR model framework, we performed state-specific forecasting under multiple scenarios
characterized by the basic reproduction number of COVID-19 across 34 Indian states
and union territories. We validated our short-term projections using observed case
counts and the long-term projections using national sero-survey findings. Based on
healthcare availability data, we also performed projections to assess the burdens on
the infrastructure along the spectrum of the pandemic growth. We have developed an
interactive dashboard summarizing our results. Our predictions successfully identified
the initial hot-spots of India such as Maharashtra and Delhi, and those that emerged
later, such as Madhya Pradesh and Kerala. These models have the potential to inform
appropriate policies for isolation and mitigation strategies to contain the pandemic,
through a phased approach by appropriate resource prioritization and allocation.

Keywords : Compartmental Models, COVID-19, Forecasting, Network Dynamics, Net-
work Modeling.
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1 Introduction

Since the first reported case on November 17, 2019, in Hubei, China, the severe acute
respiratory syndrome Coronavirus 2 (SARS-CoV-2), commonly referred to as Coronavirus
Disease 2019 (COVID-19), has spread to more than 209 countries and territories. COVID-
19 has afflicted more than 105 million people — resulting in over 2.6 million deaths [as
of March 7, 2021, end of day], sending billions into lockdown and ravaging economies and
healthcare infrastructure with each passing day. This is a pandemic at a scale that the living
generation has rarely seen. The novel viral strain, SARS-CoV-2, is highly contagious and
hence spreads easily when humans come in close contact. This motivates a closer ad rem
look at the inherent dynamics of the spread at a micro-scale which can help assess its multi-
fold ramifications on the cultural, economic and health infrastructures. Using COVID-19
individual-level data and a contact network framework in the initial stages of the pandemic
in India, we attempted to answer some critical questions to inform a phased approach to
dealing with the pandemic by appropriate resource prioritization and allocation.

At a fundamental level, epidemics spread over a human to human network — where
carriers spread the contagion by coming in contact with other people. A simple illustration is
available in Figure 1, where the population-level network consists of 100 individuals (nodes),
and they are potentially connected among themselves via edges that are meant to simulate
human to human interactions. The blue, red and green nodes indicate individuals in the
susceptible (“at risk”), infected and removed (recovered or deceased) states, respectively.
A transition from the susceptible to the infected state may happen if a susceptible node
is connected to an infected node, akin to an uninfected individual coming in contact with
an already infected individual. The changing composition of the nodes over time exemplify
the typical spreading mechanism of an infectious disease like COVID-19. Such networks are
established through various channels such as social and professional interactions, transport
and travel or simply any form of shared physical proximity. As shown in Figure 1, where
nodes represent hypothetical individuals, the dynamics of spread of the disease is exhibited
across time intervals. Established models for epidemic spread, which are further discussed in
Section 2, assume random and homogeneous mixing between individuals, which might not be
realistic since the general population has defined organizational units (geographical, social
etc.) and individuals tend to interact within their sphere of influence. These “links” between
individuals form a network and contagions spread along the infection paths wired along these
networks. Containment procedures such as lockdowns, social distancing, smart quarantines
effectively break this human to human “link” to disconnect the infected network, and hence
confine and reduce the spread. Subsequently, using contact networks developed with high
geo-specificity and resolution, one can learn specific spread mechanisms and inform precise
action planning for mitigation and building health care capacities.

The India context India is a large democracy with a population of >1.3 billion1. The
federal union of India consists of 28 states and 8 union territories, majority of which are
contiguous2. The first confirmed COVID-19 case in India was reported on January 30,

1https://knowindia.gov.in/profile/population.php
2https://knowindia.gov.in/states-uts/
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20203. As per the data released by the Ministry of Health and Family Welfare, Government
of India, till the end of March 7, 2021, the cumulative number of confirmed cases in India was
more than 11.2 millions, with a little more than 180,000 out of those cases still being active
and more than 157,000 of the confirmed cases having been deceased4. The large population
size and high population density of India rendered it to be on a potentially vulnerable ground
from day one. While the eventual fatality rates are relatively low (1.45%, compared to a
global fatality rate of 2.2%)5, a large population consisting of several significantly sized sub-
populations with known co-morbidities had spelled potential troubles for India from the very
beginning (Gupta et al., 2011; Arumugam et al., 2020). At the time of the genesis of this
project, in early March 2020, the first set of hot-spot Indian states like Kerala, Maharashtra,
and Delhi were experiencing rising counts of cases while a number of other states were only
beginning to have a surge in their relatively lower case numbers till date.

To address some of these challenges, we formed a study group consisting of researchers
from India and United States with the goals to use regional-level data to forecast the number
of infections, identify potential hot-spots and recognize how this delineation could potentially
inform a phased approach for deploying healthcare capacity across the different states, in
the early stages of the pandemic. We utilized individual-level (location-informed) crowd-
sourced data from publicly available databases for a total of 34 states and union territories
of India across the dates of January 30 to April 15, 2020, covering a total of around 12,000
confirmed cases. Due to governmental restrictions, the individual-level data with location
information were not updated after April 27, 2020, and therefore our network-based analyses
could not be performed for the later stages of the pandemic in India. A sample location-
based network covering the data used is presented in Figure 2. This figure presents all the
individual COVID-19 infected patients who are included in the data used for our analyses,
with their location information being used to plot them on the map. More details about the
data are discussed in Section 4.

In this work, we have gone beyond standard compartmental models for epidemiological
modeling via incorporating an underlying network structure among the individuals, respect-
ing their spatial distribution, along with taking into account the population density of respec-
tive regions. Besides giving predictions on the number of cases, the network-based analyses
for different states and geographical regions provided vital clues for isolation and mitigation
strategies for containment of the disease. Specifically, the harsh but necessary strategies like
a complete lockdown in the earlier stages of the pandemic, and continued advice on social
distancing practices were scientifically validated via our study. We also had several local and
national media cover our work. The interactive Shiny application also helped immensely
in making demonstrations to the concerned policy makers (e.g. Government officials) and
researchers (e.g. public health foundations and institutes) in various Indian states.

The structure of the paper is as follows. In Section 2, we present a brief review of
compartmental models in epidemiology, followed by extension of these models in case of
network-based inference in Section 3. In Section 4, we present our case study for India,
where we describe the available data sets, followed by network-based forecasts for different

3https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1601095
4https://www.covid19india.org/
5https://www.worldometers.info/coronavirus/
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states. We also present healthcare forecasting in India to assess the healthcare system in
place and provide necessary projections for beefing up the infrastructure. We also describe
the Shiny application that we have developed in this context. Finally, in Section 5, we
provide some discussions on our work including limitations of the study and some potential
future directions.

2 Compartmental models in epidemiology

One of the widely studied procedures for modeling epidemiological data is using compart-
mental models (Kermack and McKendrick, 1927). In these class of models, the population
is classified into several classes, or compartments, based on the stage of the infection that
is affecting them. These models are primarily governed by a system of ordinary differential
equations that take into account the time-discoursed infection status of the population com-
partments. The simplest of such classifications has two population groups, namely, suscep-
tible, and infected. The corresponding epidemiological models, like the Susceptible-Infected
(SI) model or the Susceptible-Infected-Susceptible (SIS) model, take only the aforementioned
compartments into account to model the infection dynamics. For a particular disease or in-
fection, the susceptible compartment comprises of those people in the population who are
non-infected, but have a potential to catch the disease. On the other hand, the infected
compartment comprises of those who have the infection at that given point of time and
with a potential to infect others. We now briefly discuss the basic compartmental models
alongside explaining the various other compartments and the system of ordinary differential
equations (ODEs) governing them.

2.1 SI and SIS models

As mentioned earlier, the SI model in the simplest of the compartmental models in epi-
demiological modeling. This model assumes that all the members of a given population
are susceptible to an infection. In the event that a susceptible individual gets infected, the
status of that individual changes to being infectious, and that status is retained throughout
their life. One supreme example of such disease is the Cytomegalovirus (CMV), a genus that
includes the species Human betaherpesvirus 5 or HHV-5 that affects humans. This infection
has the ability to remain latent within the human host (Landolfo et al., 2003).

We denote the total population size by N , and the number of susceptible and infected
individuals at time t by S(t) and I(t) respectively, so that N = S(t) + I(t). The SI model
dynamics is given as

dS(t)

dt
= −βS(t)I(t)

N
,

dI(t)

dt
= β

S(t)I(t)

N
= βI(t)

(
1− I(t)

N

)
. (1)

The parameter β denotes the infectious rate, defined as the probability of an infectious
individual transmitting the infection to a susceptible individual. Denoting the fraction of
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the population that are susceptible or infected as s(t) = S(t)/N, i(t) = I(t)/N respectively,
the SI model has an explicit solution given by

i(t) =
i(0) exp(βt)

1− i(0) + i(0) exp(βt)
. (2)

If we monitor the growth in the number of infections with time, the above solution gives
that for t→∞, i(t)→ 1, so that eventually the entire population becomes infected.

For diseases where an infected individual becomes susceptible to be re-infected, the SIS
model is used. Such diseases include infections caused by rhinoviruses (common cold) (Jacobs
et al., 2013), and sexually transmitted bacterial diseases like Chlamydia and Gonorrhea
(Hosenfeld et al., 2009). The disease dynamics are given as

dS(t)

dt
= −βS(t)I(t)

N
+ δI(t),

dI(t)

dt
= β

S(t)I(t)

N
− δI(t). (3)

Observe that apart from the previously defined infectious rate β, there is another parameter,
δ, that defines the rate at which infectious individuals return to the state of being susceptible.
Explicit solution to the above model is available as well, which is given by

i(t) =

(
1− δ

β

)
C

C + exp(−(β − δ)t)
, (4)

where C = βi(0)/(β − δ − βi(0)). For β > δ, we get a logistic growth curve similar to
the SI model. However, unlike the basic SI model, in this case the entire population is not
infected, and the infectious fraction approaches (1−β/δ) as t→∞. This is referred to as the
endemic state of the disease, where a certain fraction of the population always stay infected.
If β < δ, the infections decay to zero exponentially. Hence the threshold value of β/δ acts
as the endemic threshold which governs whether the disease will become an endemic or will
eventually die out.

2.2 SIR and SIRS models

When an infected individual gains total immunity against the disease, they enter the com-
partment of being recovered, without any chance of getting re-infected, possibly via vacci-
nation. In such cases, the Susceptible-Infected-Recovered (SIR) model is used. Examples
include airborne diseases like mumps, measles, rubella, and whooping cough (pertussis). In
cases of infections like seasonal flu, where the immunity diminishes with time, a recovered
individual becomes prone to re-infection, in which case the SIR model can be extended to
the SIRS model. We discuss the dynamics below. Note that with the introduction of a new
compartment of recovered individuals (denoted by R(t)), we need to specify the recovery
rate (γ). The SIR model is given by

5
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dS(t)

dt
= −βS(t)I(t)

N
,

dI(t)

dt
= β

S(t)I(t)

N
− γI(t),

dR(t)

dt
= γI(t). (5)

The probability distribution of the duration of infection τ , which is defined as the length
of time an infected individual remains infected before entering the recovered compartment,
is given by an exponential distribution with mean γ. This gives the mean infectious time
as 1/γ. The solution to the above model does not have an explicit form, and simulation
based procedures are used to arrive at the solution. It is interesting to explore the size of
the outbreak r∞, given by limt→∞ r(t). It satisfies the expression r∞ = 1− e−r∞β/γ. Notice
that if β/γ ↓ 1, then the size of the epidemic goes to zero, and dies out if β < γ. The
transition that happens where β = γ is referred to as the epidemic transition. In this regard,
we can see the role that is commanded by the ratio β/γ. To explore it with more depth, we
need to introduce the concept of basic reproduction number, denoted by R0. R0 is defined as
the average number of secondary infections produced by an infected individual during the
latter’s infectious period. In case of the SIR model, this can be calculated as R0 = β E(τ),
which is given by

R0 = β E(τ) = β

∫ ∞
0

γτ exp(−γτ) dτ = β/γ. (6)

Hence, the disease remains in the epidemic state if R0 > 1, and ceases to be an epidemic when
R0 drops below unity. For a recovered individual being susceptible again, we need a new
parameter, known as the re-infection rate (ξ), that controls the rate at which re-infections
can occur. The resulting SIRS model dynamics is given by

dS(t)

dt
= −βS(t)I(t)

N
+ ξR(t),

dI(t)

dt
= β

S(t)I(t)

N
− γI(t),

dR(t)

dt
= γI(t)− ξR(t). (7)

2.3 SEIR model

Incubation periods play a vital role in disease dynamics in several infectious diseases. In
cases like influenza-type infections, a susceptible individual may get infected, but does not
immediately move to the infected compartment owing to latency in the infection and hence is
not immediately infectious (Group, 2006). In such cases, a new compartment is introduced,
namely exposed (E), which acts as a middle step between the susceptible and infected com-
partments. This leads to an increased complexity of the SIR model, leading to a SEIR model.
The dynamics are given as

6
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dS(t)

dt
= −βS(t)I(t)

N
+ ξR(t),

dE(t)

dt
= β

S(t)I(t)

N
− σE(t),

dI(t)

dt
= σE(t)− γI(t),

dR(t)

dt
= γI(t). (8)

The incubation rate σ depends on the average latency period of the infection L(= 1/σ). This
parameter controls the rate at which an infected individual becomes infectious.

Apart from the aspect of compartmentalization, the models discussed above rely heavily
upon the assumption of homogeneous mixing, that is, each susceptible individual has equal
chance of coming in contact with an infected individual, and hence having the potential to
get infected. However, this assumption is very strong, and heavily depends on the nature
of infection spread. For example, in case of SARS-CoV-2, the primary mode of spread
is through respiratory droplets having a high volume of viral load. Aerosol transmission,
though has a low viral load, contributes to infection spread. Other modes include fomites
(surface transmission) and airborne transmission. In the latter case, recent research findings
show that the virus can stay in the air for as long as 16 hours (Fears et al., 2020). For more
details on modes of transmission, we refer the readers to the scientific brief provided by
the World Health Organization (WHO) titled ‘Transmission of SARS-CoV-2: implications
for infection prevention precautions’6. Thus, the infection can only spread via a contact
network. Hence it is more appropriate to define the compartmental models over a network
of contacts, and explore the network topology to model the spread of the disease. In the next
section, we shall discuss epidemiological modeling over a network, that is precisely aimed to
capture these phenomena.

3 Network-based epidemic models

In mathematical terms, a network is represented by a graph G = (V,E), where V denotes
the set of nodes or vertices and E denotes the set of edges connecting the nodes. We shall
work with undirected edges, where there is no particular sense of directionality in the edges
between any pair of nodes in V . The adjacency matrix corresponding to G is given by a
binary matrix A, where the (i, j)-th element of A is given by Aij = 1 if (i, j) ∈ E, and
0 otherwise. The degree di of the node i is defined as the number of edges having node
i as one of the end-points. Mathematically, we have, di =

∑
j Aij. The starting point of

modeling a disease over a network is to first construct the adjacency matrix corresponding
to the network. We briefly present the modeling fundamentals over a network structure; for
further details we refer the readers to (Newman, 2002, 2018) and references therein.

6https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-

implications-for-infection-prevention-precautions
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To model disease dynamics over a network, we need to model the probabilities of the
nodes in the network to be in different disease compartments over time. We shall discuss
the dynamics of the network-based SIR model in this context. Other related models (like
the SI, SIS, SEIR models) over a network are defined similarly. Let us define:

(a) si(t): probability that node i is in the susceptible state at time t,

(b) xi(t): probability that node i is in the infected state at time t, and,

(c) ri(t): probability that node i is in the recovered/deceased state at time t.

The transmission of infection from an infectious node to a neighboring susceptible node
is modeled as a Poisson process with mean β, whereas an infected node recovers as a Poisson
process with mean γ. The disease dynamics of the network-SIR model is then given by

dsi(t)

dt
= −βsi(t)

∑
j

Aijxj(t),

dxi(t)

dt
= βsi(t)

∑
j

Aijxj(t)− γxi(t),

dri(t)

dt
= γxi(t). (9)

The solution to the above model is approximately given by

x(t) ∼ v1 exp{(βλ1 − γ)t}, (10)

where λ1 denotes the maximum eigenvalue of A and v1 is the corresponding eigenvector.
Notice that the underlying network plays an important role in driving the dynamics of the
spread of the infection. For a very dense network, with each node having a high degree,
the value of λ1 will be large, so that even for a small value of β, the disease can spread
exponentially fast. On the other hand, for a sparse network, the maximum eigenvalue λ1
would be small, so that, for the disease to spread, the infection rate β must be very large
and the recovery rate γ must be very small. Hence it is difficult for the infection to spread
in sparse networks. This phenomenon illustrates the scientific principle behind isolation
strategies and lockdowns as mitigation procedures in the early stages of a pandemic to
curtail the spread of the disease in a given population.

For an arbitrary network with a given degree distribution over the vertex degree d, the
basic reproduction number R0 in case of the network SIR model can also be explicitly
calculated as,

R0 =
β

β + γ

(
E(d2)

E(d)
− 1

)
, (11)

where the expectation is taken with respect to the degree distribution of the network (An-
dersson, 1998). For a homogeneous network where variability in the degree distribution is

8
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low, the reproduction number is low as well. In contrast, for high levels of degree heterogene-
ity, there are increased chances of ‘super-spreaders’ in the network that can infect a large
number of nodes quickly, so that the disease spread becomes more pronounced. This makes
the usage of network models more effective, in the sense that if we can trace and isolate
these ‘hub’ nodes, then the degree heterogeneity is reduced via dropping of related edges in
the network, thus leading to a drop in R0. This makes network-based modeling especially
appealing to model large-scale pandemics such as COVID-19. We now discuss the exact
network construction, estimation and parameter choices we used in our setting.

3.1 Network construction

Constructing a network of individuals is a big challenge in the sense that micro-level data
has to be accessed in order to identify possible contacts and interactions. These include
commutation networks, interactions in schools, workplace, social gatherings, to name a few.
While the behavior of the disease spread in case of well-defined or simulated networks (for
example, Erdos-Renyi graphs or scale-free networks) is mostly known, real-world networks
may not exhibit such known structures and would vastly vary on a spatio-temporal basis;
see, for example, Masuda and Holme (2013); Karsai et al. (2011); Barabási (2016). Hence we
propose to use a spatial network incorporating the geographical location of known infections
in the early stages of the pandemic, as we had access to this in our datasets. Formally, the
initial network G = (V,E) is constructed as V = VS ∪ VI , where VI = set of all infected
individuals available in the data, and VS is the set of susceptible individuals such that
|VS| = N − |VI | − NR, where N is the population size and NR is the total number of
recoveries and deaths (removals) included in the data. Here | · | denotes the cardinality of a
finite set. The locations of the added susceptible nodes are initialized by assuming that the
expected total number of nodes in any sub-region is proportional to the population density
in that sub-region. The nodes i, j ∈ V are then connected by an edge if d(i, j) > δ, where
d(i, j) indicates the geographical distance between the nodes and δ is some user-specified
threshold. We present the details about the India-specific choice of this threshold in the
next section.

3.2 Parameter choices

With the initial network as constructed before, the next step demands selecting the model
parameters that would govern the laws of the network evolution and the growth of the
pandemic. We note that having fixed the degree distribution, there are two free parameters
for a network SIR model – the transmission rate from S to I (β), and that from I to R (γ).
However, more interpretable one-to-one transformations of these parameters are available,
namely, the basic reproduction number (average number of susceptible people infected by
one infected person - R0, as expressed in Equation 11), and the average time spent in state
I (Tγ = 1/γ). For our analyses, we used relevant literature on India to choose ideal values
for these parameter that would represent different levels of intensities for the spread of the
pandemic. A detailed discussion on these choices are available in Section 4.

9
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3.3 Simulation procedure

With the constructed network and the specified values for the two free parameters, we
use existing R packages to simulate the growth of this network for a duration of choice.
The illustrative simulation in Figure 1 and our data-based simulations described in the
next section are performed using the R packages EpiModel (Jenness et al., 2018) and Epi-
Dynamics (Santos Baquero and Silveira Marques, 2020). For the real data-based simula-
tions, a single simulation cycle would yield a time series of compartment memberships as
(S(t), I(t), R(t)), t ∈ 1, . . . , T0, where the initial time point is understood to be time 0, the
final time point till which the simulation is performed is denoted by T0, and X(t) indicates
the number of nodes at state X at the given time point. This procedure is then performed M
times, denoting the predicted membership for the X compartment at time t from simulation
j as Xj(t), j ∈ 1, . . . ,M, t ∈ 1, . . . , T0. The final predicted count for compartment X at time
t is then computed as X̄(t) :=

∑M
j=1X

j(t)/M . Information on choices of T0 and M for the
case study on India are available in the next section. The entire procedure is outlined in
Algorithm 1.

Algorithm 1: Simulation procedure for network-SIR models.

Input : Data containing set of infected patients with location information.
Output: Predicted time series of memberships for the S, I and R compartments.
Step 0. Construct initial network by defining infected nodes, susceptible nodes and
edges;

Step 1. Choose values for the two free parameters;
Step 2. Perform simulations:
for ( j = 1; j < M + 1; j = j + 1 ) {

Simulate network evolution over time 1 to T0;
}
Step 3. Predict compartment-wise counts:
for ( t = 1; t < T0 + 1; t = t+ 1 ) {

Compute average predicted counts over j ∈ 1, ...,M .
}

4 Case study for India

4.1 Data description

Individual-level, location-informed COVID-19 data for Indian states and union territories
were obtained from the Kaggle database7. The data freeze used for our analyses covered
34 Indian states and union territories having at least one confirmed COVID-19 case within
January 30 to April 15, 2020, resulting in a total of approximately 12,000 confirmed cases.
State-wise distribution of these cases is available in Table 1, and a location-based visual-
ization across India is available in Figure 2. At the time of this data being obtained, India
had just finished the first stage of nation-wide lockdown (25 March to 14 April) and was

7https://www.kaggle.com/sudalairajkumar/covid19-in-india
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at the beginning of the second phase of it. Data on state-level availability of hospital beds
were obtained from the Ministry of Health and Family Welfare, Government of India press
release8. The primary analytical tasks were geared towards answering two major questions:
forecasting the number of infected cases on a monthly basis for each state in India, identify-
ing potential hot-spots and recognizing how this delineation could inform a phased approach
for deploying healthcare capacity across the different states.

4.2 Network-based forecasts

As outlined in the previous section, for the state-specific forecasts, we used a network-based
SIR model. First, we created a national-level network of the infected patients, with the
patients as nodes, and two nodes being connected if their location of detection are within
both 2 degrees of latitude and longitude of one another. Note that this is equivalent to
choosing a value of δ as introduced in the previous section. Next, for each state, we extracted
the subset of this network falling in that state (determined by the location of detection of
the nodes), and that became the initial infected network of the state. The complete initial
network was constructed by adding additional susceptible nodes so that the number of nodes
matched the population of the state and by assuming zero removed nodes at the beginning.

Earlier literature on the Indian COVID-19 data based on count-based SIR models and
their modifications indicated that R0 = 2 was a good India-specific estimate, and given the
healthcare resources and infrastructure of India, γ = 0.1 i.e. Tγ = 10 days is a sensible
number (Pandey et al., 2020; Singh and Adhikari, 2020). Therefore, we used this value of
γ across all states, and focused on three potential scenarios of particular interest in erms of
the R0, as outlined below.

� Scenario 1: Low intensity spread: Assuming strict adherence to containment and
mitigation protocols (R0 = 1.5).

� Scenario 2: Medium intensity spread: Assuming sporadic adherence to contain-
ment and mitigation protocols (R0 = 2).

� Scenario 3: High intensity spread: Assuming minimal adherence to containment
and mitigation protocols (R0 = 2.5)

More scenarios are available in our shiny app described in the next subsection. Our
network-based forecaster predicted the number of infected cases over short-term future (three
months from the last date when data are available, that is, T0 = 90) and the spread over
specific geographical regions over potential contact networks for every state in India. Based
on these, we tried to answer which states would potentially emerge as hot-spots.

Figures 3-5 show the predicted number of active COVID-19 cases across Indian states and
union territories between April 15 to July 1, 2020. The three figures respectively correspond
to the three (low, medium, high) intensity scenarios as described before. In each figure, we
present the predicted time series of infected cases per million people for each state during
April 16, 2020 to July 1, 2020. The reason behind plotting the prevalence per million

8https://pib.gov.in/PressReleasePage.aspx?PRID=1539877
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population instead of the raw predicted case counts was that the states and union territories
of India have extremely varied population sizes, and without adjusting for that, the raw
predicted case counts would tend to emphasize upon the larger states, potentially masking
some relatively smaller regions demanding more attention for better containment of the
pandemic. We also report the short-term prediction performances under the three scenarios
as of May 31, 2020, in Table 2.

Some evident trends emerged. Most states had a significant rise in the number of cases
starting around mid-May. There were clear hot-spots emerging in a first cluster of states
that included Maharashtra, Delhi, Tamil Nadu and Rajasthan with a second cluster (close
behind) emerging in Uttar Pradesh, Gujarat, Madhya Pradesh, Telangana, Andhra Pradesh
and Kerala. While a number of these initial hot-spots could be traced to international
travel and port of entries, some newly formed hot-spots could potentially be attributed to
hub-and-child nodes of contact networks through travels and public gatherings.

While these predicted numbers were in the hundreds over the initial few weeks, they
rose multi-fold to thousands to hundred thousands, surging to millions and tens of millions
— under the assumed rates, especially under the high intensity scenario. Figures 3-5 show
the number of affected cases increasing substantially in late May through June in all three
scenarios, where some states were predicted to cross a million of cases by mid-June. Un-
surprisingly, states with high population density (e.g. Maharashtra, Rajasthan, Madhya
Pradesh and Karnataka) were seen to be extremely susceptible to see a spike in the number
of cases. Looking at some of these states case by case, we could interpret how our model
was able to capture the ground reality, retrospectively. The next subsection discusses these
state-specific patterns in more detail.

4.3 State-specific projections

We now present the short-term (six weeks) predictions for May 31, 2020 considering three
scenarios - low, medium and high intensity spreads as given by the choice of R0 = 1.5, 2 and
2.5 respectively. The corresponding predcitions serve as adhoc prediction intervals for the
number of infections across different states. The results are presented in Table 2. Almost
all the states record infections that are within the range of predicted number of infections.
In this regard, we re-iterate that the goal of these predictions were to present vital clues
for isolation and mitigation strategies for containment of the disease, as well as increase
preparedness to treat patients with infections along with ramping up the overall healthcare
system. We now discuss some key policy adoptions taken by different states and regions
within the country, where regional network management played a vital role.

Kerala, a southern state in India, had reported the first case in the country on January
30, the patient being a student who had traveled from Wuhan, China. The state, which is a
favorite among tourists, witnesses a massive foreign footfall every year. Also, it has one of the
highest percentages of expatriates and domestic migrant workers. These served as points of
concern, making Kerala one of the most vulnerable states. To tackle this, the state released
a public health advisory guideline on January 26, 2020, that directed serving a mandatory
isolation period for all people traveling from China. Kerala aggressively put itself on war-
footing to combat the upcoming peril by mobilizing its strong healthcare workforce in efforts
towards vigorous testing, contact tracing to finer levels, increasing duration of quarantine,
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and ensuring that the migrant workforce are sheltered and well-fed (Rahim and Chacko,
2020). Kerala initially showed promising results, with the percentage of new cases on the
decline, along with a steady increase in recovery rate. However, with the gradual unlockdown
procedure and an increased rate of contact, Kerala eventually experienced another spike in
terms of daily infections. A hike in daily cases of over 100% was observed in the state after
the festival season of Onam that was celebrated in the last week of August to the first week
of September9.

In comparison, Maharashtra, the worst affected state as of the data freeze in mid-April,
had registered almost similar number of cases by the end of March, but started performing
poorly, primarily owing to insufficient number of testing, tracking and isolation. With its
capital Mumbai being the commercial hub of the country, a significant portion of infections
in the population were left untraced due to inadequate levels of testing10. Another major
talking point comes from the Bhilwara district in Rajasthan, once deemed as ‘India’s Italy’
by BBC11. Bhilwara had been successful in restricting the infection from spreading in less
than 2 weeks from its first reported case, with the last reported case registered on March
31 (during the period of our study). The success story had been attributed to massive
testing, extensive tracking and enforcing strict isolation, apart from door-to-door surveys
and continued screening of the population in the district (Meghwal et al., 2020). This led
to screening a whopping number of 2.2 million people in the district which accounts for
92% of its population. The Bhilwara model serves as a paramount example of how the
policy of testing-tracing-isolation-treatment can work wonders in containing the spread of
the disease. Odisha had been dynamic as well from the very beginning of the outbreak,
starting with locking down its capital Bhubaneshwar from March 12, before the state-wide
lockdown from March 24 (Lancet, 2020). The state closely followed the Bhilwara model and
had also announced an extension of the lockdown in the state till April 30, even before the
announcement of the second phase of country-wide closure. The strong health workforce
had synchronized in complete harmony with numerous self-help groups and policy-makers
to effectively take benefit from the lockdown.

4.4 Comparison with sero-survey findings

Seroprevalence studies are crucial in determining the infection prevalence in a region. These
survey based studies check for the presence of antibodies of a disease using blood serum
specimens. The Indian Council of Medical Research (ICMR), along with Dept of Health
and Family Welfare, Govt. of India and National Center for Disease Control, on May 12,
2020, announced to conduct multiple national level community based sero-surveys across
several states in India. The subsequent sero-survey findings are quite interesting. The first
serosurvey was conducted in May-June 2020 among adults aged 18 or older across 21 states in
the country. Although the seroprevalance was reported to be as low as 0.73% (95% CI: 0.34%
- 1.13%) (Murhekar et al., 2020), the infection-to-case ratio was estimated to be between 81.6
and 130.1 infections per reported case of the disease till June 2020. Lockdown relaxations
were being adopted across the country in phases after this period, and a second serosurvey

9Hindustan Times newspaper report, October 14, 2020, available at http://bit.ly/2Jl5qGG
10The Times of India newspaper report, October 10, 2020, available at http://bit.ly/38AUKvY
11https://www.bbc.com/news/world-asia-india-51997488
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exercise was done during August-September 2020. The second serosurvey also included
individuals who are 10 years or older. The sero-prevalance was estimated to be 7.1% (95%
CI: 6.2% - 8.2%) among adults aged 18 years or older, with estimated 26-32 infections per
reported case, thus leading to around 74.3 million infections in the country by mid-August
2020. The detailed findings have been reported in Murhekar et al. (2021), including details
on the districts and states included in the survey. Our network-based estimate were 0.13
million, 3.95 million, and 6.32 million on August 12, 2020, the last day of prediction, under
the three scenarios, respectively. The observed number of infections falls within this range,
but the seroprevalence adjusted estimate is much higher. We note that it is not readily
possible to validate the seroprevalance estimates with the network-based estimates owing to
the fact that we had constructed the network using the observed cases only. The third round
of the ICMR serosurvey conducted during the period of December 2020 - January 2021,
reported roughly a three-fold increase in the number of infections since August 2020, with a
infection prevalence rate of 21.5% for persons aged 10 years or above. India has a reported
number of a little over 10 million infections, thus putting the estimated number of infections
to be around 270 million (27 actual cases per reported case). These results have been released
by ICMR via a press-conference on February 04, 2021, and are yet to be formally published
(as of the time of writing this article). The serosurvey findings thus validate, to an extent,
the estimates based on our network-based methods, additionally indicating that managing
regional contact networks are crucial along with other best practices such as maintaining
basic hygiene practices and wearing of masks.

4.5 Healthcare forecasting in India during the COVID-19 pan-
demic

At a national-level, several steps for containment and mitigation were already put in place (by
mid-April 2020) by the government. These included imposition of an extended nationwide
lockdown and campaigns to increase awareness about preventive and behavioral measures.
Such measures were expected to contribute towards flattening the curve, which was abso-
lutely essential to prevent a situation where the healthcare infrastructure of the country
being no longer able to handle the burden. The predictions of our network-based models
showed alarming counts for the number of people who could potentially get infected over
time. Such a situation could overburden the existing healthcare infrastructure in the country.
Specifically, our initial forecasts indicated that the public healthcare facilities might see a
huge surge in patients as the majority of the Indian population depends on public healthcare
resources. This was the ground situation indeed till the point where the infection growth
curve started coming down. Hence, it was important to assess if the infrastructure was ready
to handle a huge surge of COVID-19 confirmed cases.

We considered the healthcare capacity in India across different states to analyze the over-
all availability of hospital beds in India. We obtained data about the hospital beds across
the country from a press release12 by the Ministry of Health and Family Welfare. Addition-
ally, we obtained the population for each state from the Open Government Data Platform of

12https://pib.gov.in/PressReleasePage.aspx?PRID=1539877
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India13. The levels of healthcare resources required will vary based on the different clinical
outcomes of the infection as well as the existing availability of healthcare infrastructure.
We captured the former aspects using a compartmental epidemiological model based on the
classical SEIR model. The infection levels are broadly categorized as mild, severe and crit-
ical, and we focus on the medium intensity spread scenario with the reproduction number
R0 = 2 under intervention (for further data and details see our shiny app here). Note that
we adapted the SEIR model and the publicly available R shiny app developed by Dr. Alison
Hill’s group14 to forecast the healthcare capacity. The different parameter values were also
chosen based on the guidance provided in this R shiny app (specific parameter values are
also provided on our shiny app).

The predictions based on the SEIR model indicated a peak for the number of cases around
mid-May. In Figures 6-8 (Panel A), we show the state-wise number of additional hospital
beds required (states sorted from the lowest requirement to highest) in a waterfall plot as-
suming the percentage of prior occupancy at 25%, 50%, and 75%, respectively. Assuming
that half of the cases who are hospitalized will need ventilators, we also plotted the require-
ment of ventilators across these states. These additional hospital bed requirements are also
plotted on a map of India for all the states and union territories in Figures 6-8 (Panel B). We
saw that many smaller states such as Arunachal Pradesh, Goa, Mizoram and Sikkim, and
the union territories had sufficient healthcare infrastructure to deal with a surge under the
assumptions considered. Whereas states such as Uttar Pradesh, Bihar, Maharashtra, and
West Bengal were forecast to be in desperate need of additional hospital beds and healthcare
infrastructure to successfully deal with a pandemic of such scale.

Our results indicated the immediate need for the administrators to mobilize resources
and infrastructure in hotspot areas and acquire the appropriate number of hospital beds
(permanent or makeshift), ventilators, personal protective equipment, and the accompanying
personnel to support the huge surge that followed ahead.

4.6 Shiny dashboard and resource availability

With a goal to making our results more accessible and to allow interested researchers and
policymakers alike to visualize the simulated projections under a broader range of scenarios,
we had built an R shiny dashboard offering a multitude of functionalities. A representa-
tive snapshot of the different functionalities of the dashboard is available at Figure 9. The
interactive dashboard attempts to forecast the state-wise number of COVID-19 cases for
India over the weeks/months following April 15, 2020 using state-level case data and the
network-based SIR compartmental model approach as described before. Further, it offers
SEIR model-based simulations to predict the potential shortage in healthcare facilities and
infrastructure for specific regions, as outlined in the previous subsection. All the plots are
interactive and update themselves based on user inputs for several epidemiological and in-
frastructural parameters. The user may also hover over the figures for looking at the exact
numbers, and click the camera icon on top of each figure to download the plots as png files.
The home page of the dashboard sets up the network modeling context with respect to the

13https://data.gov.in/resources/state-wise-population-decadal-population-growth-rate-

and-population-density-2011-0
14https://alhill.shinyapps.io/COVID19seir/
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Indian COVID-19 scenario, using figures akin to Figures 1-2 in this paper. The “Case Pre-
dictions across States/UTs: Network SIR” tab outlines the network SIR model briefly, with
relevant references for the theoretical backgrounds and some discussions on the parameter
choices and simulation procedure. It offers case forecast time series plots similar to those
in Figures 3-5 in this paper (for the entire country or for a particular state/union territory)
under user-specified values of the basic reproduction number R0 and the average time spent
in infected state Tγ. Dynamic bar plots are available for the three intensity scenarios dis-
cussed in this paper. The “Healthcare Forecasting: SEIR” tab describes the SEIR model in
the Indian healthcare context, along with relevant resources and discussions on the default
parameter choices. A static geo-located visualization is presented at an assumed 50% rate
of hospital bed occupancy and default transmission rates that lead to R0 = 2. Self-updating
waterfall plots are then offered for user-specified choices of region (national/state-specific),
bed occupancy rate and transmission rates for different infection stages. The home page of
the app also contains links to the data sources.

5 Discussion and conclusions

In this paper, we adapted a network-based SIR model to analyze regional contact networks
and demonstrate the utility of such methods in the context of early stages of the COVID-19
spread in India. We believe such methods could be profitably used to inform policy-level
decisions by allowing detection of hotspots and identification of key predictors characterizing
these hotspots such as population density, co-morbidities, socio-economic and demographic
factors, and access of health care facilities. Our hope is such nuanced modeling can aid more
rapid and focused containment and subsequent mitigation with regional specificity, minimal
disruption to the overall economy and sensitivity to humanitarian concerns.

The data and analyses in this article along with the interactive app can aid regional/state
level specificity to allow a proportional response, prepare for the surge by planning for differ-
ent scenarios, and create a road-map so the country can eventually come back to normalcy in
a phased manner that is socially responsible, equitable, and sustained. Our research group
provided some specific recommendations that were summarized in an opinion piece we wrote
in April 2020.

There are several potential refinements and future directions possible with network-based
SIR models. We used spatial/location information to construct our networks which, while
admittedly limited, provided some broad clues regarding the early pandemic spread in India.
The network reconstruction can be further improved by layering with more precise informa-
tion that can be collected e.g. micro-level county/district level data, more efficient contact
tracing channels, travel information etc. Given the limitations of our current dataset, we
did not explore these avenues but these could provide valuable insights, prospectively or
retrospectively, for learning the dynamics of the COVID-19 spread. In terms of method-
ology, there are several refinements possible. We only focused on simulation based on as-
sumed parameter choices such as R0, and not on any formal inference or hypothesis testing.
One interesting avenue could be to construct a unified framework, through likelihood based
constructions for network-based models and employ a frequentist or Bayesian estimation
procedure and obtain uncertainty quantifications. Furthermore, one could explore potential
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stochastic formulations of the deterministic SIR-type models that can accommodate flexible
noise scenarios such as nonlinearity or non-stationarity (Bhadra et al., 2011).

When we started this work in March 2020, given the lack of tests and the large number of
asymptomatic carriers, the strategy for slowing the spread of the COVID-19 pandemic had
changed from containment to mitigation (Parodi and Liu, 2020). In essence, the focus was
on slowing the further spread of the virus, reducing the anticipated surge in health care use,
providing patients with the right level of care to maximize the likelihood that the majority
of patients will only require time-limited home isolation, expanding testing capability to
increase available hospital capacity, and tailoring isolation to minimize transmission of SARS-
CoV-2. In a country like India density is ubiquitous given the population. The social
fabric consists of extensive family and societal networks. The challenge is coming up with
immediate responses, such as rapid lock-downs, that will have a lasting effect on many classes
of society, especially the urban poor. What is needed is a resilient and sustainable approach,
with regional sensitivity and national connectivity. Moving forward, a strategy is needed
which makes India’s density its advantage in dealing with COVID-19 and future pandemics.
Using technological infrastructures, such as leveraging the massive mobile network of India
— ensures that the reminders about social distancing, hand-washing and hygiene are not
overlooked. This can also ensure that testing is strategic (not possible to test everyone),
contact tracing is immediate (once a person is tested positive it is relatively easy to trace
previous contacts and isolate them immediately), and quarantine is smart (right level of
quarantine based on the level of risk). In addition, one has to ensure that healthcare facilities
are ready for the surge by decanting non-critical services, rapidly converting existing facilities,
ramping up medical equipment and supplies, and leveraging alternate care facilities. The
biggest challenge will be to do this in a humane, culturally sensitive and respectful way.
We believe the strongest response to contagions is through building resilient communities
that can manage the contact networks - and our models can potential aid this endeavor for
current and future pandemics.

Media coverage Our work was highlighted in both national15 and local media16, especially
in the context of the state of Madhya Pradesh and Indore district, where the second co-first
author is based. The initial projections, along with the estimated pressure on the healthcare
system helped the local administration to come up with mitigation strategies to contain the
infection spread, simultaneously educating the common mass about the disease, and taking
individual responsibilities from their end, like adoption of effective hygiene practices, wearing
masks, avoiding social gatherings, among others.

Declarations

Funding

S.B. is supported by DST INSPIRE Faculty Award Grant No. 04/2015/002165, and also
by IIM Indore Young Faculty Research Chair Award grant. S.M. was partially supported

15http://bit.ly/bus-std-report
16http://bit.ly/free-press-report

17

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2021. ; https://doi.org/10.1101/2021.03.16.21253772doi: medRxiv preprint 

http://bit.ly/bus-std-report
http://bit.ly/free-press-report
https://doi.org/10.1101/2021.03.16.21253772
http://creativecommons.org/licenses/by/4.0/


by Precision Health at the University of Michigan. V.B. was supported by NIH grants R01-
CA160736 and P30 CA 46592 and NSF DMS grant 1463233 and start-up funds from the
University of Michigan School of Public Health.

Conflicts of interest

None.

Availability of data and material

Individual-level, location-informed COVID-19 data for Indian states and union territories
were obtained from the Kaggle database available at https://www.kaggle.com/sudalairajkumar/
covid19-in-india. Data on state-wide daily infections is available from https://api.

covid19india.org/.

Authors’ contributions

S.B. and V.B. conceived the project. R.B., S.B., and V.B. developed the statistical frame-
work and R.B. developed the software and performed statistical analysis. S.M. analyzed the
healthcare forecasting data. All authors wrote, read and approved the final manuscript.

Acknowledgements

We would like to thank Dr. Upali Nanda for her input in the initial stages of this work.

References

Andersson, H. (1998). Limit theorems for a random graph epidemic model. Annals of Applied
Probability, pages 1331–1349.

Arumugam, V. A., Thangavelu, S., Fathah, Z., Ravindran, P., Sanjeev, A. M. A., Babu,
S., Meyyazhagan, A., Yatoo, M. I., Sharun, K., Tiwari, R., et al. (2020). Covid-19 and
the world with co-morbidities of heart disease, hypertension and diabetes. J Pure Appl
Microbiol, 14(3):1623–1638.

Barabási, A.-L. (2016). Network science. Cambridge University Press, Cambridge, U.K.

Bhadra, A., Ionides, E. L., Laneri, K., Pascual, M., Bouma, M., and Dhiman, R. C. (2011).
Malaria in northwest india: Data analysis via partially observed stochastic differential
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Figure 1: A simple illustration of an epidemic network evolution over time, simulated from
a network Susceptible-Infected-Recovered (SIR) model, where the nodes are individual pa-
tients: blue are susceptible, red are infected, and green are recovered individuals. One
time-step in the figure represents 25 units of time in the original scale of transmissions.
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Figure 2: Network of patients infected with COVID-19 across Indian states and union ter-
ritories, with each dot representing one patient and the color of the dot representing the
state in which the patient was first detected and confirmed as a case. Edges are defined by
whether two patients are located within a band of two degrees of latitude and longitude of
one another. We have removed the edges between nodes that are too close for visual clarity.
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State Confirmed Cases
Andaman and Nicobar Islands 11
Andhra Pradesh 473
Arunachal Pradesh 1
Assam 31
Bihar 66
Chandigarh 21
Chhattisgarh 33
Dadra and Nagar Haveli 1
Delhi 1510
Goa 7
Gujarat 650
Haryana 198
Himachal Pradesh 32
Jammu and Kashmir 278
Jharkhand 27
Karnataka 260
Kerala 386
Ladakh 17
Madhya Pradesh 614
Maharashtra 2455
Manipur 2
Meghalaya 1
Mizoram 1
Nagaland 1
Odisha 60
Puducherry 7
Punjab 184
Rajasthan 969
Tamil Nadu 1204
Telangana 592
Tripura 2
Uttar Pradesh 660
Uttarakhand 37
West Bengal 190

Table 1: Number of confirmed COVID-19 cases by states and union territories of India as of
April 15, 2020 as used for the network SIR analyses.
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State Observed Low Medium High
Andaman and Nicobar Islands 33 114 1195 11619
Andhra Pradesh 3571 4938 51856 530809
Arunachal Pradesh 4 11 110 1159
Assam 1340 312 3432 35886
Bihar 3807 728 7286 76513
Chandigarh 293 219 2291 22794
Chhattisgarh 498 357 3627 38164
Delhi 19844 15730 159905 1345083
Goa 71 72 770 7986
Gujarat 16794 6829 71258 726726
Haryana 2091 2078 21726 223599
Himachal Pradesh 331 336 3521 36526
Jammu and Kashmir 2446 2909 30299 299686
Jharkhand 635 296 2968 31305
Karnataka 3221 2749 28592 297167
Kerala 1270 4042 42292 430503
Ladakh 77 177 1821 16319
Madhya Pradesh 8089 6463 67397 691479
Maharashtra 67655 25733 267675 2649000
Manipur 71 19 219 2318
Meghalaya 27 11 112 1189
Mizoram 1 10 110 1157
Nagaland 43 9 110 1161
Odisha 1948 629 6631 69299
Puducherry 70 73 768 7960
Punjab 2263 1942 20197 208574
Rajasthan 8831 10145 105975 1071343
Tamil Nadu 22333 12625 131596 1320651
Telangana 2698 6194 64686 649082
Tripura 316 22 224 2321
Uttar Pradesh 8075 6993 72531 756689
Uttarakhand 907 383 4074 42372
West Bengal 5501 2008 20902 218880

Table 2: Comparison of observed and predicted cumulative COVID-19 case counts as of May
31, 2020. The second column provides the observed number of cases as of that date. The
next three columns provide the network-based predictions under the low (R0 = 1.5), medium
(R0 = 2.0) and high (R0 = 2.5) intensity scenarios.
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Figure 3: Predicted number of active COVID-19 cases per 1,000,000 people across Indian
states and union territories based on network SIR (susceptible-infected-removed) models.
The initial network for each state contains the infected individuals, and an additional number
of susceptible individuals so that the total size of the network matches the population of each
state. Edges are defined by whether two persons are located within a band of two degrees of
latitude and longitude of one another. For running the simulations, the reproduction number
R0 was assumed to be 1.5 (low intensity scenario), and the average time at state I was taken
to be 10.
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Figure 4: Predicted number of active COVID-19 cases per 1,000,000 people across Indian
states and union territories based on network SIR (susceptible-infected-removed) models.
The initial network for each state contains the infected individuals, and an additional number
of susceptible individuals so that the total size of the network matches the population of each
state. Edges are defined by whether two persons are located within a band of two degrees of
latitude and longitude of one another. For running the simulations, the reproduction number
R0 was assumed to be 2 (medium intensity scenario), and the average time at state I was
taken to be 10.
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Figure 5: Predicted number of active COVID-19 cases per 1,000,000 people across Indian
states and union territories based on network SIR (susceptible-infected-removed) models.
The initial network for each state contains the infected individuals, and an additional number
of susceptible individuals so that the total size of the network matches the population of each
state. Edges are defined by whether two persons are located within a band of two degrees
of latitude and longitude of one another. For running the simulations, the reproduction
number R0 was assumed to be 2.5 (high intensity scenario), and the average time at state I
was taken to be 10.
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(A) Waterfall plot (B) Map of India

Figure 6: (A) Waterfall plot and (B) map of India showing the shortfall of hospital beds and
ventilators across Indian states and union territories on the predicted peak day of incidence
of new cases. These estimates are based on a SEIR model with the reproduction number
R0 = 2 under sporadic adherence to containment and mitigation protocols assuming the
normal occupancy rate of the hospital beds as 25%.

(A) Waterfall plot (B) Map of India

Figure 7: (A) Waterfall plot and (B) map of India showing the shortfall of hospital beds and
ventilators across Indian states and union territories on the predicted peak day of incidence
of new cases. These estimates are based on a SEIR model with the reproduction number
R0 = 2 under sporadic adherence to containment and mitigation protocols assuming the
normal occupancy rate of the hospital beds as 50%.

28

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2021. ; https://doi.org/10.1101/2021.03.16.21253772doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.16.21253772
http://creativecommons.org/licenses/by/4.0/


(A) Waterfall plot (B) Map of India

Figure 8: (A) Waterfall plot and (B) map of India showing the shortfall of hospital beds and
ventilators across Indian states and union territories on the predicted peak day of incidence
of new cases. These estimates are based on a SEIR model with the reproduction number
R0 = 2 under sporadic adherence to containment and mitigation protocols assuming the
normal occupancy rate of the hospital beds as 75%.
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(A) Home page (B) Network-based Forecaster

(C) Healthcare Resources

Figure 9: Representative snapshots of the R Shiny app providing interactive predictions and
healthcare forecasts.
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