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Abstract 
Here we recorded serum proteome profiles of 33 
COVID-19 patients admitted to respiratory and 
intensive care units because of respiratory failure. 
We received, for most patients, blood samples just 
after admission and at two more later timepoints. 
We focused on serum proteins different in 
abundance between the group of survivors and 
non-survivors and observed that a rather small 
panel of about a dozen proteins were significantly 
different in abundance between these two groups. 
The four structurally and functionally related type-
3 cystatins AHSG, FETUB, HRG and KNG1 were all 
more abundant in the survivors. The family of 
inter-α-trypsin inhibitors, ITIH1, ITIH2, ITIH3 and 
ITIH4, were all found to be differentially abundant 
in between survivors and non-survivors, whereby 
ITIH1 and ITIH2 were more abundant in the 
survivor group and ITIH3 and ITIH4 more abundant 

in the non-survivors. ITIH1/ITIH2 and ITIH3/ITIH4 
also did show opposite trends in protein 
abundance during disease progression. This panel 
of eight proteins, complemented with a few more, 
may represent a panel for mortality risk 
assessment and eventually even for treatment, by 
administration of exogenous proteins possibly 
aiding survival. Such administration is not 
unprecedented, as administration of exogenous 
inter-α-trypsin inhibitors is already used in the 
treatment of patients with severe sepsis and 
Kawasaki disease. The mortality risk panel defined 
here is in excellent agreement with findings in two 
recent COVID-19 serum proteomics studies on 
independent cohorts, supporting our findings. 
This panel may not be unique for COVID-19, as 
some of the proteins here annotated as mortality 
risk factors have previously been annotated as 
mortality markers in aging and in other diseases 
caused by different pathogens, including bacteria. 
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Introduction 
The coronavirus disease 2019 (COVID-19) pandemic 
caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) has affected many 
people with a worrying fatality rate up to 60% for critical 
cases. Not all people infected by the virus are affected 
equally. Several parameters have been defined that 
may influence and/or predict disease severity and 
mortality, with age, gender, body mass and underlying 
comorbidities being some of the most well-established. 
To delineate best treatments and recognize disease 
severity early on, it would be very helpful to discover 
markers helping to define disease severity, have 
prognostic value, and/or predict a specific phase of the 
disease. Unfortunately, not many prognostic 
biomarkers are yet available that can distinguish 
patients requiring immediate medical attention and 
estimate their associated mortality rates.  

Here, we attempted to contribute to this urgent need 
aiming to find serum biomarkers that may be used to 
predict mortality in a group of COVID-19 patients. For 
the present purpose, we prospectively assessed 
serum protein levels at different time-points by using 
mass-spectrometry based serum proteomics in a 
cohort of moderate-to-severe COVID19 patients 
admitted to hospital because of respiratory failure 
(ATTAC-Co study – registered at www.clinicaltrial.gov 
number NCT04343053).   

Given the central role of proteins in biological 
processes as a whole, and in particular in disease, we 
applied mass spectrometry-based proteomics to 
identify protein biomarkers that could discriminate 
between the COVID-19 patients that recovered and 
those that did not survive. Several proteomic studies 
have to date investigated the serum or plasma of 
COVID-19 patients for the most part comparing a 
cohort of COVID-19 patients to control subjects (no 
disease) [1, 2], and in particular an extensive  study by 
Demichev et al. [3] has already investigated the 
temporal aspect of COVID-19 progression in 
individuals in order to predict outcome and future 
disease progression. Although their cohort does 
comprise some patients that did not survive, for the 
most part the subjects recovered and were discharged. 
The unique cohort described in our study allows us to 

focus on survivors compared to non-survivors and to 
define clinical classifiers predicting outcome by using 
subjects recovered from the disease as control group. 

We did choose a robust data-independent acquisition 
(DIA) approach to profile the serum of this patient 
cohort, as this method circumvents the semi-stochastic 
sampling bias specific to standard shotgun proteomics, 
and benefits from high reproducibility. The DIA 
approach, although not novel [4, 5], has recently 
increased in popularity in part due to new hardware 
and software solutions [6], but also due to the efforts 
of the proteomics community to develop DIA setups 
that do not require a reference spectral library. In this 
work we chose to exploit the DIA-NN software suite [7], 
which makes use of deep neural networks and signal 
correction to process the complex spectral maps that 
arise from DIA experiments. This results in a reduction 
of interfering spectra and in confident statistically 
significant identifications thanks to the use of neural 
networks to distinguish between target and decoy 
precursors. 

Using this approach, we observed that, strikingly, the 
group of survivors and non-survivors could be well 
separated by just a small group of around a dozen 
highly abundant serum proteins, already at the first 
timepoints, i.e., shortly after admission to the ICU. This 
panel of proteins includes mostly functionally related 
proteins, including all major type 3 cystatins (HRG, 
FETUB, ASHG1 and KNG1 and several protease 
inhibitors (SERPINA2, ITIH1, ITIH2), being more 
abundant in survivors. As this panel is already able to 
distinguish the patient groups at the early onset it may 
have good predictive value. Statistically most 
significant, the type-3 cystatin histidine rich 
glycoprotein (HRG) and fetuin-B (FETUB) were 
consistently more abundant in survivors than in non-
survivors. These serum proteins have previously been 
identified as predictors of mortality in patients affected 
by S Aureus bacteremia [8], but also as general 
mortality markers in studies looking at aging [9]. 
Therefore, the panel we observe here may not be 
specific for patients suffering from COVID-19, and be 
more generally applicable to predict mortality risk [10]. 
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Methods  
Individual Serum Sample Collection and 
Chemicals 

The present analysis included patients from the “Pro-
thrombotic status in patients with SARS-Cov-2 
infection” (ATTAC-Co) study [11, 12]. The ATTAC-Co 
study is an investigator-initiated, prospective, single-
centre study recruiting consecutive patients admitted 
to hospital (University Hospital of Ferrara, Italy) 
because of respiratory failure due to COVID-19 
between April and May 2020. Inclusion criteria were: i) 
age >18 years; ii) confirmed SARS-CoV-2 infection; iii) 
hospitalization for respiratory failure; iv) need for 
invasive or non-invasive mechanical ventilation or only 
oxygen support. Exclusion criteria were: prior 
administration of P2Y12 inhibitor (clopidogrel, 
ticlopidine, prasugrel, ticagrelor) or anticoagulant 
drugs (warfarin or novel oral anticoagulants), known 
disorder of coagulation or platelet function and/or 
chronic inflammatory disease. SARS-CoV-2 infection 
was confirmed by RT-PCR (reverse transcriptase 
polymerase chain reaction) assay (Liaison MDX, 
Diasorin, Saluggia, Italy) from nasopharyngeal swab 
specimen. Respiratory failure was defined as a 
PaO2/FiO2 (P/F) ratio ≤200 mmHg. Clinical 
management was in accordance with current 
guidelines and specific recommendations for COVID-
19 pandemic by Health Authorities and Scientific 
Societies. Three different blood samplings (at inclusion 
(t1), after 7±2 days (t2) and 14±2 days (t3)) were 
withdrawn. Study blood samplings were performed 
from an antecubital vein using a 21-gauge needle or 
from central venous line. All patients underwent blood 
sampling in the early morning, at least 12 hours after 
last administration of anticoagulant drugs. The first 2 to 
4 mL of blood was discarded, and the remaining blood 
was collected in tubes for serum/plasma collection. 
The serum and plasma samples were stored at -80 °C. 
The planned blood sample withdrawals were not 
performed in case of patient’s death or hospital 
discharge. The ATTAC-Co study population consists 
of 54 moderate-to-severe COVID19 patients [11, 12]. 
The subgroup of interest for the present analysis is 

selected starting from the 16 cases who died. From the 
remaining 38 survivors, we identified the 17 cases who 
best matched in terms of age, clinical history and 
clinical presentation. This selection was done with the 
aim to maximize the possibility to identify differences 
between deceased and survivors and minimizing 
potential confounding factors. The protocol was 
approved by the corresponding Ethics Committee 
(Comitato Etico di Area Vasta Emilia Centro, Bologna, 
Italy). All patients gave their written informed consent. 
In case of unconsciousness, the informed consent was 
signed by the next of kin or legal authorized 
representative. The study is registered at 
www.clinicaltrials.gov with the identifier 
NCT04343053.  

Serum sample preparation 

A detergent-based buffer (1% SDC, 10mM TCEP, 
10mM Tris, 40mM chloroacetamide) with Complete 
mini EDTA-free protease inhibitor cocktail (Roche) was 
added to serum at a 25:1 ratio to enhance protein 
denaturation and boiled for 5min at 95C. 50mM 
ammonium bicarbonate was added and digestion was 
allowed to proceed overnight at 37⁰C using trypsin 
(Promega, Madison, WI, USA) and LysC (Wako, 
Richmond, VA, USA) at 1:50 and 1:75 
enzyme:substrate ratios, respectively. The digestion 
was quenched with 10% formic acid and the resulting 
peptides were cleaned-up in an automated fashion 
using the AssayMap Bravo platform (Agilent 
Technologies) with corresponding AssayMap C18 
reverse-phase column. The eluate was dried and 
resolubilized in 1% FA to achieve a concentration of 
1µg/µL. 

Serum proteome profiling 

All spectra were acquired on an Orbitrap HFX mass 
spectrometer (Thermo Fisher Scientific) operated in 
data-independent mode (DIA) coupled to an 
Ultimate3000 liquid chromatography system (Thermo 
Fisher Scientific) and separated on a 50 cm reversed 
phase column packed in-house (Agilent Poroshell EC-
C18, 2.7um, 50cmx75um). Proteome samples were 
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eluted over a linear gradient of a dual-buffer setup with 
buffer A (0.1%FA) and buffer B (80%ACN, 0.1%FA) 
ranging from 9-40% B over 95 min, 40-55% B for 4 min, 
55-95% B in 1 min, and maintained at 95% B for the 
final 5 min with a flow rate of 300 nl/min. DIA runs 

consisted of a MS1 scan at 60 000 resolution at m/z 
200 followed by 30 sequential quadrupole isolation 
windows of 20 m/z for HCD MS/MS with detection of 
fragment ions in the OT at 30 000 resolution at m/z 
200. The m/z range covered was 400–1000 and 

 

 
 

Figure 1. Scheme of the cohort and timing of the blood sample collection, based on each patient's admission to 
the hospitalization. A. Serum samples were collected from 33 individuals (17 survivors, 16 deceased) diagnosed with 
SARS-CoV-2 infection, at one, two or three timepoints following their admission to the clinic (t0). The timepoints t1, t2 and 
t3 represent blood collections at 96h, 14 days and later than 14 days after they arrived at the ICU of the hospital. The date 
of discharge from the hospital is recorded here, although no blood was collected at that moment. The numbers represent 
the elapsed number of days starting from t1 for each patient. These are represented by color gradients ranging from dark 
to light the longer the duration of the stay in the clinic. Patients where no color timeline is represented, indicate cases for 
which no consecutive temporal collection points were available. Patient descriptors including age and gender as well as 
indexes used throughout this report are provided to the right of the timelines and color coded. Patient’s age is binned 
(10y/bin) and the darker the greyscale in column 1 the older the patient. The gender of each patient is marked in column 2 
as blue and pink. Patient indexes are color-coded for patient outcomes, with survivors in blue and deceased SARS-CoV-2 
patients in red in column 3. B. Serum samples were proteolytically digested and the resulting tryptic peptides were purified 
using reverse-phase cartridges on an autosampler robot. C. The samples were analyzed by LC-MS/MS applying a data-
independent acquisition strategy. Spectra were extracted using DIA-NN yielding as a measure abundance for each protein. 
D. Two-sided Student’s t-tests were performed in order to determine significantly regulated proteins comparing survivors 
and non-survivors. E. These differentially regulated proteins were found to be largely functionally related, and define a 
potential panel of mortality markers, by which we can stratify patients that might ultimately overcome or succumb from the 
infection, which can be diagnosed already at an early timepoint in the clinic. 
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the Automatic Gain Control (AGC) was set to 1e6 for 
MS and 2e5 for MS/MS. The injection time was set to 
100ms for MS and ‘auto’ for MS/MS scans. 

Data analysis 

Spectra were extracted from the DIA data using DIA-
NN (version 1.7.12) without a spectral library and with 
”Deep learning” option enabled. The enzyme for 
digestion was set to trypsin and one missed cleavage 
was tolerated. Cysteine Carbamidomethylation and 
Methionine oxidation were allowed. The precursor 
FDR (false discovery rate) threshold was set to 1%. 
Protein grouping was done by protein names and 
cross-run normalization was RT-dependent. All other 
settings were kept at the default values. The gene-
centric report from DIA-NN was used for downstream 
analysis, and quantification was based on unique 
peptides. When injection replicates were available, the 
median of these values was used. All downstream 
analyses were carried out in R [13]. For all proteins the 
concentration was estimated based on a set of 
reference proteins using a log-log model. Significant 
proteins were determined using results from a two-
sided Student’s t-test, with a p-value cutoff of 5e-2. 
Unsupervised hierarchical clustering was performed 
using Ward’s algorithm with euclidean clustering 
distance. 

Results 

For our proteomics analysis we analyzed 33 patients, 
selected to obtain two comparable groups in terms of 
sex (73.3% males), pharmacological treatment and 
comorbidities, as well as age as much as was possible 
(median age 71 ±7.6 vs 65 ±9.8, survivor vs deceased) 
(Suppl. Tables 1, 2). Out of the 17 survivors, 14 had 
blood withdrawn at 3 timepoints, and 3 patients at only 
2 timepoints. In the non-survivor group of 16 patients, 
6 patients had blood sampled at 3 timepoints, whereas 
5 had 2 timepoints, and 5 had only 1 timepoint (Fig. 1). 
Following a serum proteomics sample preparation 
workflow optimized in our group and by others [14, 15] 
we set out to process all 81 samples simultaneously to 
avoid introducing batch effects which may confound 

the results. Data-independent acquisition was 
performed by analyzing all samples in a randomized 
order to also further avoid batch effects. The used 
cohort and the experimental approach are 
schematically summarized in Figure 1 and further 
described in the materials and methods section. 

In total, and after removal of the numerous detected 
variable immunoglobulin protein fragments (Suppl. 
Table 3), we could quantify a mean number of 452 
proteins per sample (min=302, max=578) (Fig. 1. B, 
C). In serum proteomics it has been well established 
that the total intensity of a protein in label free 
quantification (i.e. LFQ- or IBAQ-values) can be used 
as a proxy for protein concentrations. To better relate 
the abundance of serum proteins to clinical data, we 
converted the median log label-free quantified values 
per protein from our mass spectrometry experiments 
into serum protein concentrations. For this conversion, 
we performed a linear regression with 22 known 
reported average values of proteins in serum (A2M, 
B2M, C1R, C2, C6, C9, CFP, CP, F10, F12, F2, F7, 
F8, F9, HP, KLKB1, MB, MBL2, SERPINA1, TFRC, 
TTR, VWF) [16]. This analysis yielded a sensible 
correlation coefficient of R2=0.78 between the 
proteomics concentration measurements and the 
average values reported in literature (Suppl. Fig. 1). 
We therefore decided to convert all mass 
spectrometric values by using this concentration scale 
[mg/dL] (Suppl. Table 5).  

A first look at the proteins present in our serum 
samples across all patients revealed a few potential 
clear outliers. At single timepoints and in single 
patients several proteins originating from either red 
blood cells (e.g. HBA1, HBB, CA1, CA2, PRDX2) or 
fibrinogen (e.g. FGA, FGB and FGG) were extremely 
prominent (Suppl. Fig. 2). These features are more 
often observed in serum proteomics and are likely 
caused by sample preparation artefacts [17]. 
Fortunately, they do not negatively affect the 
abundance measurements of the other serum 
proteins. Therefore, we decided to exclude a panel of 
well-described RBC contaminants (Suppl. Table 4) 
from all further analyses. We then sought to determine 
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the differences in serum proteome expression 
stratifying survivors and deceased patients. For this, at 
each timepoint separately, we performed a two- 
sample Student’s t-test and identified proteins 
significantly differentially expressed between survivors 
and non-survivors (Fig. 2 A; Suppl. Table 6). At t1, 42 
proteins were found to be significantly differentially 
expressed (28 higher in survivors, 14 higher in non-
survivors) taking as threshold a p-value of 0.05. At t2, 
30 proteins were found to be differentially expressed 
(19 higher in survivors, 11 higher in non-survivors). 
Finally, at t3, 19 proteins were significantly different (10 
higher in survivors, 9 higher in non-survivors). In our 
dataset, 2 proteins were significantly different between 
survivors and non-survivors at all timepoints (HRG and 
HPR). Of note, at the latest timepoint, t3, we 
unfortunately could include only a low number of non-
survivors. To illustrate this, the overlap in proteins 
significantly different between survivors and non-
survivors at the first two timepoints was 9 (HRG (p-
value at t1: 2.42e-6; t2: 5e-4; t3: 3.27e-2), FETUB (p-
value at t1: 7.86e-3; t2: 3.49e-4; t3: 2.51e-1), ITIH1 (p-
value at t1: 1.75e-3; t2: 8.18e-5; t3: 1.16e-1), ITIH2 (p-
value at t1: 3.52e-4; t2: 1.65e-2; t3: 2.83e-1), HPR (p-
value at t1: 2.17e-2; t2: 3.66e-2; t3: 3.25e-3), 
SERPINA3 (p-value at t1: 2.31e-2; t2: 4.11e-2; t3: 
2.67e-1), LCAT (p-value at t1: 1.11e-2; t2: 5.64e-6; t3: 
7.98e-2), IGFALS (p-value at t1: 1.16e-2; t2: 8.78e-3; 
t3: 4.79e-1), IGFBP3 (p-value at t1: 3.76e-3; t2: 1.37e-
2; t3:6.74e-1)). The nature of the first two timepoints as 
well as the number of patient samples available at 
these timepoints however led us to focus first on these 
as they would enable the most appropriate comparison 
(at t1 there are 16 survivors and 15 non survivors, 
compared to t2 with 15 vs 11 and t3 with 16 vs 6). We 
did choose to first focus on the data for t1, as this 
represents also the most narrowly defined timeframe 
compared to t2 and t3. Although we thus do 
deliberately not focus on timepoint t3, due to the lower 
statistics, we did observe at this last timepoint that 
several neutrophil originating proteins, such as MPO, 
PRTN3 and LCN2, indicated in yellow in Fig. 2A, were 
more abundant in the non-survivors. Four proteins that 
were clearly significant at timepoint 1 but that did not 

pass the significance threshold at timepoint 2, and are 
of particular interest were FN1 (p-value at t1: 4.82e-3; 
t2: 1.61e-1; t3: 4.37e-1), IGHA1 (p-value at t1: 2.45e-
3; t2: 1.21e-1; t3: 2.67e-1), IGHA2 (p-value at t1: 
1.11e-2; t2: 7.9e-1; t3: 1.25e-1), and KNG1 (p-value at 
t1: 2.67e-3; t2: 8.29e-2; t3: 5.68e-1). 

Thus, assuming our data represents reasonably 
accurate protein concentrations, we next looked at the 
potential functional relationships between the 
differentially abundant proteins from our comparative 
analysis. 

With a focus on the proteins showing differences in 
abundance at timepoint 1, we applied an unsupervised 
clustering approach and found as expected that the 
differentially regulated proteins that resulted from the 
analysis of timepoint 1 samples show a clear cluster 
that is distinct between the survivors and some non-
survivors (Fig. 3 A). These same differentially 
regulated proteins also perform relatively well at 
timepoint 2 to stratify between patient outcomes (Fig. 
3 B). 

Discussion 
In this study we prospectively performed serum 
proteomics in moderate-to-severe COVID19 patients 
admitted to Respiratory and Intensive Care Units 
because of respiratory failure. Our serum proteomics 
data provided quantitative information about the 
abundance of about 300-400 serum proteins on 
average per patient and per timepoint, and thus 
provided quantitative information about changes in 
protein abundances over disease progression per 
patient, but also information about serum proteins 
being more or less abundant when comparing the 
group of survivors and those that died. 

Analyzing the quantitative serum proteomics data, we 
were intrigued by the fact that about two dozen of the 
highly abundant proteins seemed to be significantly 
more (or less) abundant in the serum of survivors 
versus the group of deceased patients. Some of the 
proteins being more abundant in the survivors 
contained the structurally and functionally related type  
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Figure 2. Serum proteins that are differentially abundant in survivors and non-survivors per timepoint. A Volcano 
plots showing the fold change and associated p-values. For each timepoint t1, t2 and t3, a two-sided Student’s t-test was 
performed to identify the significance of the differentially abundant serum proteins (significance threshold at p-value 0.05 
indicated as dashed line). Proteins discussed here are represented in red if higher in deceased patients and in blue if 
showing an increase in surviving patients. In the Volcano plot of t3 some proteins of neutrophil origin are highlighted in 
yellow. B. The number of quantified proteins per sample, with the dotted line indicating the mean (452 proteins quantified 
on average). C. The quantitative MS-based data converted to the concentration scale for the 150 abundant serum proteins 
that are identified and quantified in all samples. Proteins we discuss as potentially stratifying survivors and non-survivors 
are marked in red (AHSG, FETUB, KNG1, HRG, ITIH1, ITIH2, LCAT, SERPINA3, IGHA1, IGHA2, ITIH3, ITIH4) and thus 
span the entire covered dynamic range.
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3 cystatins fetuin-B (FETUB), the histidine-rich 
glycoprotein (HRG) and kininogen (KNG1), the inter-
alpha-trypsin inhibitor isoforms (ITIH1) and (ITIH2) and 
phosphatidylcholine-sterol acyltransferase (LCAT). 
The proteins being more abundant in the deceased 
patients contained alpha-1-antichymotrypsin 
(SERPINA3), the immunoglobulins IgA (IgA1 and 
IgA2), the inter-alpha-trypsin inhibitor isoforms ITIH3 
and ITIH4. Moreover, fibronectin (FN1) showed a 
higher abundance in non-survivors, while decreasing 

in survivors. The differences for this panel of proteins 
were consistently observed at several of the sampling 
timepoints and display consistent trends over time and 
may therefore potentially be considered as a panel that 
can be used for mortality risk assessment. Before 
discussing whether this panel may be sufficiently 
predictive, we first discuss these findings by discussing 
the functional role and relationship of these serum 
proteins, all of which are amongst the most abundant. 

 

Figure 3. Surviving and deceased SARS-CoV-2 patients can be distinguished by a small panel of abundant serum 
proteins, already at t1. A. Proteins identified as differentially abundant at timepoint 1 are shown here to completely cluster 
samples with respect to patient outcome (16 survivors VS 15 non-survivors at timepoint 1). Proteins are annotated by their 
gene names, and those indicated in blue show higher concentrations in survivors whereas proteins in red show higher 
concentration in non-survivors. B. The differentially abundant proteins at timepoint 1 (as shown in A) are used to distinguish 
the 15 survivors from 11 non-survivors at timepoint 2. Underlined proteins in B designate the proteins that were found to be 
regulated at both timepoints. Although the cohort consisted of 17 survivors and 16 non-survivors, at each timepoint we 
missed for a few patients a blood sampling point, which then also could not be included in the clustering and is indicated at 
the top of the dendrograms.
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FETUB, HRG and KNG1 are in our data some of the 
most distinctive differentially  abundant serum proteins 
between survivors and non-survivors, with their levels 
all about a factor 2-4 more abundant in the survivors, 
at almost all 3 timepoints sampled. The fourth family 
member is fetuin-A (AHSG), which although not 
significant in our testing, followed a similar trend (see 
 

 Figure 4A). FETUB, HRG, KNG1 and AHSG are all 
structurally and functionally related type 3 cystatins. 
They are all four closely located to each other on the 
human chromosome 3 (Figure 4E). They share some 
sequence homology, all containing either 2 or 3 alike 
cystatin domains, and KNG1 and HRG share also a 
His-rich domain. HRG is present in human plasma at

 

Figure 4. Serum abundance and structural and functional description of proteins being differentially abundant in 
survivors vs. non-survivors. A. Serum abundance of the four type-3 cystatins, comparing survivors (blue) with non-
survivors (red). At each timepoint the abundance of these cystatins is higher in the survivors compared to the non-survivors. 
Comparisons between survivors and non-survivors at respective timepoints are denoted as significant using asterisks: * p 
<= 0.05, ** p <= 0.01, *** p <= 0.001 and **** p <= 0.0001. B. Serum abundance of the four abundant inter-α-trypsin inhibitors 
(IαI), with clear opposing trends between ITIH1 and ITIH2 as well as between ITIH3 and ITIH4. At each timepoint the 
abundance of ITIH1 and ITIH2 is higher in the survivors compared to the non-survivors, whereas for ITIH3 and ITIH4 the 
opposite holds.  C. Serum abundance of other putative mortality indicators: phosphatidylcholine-sterol acyltransferase 
(LCAT), haptoglobin-related protein (HPR), alpha-1-antichymotrypsin (SERPINA3), and fibronectin (FN1). D. Profiles of the 
IgA immunoglobulin variants IgA1, IgA2, both less abundant in survivors. E. Schematic domain-structures of the type-3 
cystatins showing their sequence homology. Cystatin domains as well as His/Gly and His/Pro domains are depicted as 
boxes. 
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approximately 75-150 mg/mL in healthy donors and 
has been implicated in quite a variety of biological 
functions [18]. HRG was also found to be a negative 
acute phase reactant and circulating HRG levels were 
found to be significantly lower during acute 
inflammation and in patients with systemic lupus 
erythematosus. It has been suggested that HRG may 
play a critical role in recognizing common molecular 
“danger” signals in the innate response that protects 
against tissue damage and pathogen invasion as well 
as aiding wound healing. Still, a clear function of HRG 
in plasma has not been defined, instead it has been 
termed an important multifunctional protein, or even 
swiss-army knife, due to its ability to interact with a 
wide range of small molecules and other plasma 
proteins as reviewed by Poon et al. Fetuin-A, referred 
to as alpha-2-HS-glycoprotein (AHSG) is also an 
abundant and important plasma protein, albeit also 
defined as a multifunctional protein [19, 20]. FETUB is 
a close paralog of HRG; alignment of these two genes 
reveals 35% identity. Also, its functional role in plasma 
is still to some extent obscure and certainly also multi-
functional. Finally, Kininogen-1 (KNG1), also known as 
alpha-2-thiol proteinase inhibitor, is maybe best known 
as the precursor for the low molecular weight peptide 
bradykinin. It contains 3 cystatin domains and shares 
a histidine-rich domain with HRG. Thus, AHSG, 
FETUB, HRG and KNG1 share domain structure 
(cystatin-domains), chromosome localization and 
functionality. In our serum proteomics data, the 
abundances of AHSG, FETUB, HRG and KNG1 are 
found to be highly correlated in each of the sampled 
COVID-19 patients and are consistently higher in the 
survivors. In general, it does however seem that the 
abundance levels of these type 3 cystatins remain 
fairly constant during disease progression. 

Of interest, two recent studies have hypothesized that 
these abundant plasma proteins may indeed represent 
mortality markers. Firstly, Hong et al. [9] used a 
multiplexed antibody-based affinity proteomics assay 
to screen 156 individuals aged 50–92. This dataset 
revealed a consistent age association for the histidine-
rich glycoprotein (HRG). They concluded, by validating 
this finding in several additional data sets (N = 3,987), 

that the histidine-rich glycoprotein associates with age 
and risk of all-cause mortality, whereby a GWAS 
analysis indicated that particular mutations in HRG 
may influence the mortality risk. Secondly, Wozniak et 
al. analyzed a cohort of around 200 patients by serum 
proteomics and metabolomics to assess whether there 
are potential mortality risk biomarkers for patients that 
suffered a Staphylococcus aureus bacteremia. The 
statistically most significant prediction marker they 
observed was FETUB, which was consistently higher 
in survivors than in diseased patients. These data and 
our current data therefore may indicate that high serum 
levels of the cystatins fetuin-A (AHSG), fetuin-B 
(FETUB), the histidine-rich glycoprotein (HRG) and 
kininogen (KNG1) are general positive survival factors, 
independent of the pathogen that induces the disease.  

The family of Inter-α-trypsin inhibitors (IαI) as putative 
mortality markers 

In our dataset a set of other functionally related 
proteins stand out, all belonging to the family of inter-
α-trypsin inhibitors. Four of these are abundantly 
present in our serum dataset, namely ITIH1, ITIH2, 
ITIH3 and ITH4. Notably, ITIH1 and ITIH2 are 
statistically significant differently abundant in between 
survivors and non-survivors, but all four inhibitors also 
show opposite trends during disease progression (Fig. 
4 B). Notably, the abundance levels of ITIH1 and ITIH2 
correlate extremely well in each serum sample 
analyzed, which we actually expected as they are 
known to form in serum an approximately 225-kDa 
complex, named IαI, containing Bikunin next to ITIH1 
and ITIH2. Bikunin is a proteoglycan with a chondroitin 
sulfate (CS) chain attached to the protein core of 
approximately 20 kDa, also termed AMBP. We 
observe a strong positive correlation between ITIH1 
and ITIH2, providing confidence in our quantification. 
ITIH1 and ITIH2 are consistently higher in survivors 
than in non-survivors. Additionally, the levels of these 
two proteins increase during disease progression, both 
in the survivors and non-survivors. In sharp contrast, 
the abundance levels of ITIH3 and ITIH4 (that do not 
form a complex) show a decreasing trend during 
disease progression, and moreover these proteins are, 
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although just below our statistical cut-off, consistently 
lower in abundance in survivors than in non-survivors. 
In a comprehensive recent review by Lord et al. [21] 
the structural organization and functional role of the 
members of these inter-α-trypsin inhibitors (IαI) is 
described. The exact role of these proteins in serum is 
not fully clear, although they all exhibit matrix 
protective activity through protease inhibitory action. 
Next, IαI family members interact with the extracellular 
matrix and most notably hyaluronan, inhibit 
complement, and provide several cell regulatory 
functions. Notably, a reduction in circulating IαI has 
been reported in patients with sepsis which correlated 
with increased mortality rates [22]. Moreover, 
administration of exogenous IαI has been shown to 
lead to reduced mortality suggesting a protective role 
of specific IαI family members [10] . It is somewhat 
difficult to relate these earlier findings with our data, as 
in these studies, using a broad-spectrum antibody, no 
distinction was made between the different inter-α-
trypsin inhibitor family members. Still, as in our 
samples ITIH4 is by far the most abundant in serum, it 
is nice to see that its abundance is indeed lower in the 
non-survivors, consistent with the findings of Lim et al. 
and Opal et al., where inter-alpha inhibitor proteins 
were found to be reduced in severe sepsis, and failure 
of recovery of IαIp levels over the course of sepsis was 
associated with mortality. Our data confirm that 
hypothesis when considering ITIH4 and ITIH3, but 
notably the opposite is observed for ITIH2 and ITIH1. 
In summary, the four related inter-α-trypsin inhibitor 
members possibly provide a panel for monitoring 
disease outcome in a range of pathogen caused 
diseases, amongst them COVID-19. Of note, in the 
context of sepsis IαI improves endothelial inflammation 
while their levels are inversely associated with the 
levels of endothelial dysfunction biomarkers VCAM-1 
and ICAM-1 [23]. Endothelial dysfunction is a feature 
of COVID-19 [24] and we have previously observed 
that high levels of ICAM-1 [25] and VCAM-1 [26] at 
admission are associated with the mortality of our 
COVID-19 patients. Our new data suggests that IαI 
may provide protection from endothelial complications 
of COVID-19, thereby potentially improving survival.  

Finally, IαI has been used in the treatment of 
inflammatory conditions such as sepsis (one of the 
most common causes of death for COVID-19 patients 
[27]) but also for Kawasaki disease, which has recently 
been associated with SARS-Cov-2 infection in children 
[28]. 

Other putative mortality predictors 

Next to the family of type-3 cystatins and the family of 
inter-α-trypsin inhibitors, only a few more serum 
proteins did stand out significantly as potential 
mortality predictors. These included the 
phosphatidylcholine-sterol acyltransferase (LCAT), an 
enzyme involved in the extracellular metabolism of 
plasma lipoproteins, which showed a trend similar to 
ITIH1 and ITIH2, consistently higher in survivors than 
in non-survivors and increasing in abundance during 
disease progression, both in the survivors and non-
survivors. Reversely, the family of immunoglobulin A, 
IgA1 and IgA2, seemed to be more abundant in non-
survivors as well as alpha-1-antichymotrypsin 
(SERPINA3) (Fig. 4 C, D). Thereby angiotensin and 
alpha-1-antichymotrypsin showed a decrease in 
abundance over time, while the IgA levels seemed to 
remain more constant over time. 

Limitations of the study and comparison with related 
recent COVID-19 plasma proteome studies 

Although the panel of plasma protein markers we here 
define as putative mortality indicators is very significant 
in stratifying the survivors from the non-survivors 
affected by COVID-19, our study has a few limitations. 
First of all, it is still a rather small cohort of patients. 
Moreover, patients’ characteristics mainly related to 
medical history and treatments can affect the 
measured outcomes. However, we also believe that 
the prospective longitudinal design adopted in the 
study and the rigorous clinical follow up increase the 
strength of the results, particularly in relation to clinical 
outcomes.  

With this in mind, our study should ideally be compared 
to alike studies on other independent cohorts. In the 
last months, the research efforts on COVID-19 have 
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expanded enormously. In this period, two related 
plasma proteomics studies have appeared studying 
COVID-19 patients, generating data comparable to 
ours, but with different research questions and thus 
also different study design. Still, the outcome of these 
studies and their conclusions can be compared with 
our data. 

First of all, Demichev et al. in a study coordinated by 
the PA-COVID-19 study group [3], measured the 
plasma proteome of 139 hospitalized patients, and 
followed the time-dependent progression of COVID-19 
through different stages of the disease, combining 
several diagnostic clinical parameters and plasma 
proteomes. They used the clinical parameters to 
classify the patients in cohorts of increasing severity 
and followed changes in the patients’ clinical 
parameters and plasma proteomes over time. From 
their data they were able to define signatures for 
disease states as well as observe age-related plasma 
proteome changes. Relevant to our work, they report 
that low plasma levels of 54 proteins could be 
associated with disease severity. Comparing that list 
with the list of 28 proteins that are found to be 
significantly lower in non-survivors versus survivors at 
t1 in our work, we observe a large overlap, including 
HRG, FETUB, AHSG, IGFALS, GPLD1, LCAT, TTR, 
SERPINC1, HPR, ITIH1 and ITIH2, all lower in 
abundance in the plasma of severe COVID-19 
patients. The list of 54 proteins of Demichev et al. is 
larger than ours, but their dataset also includes 
proteins we disregarded as RBC contaminants, such 
as variants of hemoglobin (HBD, HBB, HBA1) and 
carbonic anhydrase, or excluded from our analysis for 
other reasons, such as albumin. Reversely, we also 
examined the list of proteins they state as being of high 
abundance in the plasma of patients with poor 
prognosis and also observe a substantial overlap. As 
was the case for low abundant proteins in patients with 
poor prognosis, their list includes proteins we 
disregarded, such as the fibrinogens FGA, FGB and 
FGG, as these levels may be affected by the sampling. 
Other proteins they note are also in our list of proteins 

being higher in non-survivors at t1, notably SERPINA3, 
AGT, ITIH3, and ITIH4. 

From their clinical and plasma proteome data they 
ultimately defined a very narrow panel of proteins 
predicting future worsening of COVID-19 disease. The 
four proteins defined by them to be indicative of poor 
prognosis when their plasma levels are low were 
AHSG, HRG, ITIH2 and PLG. Pleasingly, except for 
PLG all these proteins were also found by us to be 
substantially lower in the non-survivors than non-
survivors. Surprisingly, ITIH1 was not mentioned by 
Demichev et al. in this panel, although the protein 
levels of this protein are known to directly correlate with 
that of ITIH2. Conversely, they defined 7 proteins 
whereby high abundance in plasma would be 
indicative of poor prognosis, including SERPINA3 and 
AGT. Both these latter proteins are also part of the 
small putative mortality panel we define here and are 
indeed lower in abundance in our non-survivors. The 
data of Demichev et al. are therefore in excellent 
agreement with our findings. 

Another recent plasma proteome profiling study 
related to ours is from Geyer et al [29]. They primarily 
studied differences between the plasma proteomes of 
31 COVID-19 patients versus 263 PCR-negative 
controls. In that analysis Geyer et al. found that the 
protease inhibitors SERPINA3, ITIH3 and ITIH4 were 
increased in plasma abundance in COVID-19 patients, 
when compared to controls, whereas the histidine-rich 
glycoprotein (HRG) and fibronectin (FN1) were 
decreased. In our study we did not compare the 
COVID-19 plasma proteomes to PCR-negative 
controls but focused on ICU-hospitalized survivors 
versus non-survivors. Still, we also find that in the 
survivors SERPINA3, ITIH3 and ITIH4 were lower in 
abundance and HRG and FN1 higher in abundance, 
when compared to the non-survivors, confirming that 
low levels of e.g. HRG are potentially a hallmark of 
COVID-19 disease diagnosis and disease severity. 

Next, Geyer et al. also followed the protein 
abundances in the 31 COVID-19 patients over time. 
They measured longitudinal trajectories of 116 
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proteins (a list including many immunoglobulin 
variants, that we however chose to exclude from our 
analysis) that significantly changed over a disease 
course of up to 37 days. Their more in-depth study, 
albeit with a similar size cohort, but with more frequent 
sampling at a greater number of timepoints, can be 
directly compared to the data for our 33 patients, 
sampled at just three timepoints. It is striking and 
pleasing to see that the trends observed are in very 
good agreement, certainly for the small panel we 
define here as putative mortality markers. Pleasingly 
the trends observed for all the four abundant inter-α-
trypsin inhibitors (ITIH1, ITIH2, ITIH3 and ITIH4) are 
alike in both studies, with an increase over time for the 
first two and a decline in the latter two. Moreover, they 
observe the plasma proteins HRG, FETUB, KNG1, 
LCAT, AHSG and FN1 to increase over time in 
abundance, thus suggesting their regulation during 
COVID-19 disease development. Finally, SERPINA3, 
found to decrease over time in our study was observed 
to decrease over time by Geyer et al. as well. 
  
Thus, although the study designs as well as the patient 
cohorts were completely different, our dataset 
compares extremely well with that reported 
independently by Demichev et al. and Geyer et al., with 
a similar small panel of serum proteins presenting 
hallmarks for disease diagnosis, development and 
severity. The huge consistency in the findings provides 
credibility to these independently made observations, 
especially considering the still modest number of 
patients all three studies tackled. 

In summary, in our study comparing one-by-one the 
serum proteomes of a closely matched group of 
survivor and non-survivor COVID-19 patients admitted 
to the ICU, we were able to extract a small subset of 
proteins that can be used to predict the disease 
outcome, already at an early stage, i.e. shortly after 
admission to the ICU. This set of mortality indicators 
consists largely of functionally related proteins, namely 
several type-3 cystatins and the family of inter-α-
trypsin inhibitors. Although our patient cohort was 

rather small, our observations and conclusions are in 
pleasing agreement with two other, independent, 
recent serum proteome studies, which basically define 
the same set of proteins as either markers or disease 
severity or mortality. Finally, we hypothesize, based on 
comparison with existing literature, that the here 
defined mortality risk panel of proteins may predict 
mortality not specifically for COVID-19 patients, but 
also in other pathogen caused diseases, and even 
more in general also in aging. 
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Supplementary Figures 

 
Suppl. Fig. 1. Concentration estimates based on MS-based label free quantification correlate well with reported 
plasma concentration data. MS label-free quantified intensities were converted to a clinical concentration scale (expressed 
in mg/dL) based on measurements of 22 reference proteins [16] The black bars indicate the ranges from the reference 
concentrations. Individual protein measurements correlate well with the reference concentrations, whereas the red and blue 
violin plots indicate the estimated concentrations for the non-survivor and survivor groups. 
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Suppl. Fig. 2. Abundance of a selection of A. red blood cell related contaminants displaying high variability and outliers, 
mainly at timepoint 1 of patients P13, P40, P49. B. Fibrinogen-related contaminants. The black horizontal line indicates the 
median concentration, which has been normalized to the value ‘1’, so for instance at timepoint t1, patient P13 red blood cell 
protein concentration is about 40 times what is expected in plasma. 
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Suppl. Fig. 3. Surviving and deceased SARS-CoV-2 patients can be reasonably well distinguished by a small panel 
of statistically significant serum proteins, at t2 and t3. A. Proteins identified as differentially abundant at timepoint are 
shown here to cluster samples with respect to patient outcome (15 survivors VS 11 non-survivors at t2). Proteins are 
annotated by their gene names, and those indicated in blue show higher concentrations in survivors whereas proteins in 
red show higher concentration in non-survivors. B. The differentially abundant proteins at timepoint 3 cluster the 16 survivors 
from 11 non-survivors at t3. Although the full cohort consisted of 17 survivors and 16 non-survivors, at each timepoint we 
missed for a few patients a blood sampling point, which then also could not be included in the clustering and is indicated at 
the top of the dendrograms. 

 

Supplementary Tables 
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