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Summary

Clinical and genetic risk factors for severe COVID-19 are often considered
independently and without knowledge of the magnitudes of their effects on risk. Using
SARS-CoV-2 positive participants from the UK Biobank, we developed and validated a
clinical and genetic model to predict risk of severe COVID-19. We used multivariable
logistic regression on a 70% training dataset and used the remaining 30% for validation. We
also validated a previously published prototype model. In the validation dataset, our new
model was associated with severe COVID-19 (odds ratio per quintile of risk=1.77, 95%
confidence interval [C1]=1.64, 1.90) and had excellent discrimination (area under the receiver
operating characteristic curve=0.732, 95% CI=0.708, 0.756). We assessed calibration using
logistic regression of the log odds of the risk score, and the new model showed no evidence
of over- or under-estimation of risk (a=—0.08; 95% CI=-0.21, 0.05) and no evidence or over-
or under-dispersion of risk (=0.90, 95% CI1=0.80, 1.00). Accurate prediction of individual
risk is possible and will be important in regions where vaccines are not widely available or
where people refuse or are disqualified from vaccination, especially given uncertainty about
the extent of infection transmission among vaccinated people and the emergence of SARS-

CoV-2 variants of concern.
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Key results

e Accurate prediction of the risk of severe COVID-19 can inform public heath
interventions and empower individuals to make informed choices about their day-to-
day activities.

e Age and sex alone do not accurately predict risk of severe COVID-109.

e Our clinical and genetic model to predict risk of severe COVID-19 performs

extremely well in terms of discrimination and calibration.

Introduction

The COVID-19 pandemic continues to dominate global public health, with countries
having varying success with infection control measures and social distancing protocols [1],
Coupled with this are the logistical challenges with the distribution of vaccines [2] and the
emergence of SARS-CoV-2 variants of concern [3, 4]. Of those who become infected with
SARS-CoV-2, 10-15% will develop severe COVID-19 requiring hospitalisation and 5% will
require intensive care [5]. At all stages of the pandemic, there has been an urgent need for
accurate quantification of risk of severe COVID-19 to inform protection from infection for
those at increased risk.

Epidemiological analyses have recognized that sex and increasing age are risk factors
for severe COVID-19 and that common medical comorbidities contribute to individual risk
[6-8]. Our previous analysis showed that the effects of sex and age are attenuated when
comorbidities are taken into account [9]. The effect of human genetic variation on COVID-19
severity has been examined by the COVID-19 Host Genetics Initiative, which has now
released several meta-analyses of the available genome-wide association studies of COVID-

19 severity [10, 11]. Using population controls, Ellinghaus et al. [12] identified two loci
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(3p21.31 and 9g34.2) as being strongly associated with respiratory failure from COVID-19
and Shelton et al. [13] identified the 3p21.31 locus as being associated with severe COVID-
19. Also using population controls, Pairo-Castineira et al. [14] identified eight single-
nucleotide polymorphisms (SNPs) that achieved genome-wide significance for intensive care
admission and identified six SNPs (two of which were also in the panel of eight SNPs)
associated with risk of hospitalization.

The emergency authorization of SARS-CoV-2 vaccines [15] does not diminish the
value of accurate prediction of individual risk of severe COVID-19. Extensive vaccine
disqualification criteria (such as pre-existing conditions, pregnancy, and age), vaccine
hesitancy, uncertainty as to whether the vaccines are effective against emerging variants of
concern [4], and an unknown extent to which vaccines prevent the transmission of infection
mean that many people will be at risk of severe COVID-19 should they become infected with
SARS-CoV-2.

We previously developed a prototype risk model [9] based upon early data from the
UK Biobank [16, 17] and SNPs identified from the COVID-19 Host Genetics Initiative
Release 2 meta-analysis of hospitalized vs non-hospitalized COVID-19 cases (which was at
that time almost exclusively UK Biobank samples) [10, 18]. Our prototype model appeared to
perform well but was based on a small sample size from the first wave of the pandemic [9].
We decided not to attempt validation in this dataset because of our concern about the
representativeness of the data (the SARS-CoV-2 testing data was ascertained early in the
pandemic when the limitations on testing availability in the United Kingdom meant that mild
and asymptomatic cases were not identified).

In the interim, the UK Biobank has released further data from participants confirmed

to be infected with SARS-CoV-2. This latest data release (2205 cases and 5416 controls) has

a larger proportion of non-hospitalized people, providing more confidence that they are a
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more representative. In this paper, we perform a validation study of our prototype model and

to develop and validate a new clinical and genetic model to predict risk of severe COVID-19.

Methods

UK Biobank data and eligibility

Since our first paper on the development of a risk prediction model for severe
COVID-19 [9], the UK Biobank [16, 17] has accumulated a large number of additional
SARS-CoV-2 test results [19]. For this analysis, we downloaded an updated results file on 8
January 2021. As in our first paper, eligible participants were active UK Biobank participants
with a positive SARS-CoV-2 test result and who had SNP and hospital data available [9]. Of
the 47990 UK Biobank participants with at least one SARS-CoV-2 test result, 8672 (18.1%)
had a positive test result, and of these, 7621 met our eligibility criteria.

As we did previously [9], we used source of test result as a proxy for severity of
disease, where inpatient results were considered severe disease (cases) and outpatient results
were considered non-severe disease (controls). If a participant had more than one test result,
we classified them as having severe disease if at least one of their results was from an
inpatient setting. Of the 7621 eligible participants, 2205 (28.9%) were cases and 5416

(71.7%) were controls.

Data extraction

We used UK Biobank clinical and genetic data that we had previously downloaded
(see Table 1). We used Plink version 1.9 [20, 21] to extract SNP data from the UK Biobank
imputation dataset. We extracted genotypes of the 64 SNPs that were used to calculate the
SNP score in our prototype model [9] and the 12 SNPs from Pairo-Castineira et al. [14] We

also identified 43 SNPs from the B1_ALL (hospitalized versus non-hospitalized cases of
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COVID-19) results of the COVID19-hg GWAS meta-analyses round 4, conducted by the

COVID-19 Host Genetics Initiative consortium.[10, 22] These SNPs were selected by

pruning variants with a P value of greater than 10~ and linkage disequilibrium variants that

had an R? of greater than 0.5 for all populations. Of these 43 SNPS, 40 were available for

extraction in the UK Biobank imputation dataset. The SNPs considered in the current paper

are listed in Supplementary Table S1.

Validation of prototype model

For the validation of our prototype risk model [9], we used the 1234 cases and 4805
controls that were not included in our previous paper. We constructed relative risk scores for
both the clinical model and the combined clinical and SNP score model using the exponent of

the sum of the intercept and the beta coefficients for each risk factor in the prototype model

[9].

Development and validation of the new model

To develop a new model to predict risk of severe COVID-19, we used all of the
available data and randomly divided it into a 70% training dataset and a 30% validation
dataset (ensuring that the datasets were balanced for case and control status). We used
multiple imputation with 20 imputations to address the missing data for body mass index
(linear regression) and the SNP data (predictive mean matching) for the development of the
new model in the training dataset. To more closely reflect the availability of data in the real
world, we did not use imputed data in the validation dataset.

The clinical variables considered for inclusion in the new model were age, sex, body
mass index (BMI), ethnicity (Caucasian vs other), ABO blood type and the following chronic
health conditions: asthma, autoimmune disease (rheumatoid arthritis, lupus or psoriasis),

haematological cancer, non-haematological cancer, cerebrovascular disease, diabetes, heart
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disease, hypertension, immunocompromised, kidney disease, liver disease and respiratory
disease (excluding asthma). Dummy variables were used for the categorical classifications of
age and ABO blood type.

The SNPs selected for consideration in the development of the new model came from
three sources: (i) the 64 SNPs from our prototype model [9], (ii) the 12 SNPs from the paper
by Pairo-Castineira et al. [14], and (iii) the 40 SNPs newly selected from the results of the
COVID-19 Host Genetics Initiative’s COVID19-hg GWAS meta-analyses round 4 meta-
analysis of non-hospitalized versus hospitalized cases of COVID-19 [10, 22]. To avoid
reliance on potentially inaccurate summary statistics to construct a polygenic risk score, we
used unadjusted logistic regression in the multiple imputation training dataset to identify the
subset of SNPS that were associated with risk of severe COVID-19 with P<0.05 (see

Supplementary Table S1) and used these as individual risk factors (with a per allele effect) to

build our new model.

Statistical methods

Development of new model

We used multivariable logistic regression in the multiple imputation training dataset
to develop the new model to predict risk of severe COVID-19. We began with a model that
included all of the clinical variables and the SNPs with unadjusted associations with severe
COVID-19. We then used backwards stepwise selection to develop the most parsimonious
model. For the removed variables we made a final determination on their inclusion or
exclusion by adding them one at a time to the parsimonious model. To directly compare the
effect sizes of the variables in the final model, regardless of the scale on which they were

measured, we used the odds per adjusted standard deviation [23]. We used the intercept and
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beta coefficients from the new model to calculate the COVID-19 risk score (as a % risk) for

all eligible UK Biobank participants.

Model performance

The association between risk score and severe COVID-19 was assessed using logistic
regression to estimate the OR per quintile of risk score. We assessed model discrimination
using the area under the receiver operating characteristic curve (AUC). Where warranted, we
plotted the receiver operating characteristic curve of the model.

We assessed calibration using logistic regression of the log odds of the risk score to
estimate the intercept and the slope (beta coefficient). An intercept close to 0 indicates good
calibration, while an intercept of less than 0 indicates overall overestimation and an intercept
of greater than 0 indicates overall underestimation of risk.

In terms of the dispersion of the risk score, a slope of close to 1 indicates good
estimation across the spectrum of risk. A slope of less than 1 means that the predicted
probabilities do not vary enough (i.e. underestimation of true high risk and overestimation of
true low risk). Conversely, a slope of greater than one means that the predicted probabilities
vary too much (i.e. underestimation of true low risk and overestimation of true high risk).
Where helpful, we also used a calibration plot to illustrate the fit of a model.

We used Stata (version 16.1) [24] for analyses; all statistical tests were two-sided and

P<0.05 was considered nominally statistically significant.

Ethics approval

The UK Biobank has Research Tissue Bank approval (REC #11/NW/0382) that
covers analysis of data by approved researchers. All participants provided written informed
consent to the UK Biobank before data collection began. This research has been conducted

using the UK Biobank resource under Application Number 47401.
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Data availability statement

The data underlying this article was provided by the UK Biobank and we do not have
permission to share the data. Researchers wishing to access the data used in this study can

apply directly to the UK Biobank at https://www.ukbiobank.ac.uk/register-apply/. Stata 16.1

code for the analysis is available from the corresponding author on request.

Results

In the results file downloaded on 8 January 2021, there were 2205 eligible cases with

severe COVID-19 and 5416 eligible controls with non-severe COVID-19.

Validation of prototype model

Characteristics of the new UKB participants (1234 cases and 4805 controls) with
positive SARS-CoV-2 test results are shown in Supplementary Table S2.

The odds ratio (OR) per quintile showed that the clinical risk score was strongly
associated with severe COVID-19 (OR=1.70; 95% confidence interval [CI]=1.62, 1.79;
P<0.001) and that the combined clinical and SNP risk score was less strongly associated with
severe COVID-19 (OR=1.45; 95% CI1=1.38, 1.52; P<0.001); there was no association with
severe COVID-19 for the SNP score (OR=0.98; 95% CI1=0.94, 1.03; P=0.5). The
discrimination of cases and controls was excellent for the clinical score (AUC=0.711; 95%
CI1=0.694, 0.727), lower for the combined clinical and SNP score (AUC=0.657; 95%
CI1=0.639, 0.674) and poor for the SNP score alone (AUC=0.491; 95% C1=0.473, 0.509).

Assessment of model calibration showed that overall, risk was overestimated for both
the clinical risk model (a=—1.72; 95% CI=—1.80, —1.65; P<0.001) and the clinical and SNP

model (0=—1.63; 95% CI=—1.71, —1.54; P<0.001). For the clinical model, there was no
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evidence of poor dispersion (f=1.03, 95% CI=0.94, 1.12, P=0.5), while the predictions of the

combined clinical and SNP model varied too much (f=0.59, 95% CI=0.52, 0.65, P<0.001).

Development and validation of the new model

Table 1 shows the characteristics of the 1544 cases and 3791 controls in the 70%
training dataset and the 661 cases and 1,625 controls in the 30% validation data set. In the
training dataset, the mean age was 69.8 years (SD=8.6) for cases and 64.6 years (SD=8.4) for
controls, and the mean BMI was 29.3 kg/m? (SD=5.3) for cases and 28.0 kg/m? (SD=4.9) for
controls. In the validation dataset, the mean age was 69.7 years (SD=8.7) for cases and 64.4
years (SD=8.4) for controls, and the mean BMI was 29.4 kg/m? (SD=5.6) for cases and 28.3

kg/m? (SD=5.0) for controls.

Training

In the age and sex model, being male and being in one of the four older age groups
conferred a substantially increased risk of severe COVID-19 (Table 2), with an OR=1.60 for
being male and ORs ranging from 2.74 for the age groups from 65-69 years to 4.95 for the
80+ years group. Direct comparison of the effect size of each variable showed that the age
group 7579 years was the strongest risk factor (with odds per adjusted standard deviation of
1.58), followed by the 7074 and 80—84 groups (with odds per adjusted standard deviations
of 1.42 and 1.34, respectively).

The new model was developed from the variables in Table 1, which include the
clinical variables and the 14 SNPs identified as having unadjusted per allele ORs with P-
values <0.05 (see Supplementary Table S1). The variables retained in the new model are
shown in Table 3 and comprise three age groups (70-74, 75-79 and 80-84 years), sex,
ethnicity, body mass index, six comorbidities and seven SNPs. Compared with the age and

sex model, the effects of sex and age group were attenuated in the new model, with an

10
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OR=1.27 for being male, the 70-74 years age group not being at increased risk, and ORs for
the other age groups ranging from 1.77 for the 70—74 years group to 2.76 for the 80+ years
group.

Direct comparison of the effect size of each variable showed that respiratory disease
was the strongest risk factor with odds per adjusted standard deviation of 1.35, followed by
the three older age groups with odds per adjusted standard deviations of 1.20 to 1.29). The
other clinical risk factors and SNPs had odds per adjusted standard deviation in the range
1.07 to 1.13 (or the equivalent protective effect).

The age and sex model had good discrimination of cases and controls with an AUC of

0.676 (95% CI=0.659, 0.692) but the new model with an AUC of 0.752 (95% CI1=0.737,

0.767) was a substantial improvement (x=149.40, df=1, P<0.001).

Validation

In the non-imputed validation dataset, the age and sex model and the new model were
associated with severe COVID-19. The OR per quintile for the age and sex model was 1.49
(95% CI1=1.40, 1.59; P<0.001), while the new model had a substantially higher OR per
quintile of 1.77 (95% CI=1.64, 1.90; P<0.001).

In terms of discrimination between cases and controls, the age and sex model had an
AUC of 0.671 (95% CI1=0.646, 0.696), while the new model with an AUC of 0.732 (95%
CI1=0.708, 0.756) was a substantial improvement (y?>=41.23, df=1, P<0.001). The receiver
operating characteristic curves for both models are shown in Figure 1.

Both models were well calibrated with no evidence of overall overestimation or
underestimation for the age and sex model (a=—0.02; 95% C1=-0.18, 0.13; P=0.7) or the new
model (a=—0.08; 95% CI=-0.21, 0.05; P=0.3). There was also no evidence of under or over

dispersion for the age and sex model ($=0.96, 95% CI1=0.81, 1.10, P=0.6) and for the new

11
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model (=0.90, 95% CI=0.80, 1.00, P=0.06). Calibration plots for both models are shown in

Figure 2.

Probability of severe COVID-19 in whole UK Biobank

We calculated the probability of severe COVID-19 for all UK Biobank participants
who met our eligibility criteria for this study; the distributions are shown in Figure 3, and the
distribution of the new model by 5-year age group are shown in Supplementary Figure S1.
Using the age and sex model, the mean probability was 0.32 (SD=0.13) and ranged from a
minimum of 0.15 to a maximum of 0.56. Using the new model, the mean probability was
0.27 (SD=0.16) and the range was from 0.04 to 0.98, a much wider range than for the age and

sex model.

Discussion

An accurate test to predict risk of severe COVID-19 can inform prioritization of
vaccine doses to those most at risk [25] and will be useful in regions in which vaccination is
not widespread enough to provide herd immunity (either through unavailability or vaccine
hesitancy), if available vaccines are not effective against variants of SARS-CoV-2, or if
available vaccines are not indicated for some people. On an individual level, knowledge of
personal risk can empower people to make informed choices about their day-to-day activities,
including targeted social distancing in the workplace [26] or other crowded places.

The validation of the clinical component of our prototype model confirmed that it
performed well with good discrimination (AUC=0.711), but overall, it overestimated risk.
The SNP score component of the prototype model was not confirmed in the validation dataset
and is likely due to the prototype model having been developed in dataset with a high

prevalence of severe COVID-19.

12
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Given the failure to confirm our prototype SNP-based risk score, we incorporated
SNPs in the new model without relying on published summary statistics and without
assumptions as to the identity of the risk allele. We included the SNPs as individual risk
factors and estimated the per allele OR for each. By doing so, we were able to identify the
subset of SNPs and clinical risk factors that were informative for predicting risk. These risk
factors are all important to risk prediction, and characterization of the SNP genotypes is as
important as ascertaining clinical information.

From our initial list of 116 SNPs (Supplementary Table S1), we considered 14 for
inclusion in our model and retained seven, none of which were in the 3p21.31 locus identified
by others [12-14, 22]. Functionally, most of the SNPs retained in our new model are
associated with genes that play a role in infection pathways or immunity. The immune
function and chromatin remodelling family of GATA transcription factors are associated by
the inclusion of SNPs near HIVEP1 (rs10755709), which encodes a viral-infection regulation
transcription factor, and GATA3 (rs71481792) [27, 28]. ALPK1 and TIFA are closely
downstream of rs112641600 and both have adaptive and innate signal transduction roles and
pro-inflammatory functions [29]. MSR1, upstream of rs118072448, is a macrophage
scavenger receptor and implicated in a broad range of disease types including host viral
defence [30] and PSATL1 is associated with glutamine metabolic reprogramming by SARS-
CoV-2 and viral mRNA translation [31].

In the development of the new model, the strongest risk factor was respiratory disease
(with an odds per standard deviation of 1.35; Table 3). The older age groups (70-74, 75-79,
and 80+ years) and being male all had odds per standard deviations of 1.20 to 1.29. The other
risk factors (the seven SPNs, ethnicity, body mass index, cancer history (haematological and

non-haematological), cerebrovascular disease, diabetes, hypertension, and kidney disease) all

13
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had odds per adjusted standard deviations in the range 1.07 to 1.13 (or the equivalent
protective effect).

In the non-imputed validation dataset, the new model performed very well with an
AUC of 0.732 (compared with an AUC of 0.752 in the training dataset). Importantly, the new
model was well calibrated, showing no evidence of problems with the overall estimation of
risk or the dispersion of risk predictions. The validation of the new model also illustrates the
importance of considering risk factors beyond age and sex in predicting risk of severe
COVID-19. The new model was a substantial improvement over the age and sex model, in
terms of the OR per quintile (OR=1.77 and OR=1.49, respectively) and the discrimination of
cases and controls (AUC=0.732 and AUC=0.671, respectively). The new model also allows
stratification across a wide range of risk (Figure 3B) so that, for example, a healthy person
aged 75 years might have a lower risk of severe COVID-19 than a 50-year-old person with
several risk factors.

A limitation of this study is that, through necessity, we used hospitalization as a proxy
for COVID-19 severity and the outcome measure may have been misclassified for some
participants. This would have attenuated the observed associations and it is possible that
some risk factors have been omitted unnecessarily. Nevertheless, we are confident in the
variables retained. We were also unable to develop models for other important endpoints such
as intensive care admission or death.

The progression of the COVID-19 pandemic has seen people experience chronic
symptoms, and some of these people will have had only a mild original infection [5].
Identifying people who are at increased risk of chronic disease is an obvious direction for
future research. Another direction for future research is to investigate whether our model for
the prediction of severe COVID-19 is applicable for the new SARS-CoV-2 variants of

concern, which have been reported to have increased transmissibility, virulence and
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antigenicity and cause more severe disease [3, 4]. Further validation of our new model is
required in independent datasets, especially those in which the SARS-CoV-2 variant has been
characterized.

Clear benefits of our new model for predicting risk of severe COVID-19 are that the
required clinical data is simple to collect and that the genetic information is amenable to
high-throughput genotyping, with rapid turnaround that is essential for the present pandemic.

In the light of the uncertainty of the future of the COVID-19 pandemic, accurate knowledge

of individual risk of severe COVID-19 can make an important contribution to healthcare on

both a population and a personal level.
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Tables

Table 1. Characteristics of cases and controls in the training and validation datasets for the variables considered for inclusion in the new

model
Training Validation

Variable Cases Controls Cases Controls

N=1,544 N=3,791 N=661 N=1,625
Mean (SD) Mean (SD) Mean (SD) Mean (SD)
Inverse of body mass index 10/(kg/m2) 0.35(0.06) 0.37 (0.06) 0.35(0.06) 0.36 (0.06)

N (%) N (%) N (%) N (%)

Age group (years) 50-54 97 (6.3) 465 (12.3) 40 (6.1) 192 (11.8)
55-59 178 (11.5) 872 (23.0) 85 (12.9) 401 (24.7)
60-64 144 (9.3) 668 (17.6) 70 (10.6) 290 (17.9)
65-69 197 (12.8) 578 (15.3) 83 (12.6) 240 (14.8)
70-74 343 (22.2) 589 (15.5) 127 (19.2) 247 (15.2)
75-79 436 (28.2) 481 (12.7) 190 (28.7) 196 (12.1)
80+ 149 (9.7) 138 (3.6) 66 (10.0) 59 (3.6)
Sex Female 665 (43.1) 2,080 (54.9) 281 (42.5) 857 (52.7)
Male 879 (56.9) 1,711 (45.1) 380 (57.5) 768 (47.3)
Ethnicity White 1,381 (89.4) 3,481 (91.8) 599 (90.6) 1,486 (91.5)
Other/Unknown 163 (10.6) 310 (8.2) 62 (9.4) 139 (8.6)
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Training Validation
Variable Cases Controls Cases Controls
N=1,544 N=3,791 N=661 N=1,625
ABO blood type 0 627 (40.6) 1,472 (38.8) 300 (45.4) 640 (39.4)
A 701 (45.4) 1,764 (46.5) 265 (40.1) 750 (46.2)
B 164 (10.6) 393 (10.4) 70 (10.6) 169 (10.4)
AB 52 (3.4) 162 (4.3) 26 (3.9) 66 (4.1)
Asthma No 1,286 (83.3) 3,355 (88.5) 549 (83.1) 1,403 (86.3)
Yes 258 (16.7) 436 (11.5) 112 (16.9) 222 (13.7)
Autoimmune disease (heumatoid 1,448 (93.8) 3,654 (96.4) 616 (93.2) 1571 (96.7)
arthritis, lupus or psoriasis)
Yes 96 (6.2) 137 (3.6) 45 (6.8) 54 (3.3)
Cancer - haematological No 1,494 (96.8) 3,765 (99.3) 637 (96.4) 1,615 (99.4)
Yes 50 (3.2) 26 (0.7) 24 (3.6) 10 (0.6)
Cancer — non-haematological No 1,217 (78.8) 3,323 (87.7) 525 (79.4) 1,425 (87.7)
Yes 327 (21.2) 468 (12.4) 136 (20.6) 200 (12.3)
Cerebrovascular disease No 1,338 (86.7) 3,626 (95.7) 565 (85.5) 1,555 (95.7)
Yes 206 (13.3) 165 (4.4) 96 (14.5) 70 (4.3)
Diabetes No 1,168 (75.7) 3,453 (91.1) 525 (79.4) 1,470 (90.5)
Yes 376 (24.4) 338 (8.9) 136 (20.6) 155 (9.5)
Heart disease No 1,013 (65.6) 3,205 (84.5) 454 (68.7) 1,374 (84.6)
Yes 531 (34.4) 586 (15.5) 207 (31.3) 251 (15.5)
Hypertension No 679 (44.0) 2,661 (70.2) 304 (46.0) 1,134 (69.8)
Yes 865 (56.0) 1,130 (29.8) 357 (54.0) 491 (30.2)
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Training Validation
Variable Cases Controls Cases Controls
N=1,544 N=3,791 N=661 N=1,625
Immunocompromised No 1,525 (98.8) 3,780 (99.7) 653 (98.8) 1,620 (99.7)
Yes 19 (1.2) 11(0.3) 8(1.2) 5(0.3)
Kidney disease No 1,318 (85.4) 3,677 (97.0) 581 (87.9) 1,562 (96.1)
Yes 226 (14.6) 114 (3.0) 80 (12.1) 63 (3.9)
Liver disease No 1,442 (93.4) 3,683 (97.2) 613 (92.7) 1,579 (97.2)
Yes 102 (6.6) 108 (2.9) 48 (7.3) 46 (2.8)
Respiratory disease (excluding No 1,026 (66.5) 3,487 (92.0) 448 (67.8) 1,489 (91.6)
asthma)
Yes 518 (33.6) 304 (8.0) 213 (32.2) 136 (8.4)
rs112641600 CIC 1,249 (80.9) 2,972 (78.4) 525 (79.4) 1,271 (78.2)
TIC 262 (17.0) 708 (18.7) 120 (18.2) 317 (19.5)
TT 11(0.7) 58 (1.5) 5(0.76) 20 (1.2)
Missing 22 (1.4) 53 (1.4) 1(1.7) 17 (1.1)
rs10755709 A/A 708 (45.9) 1,824 (48.1) 300 (45.4) 749 (46.1)
G/IA 618 (40.0) 1,535 (40.5) 291 (44.0) 701 (43.1)
GIG 169 (11.0) 332 (8.8) 58 (8.8) 124 (7.6)
Missing 49 (3.2) 100 (2.6) 12 (1.8) 51 (3.1)
rs16873740 TT 1,171 (75.8) 2,972 (78.4) 495 (74.9) 1,266 (77.9)
AT 340 (22.0) 763 (20.1) 157 (23.8) 336 (20.7)
A/A 32 (2.1) 52 (1.4) 8(1.2) 20 (1.2)
Missing 1(0.1) 4 (0.1) 1(02) 3(0.2)
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Training Validation
Variable Cases Controls Cases Controls
N=1,544 N=3,791 N=661 N=1,625
rs118072448 TIT 1,346 (87.2) 3,215 (84.8) 581 (87.9) 1,380 (84.9)
CIT 188 (12.2) 536 (14.1) 71(10.7) 231 (14.2)
CIC 10 (0.7) 40 (1.1) 9(1.4) 14 (0.9)
Missing 0(0.0) 0(0.0) 0 (0.0) 0 (0.0)
rs7027911 GIG 367 (23.8) 1,023 (27.0) 156 (23.6) 398 (24.5)
AIG 606 (39.3) 1,415 (37.3) 261 (39.5) 676 (41.6)
A/A 240 (15.5) 553 (14.6) 111 (16.8) 229 (14.1)
Missing 331(21.4) 800 (21.1) 133 (20.1) 322 (19.8)
rs71481792 A/A 239 (15.5) 514 (13.6) 122 (18.5) 246 (15.1)
TIA 701 (45.4) 1,704 (45.0) 263 (39.8) 712 (43.8)
TIT 522 (33.8) 1,416 (37.4) 247 (37.4) 591 (36.4)
Missing 82 (5.3) 157 (4.1) 29 (4.4) 76 (4.7)
rs1984162 A/A 827 (53.6) 2,144 (56.6) 363 (54.9) 865 (53.2)
G/A 612 (39.6) 1,416 (37.4) 249 (37.7) 642 (39.5)
G/IG 105 (6.8) 231 (6.1) 49 (7.4) 118 (7.3)
Missing 0(0.0) 0(0.0) 0(0.0) 0 (0.0)
rs115492982 G/IG 1,529 (99.0) 3,774 (99.6) 654 (98.9) 1,621 (99.8)
AlG 14 (0.9) 15(0.4) 7(1.1) 3(0.2)
A/A 1(0.1) 0(0.0) 0(0.0) 0(0.0)
Missing 0(0.0) 2(0.1) 0 (0.0) 1(0.1)
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Training Validation
Variable Cases Controls Cases Controls
N=1,544 N=3,791 N=661 N=1,625
rs112317747 TIT 1,410 (91.3) 3,518 (92.8) 610 (92.3) 1,521 (93.6)
CIT 115 (7.5) 236 (6.2) 44 (6.7) 87 (5.4)
C/C 2(0.1) 0(0.0) 0(0.0) 0(0.0)
Missing 17 (1.1) 37 (1.0) 7(1.1) 17 (1.1)
rs2034831 A/A 1,284 (83.2) 3,242 (85.5) 550 (83.2) 1,375 (84.6)
C/A 200 (13.0) 399 (10.5) 80 (12.1) 190 (11.7)
C/IC 8 (0.5) 18 (0.5) 10 (1.5) 8(0.5)
Missing 52 (3.4) 132 (3.5) 21(3.2) 52 (3.2)
rs35896106 CIC 1,251 (81.0) 3,166 (83.5) 537 (81.2) 1,373 (84.5)
T/IC 231 (15.0) 514 (13.6) 104 (15.7) 203 (12.5)
CIC 13 (0.8) 23(0.6) 5(0.8) 12 (0.7)
Missing 49 (3.2) 88 (2.3) 15 (2.3) 37 (2.3)
rs76374459 G/IG 1,318 (85.4) 3,320 (87.6) 567 (85.8) 1,440 (88.6)
CIG 187 (12.1) 394 (10.4) 83 (12.6) 150 (9.2)
CIC 9(0.6) 12(0.3) 1(02) 8 (0.5)
Missing 30 (1.9) 65 (1.7) 10 (1.5) 27 (1.7)
rs35652899 C/IC 1,286 (83.3) 3,236 (85.4) 553 (83.7) 1,406 (86.5)
GIC 222 (14.4) 493 (13.0) 97 (14.7) 187 (11.5)
G/IG 14 (0.9) 20 (0.5) 3 (0.5) 10 (0.6)
Missing 22 (1.4) 42 (1.1) 8(1.2) 22 (1.4)
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Training Validation
Variable Cases Controls Cases Controls
N=1,544 N=3,791 N=661 N=1,625
rs76488148 G/IG 1,385 (89.7) 3,463 (91.4) 603 (91.2) 1,488 (91.6)
TIG 144 (9.3) 290 (7.7) 49 (7.4) 119 (7.3)
TIT 5(0.3) 7(0.2) 0(0.0) 4(0.3)
Missing 10 (0.7) 31(0.8) 9(1.4) 14 (0.9)

SD, standard deviation
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Table 2. Age and sex model for risk of severe COVID-19 in the training dataset

. Adjusted odds  95% confidence Odds per adjusted  95% confidence
Variable ) \ P value . L. .
ratio interval standard deviation interval
Age group (years) 65-69 1.60 1.32,1.94 <0.001 1.18 1.10,1.26
70-74 2.74 2.31,3.24 <0.001 1.42 1.34,1.50
75-79 4.20 3.55,4.97 <0.001 1.58 1.50, 1.67
80+ 4.95 3.83,6.39 <0.001 1.34 1.28, 1.41
Sex Male 1.48 1.31,1.67 <0.001 1.21 1.14,1.29

Note: Adjusted odds ratio and odds per adjusted standard deviation calculated using the original dataset because no missing data in this model.
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Table 3. Adjusted odds ratios and odds per adjusted standard deviations for the risk factors in the new model for risk of severe COVID-

19 in the training dataset

Variable Adjustefi odds 95%.confidence P value Odds per adjfls?ed 95%-confidence

ratio interval standard deviation interval

Age group (years) 70-74 1.77 1.49,2.12 <0.001 1.22 1.15,1.30
75-79 2.28 1.90, 2.73 <0.001 1.29 1.22,1.36

80+ 2.76 2.09, 3.64 <0.001 1.20 1.14,1.26

Sex Male 1.27 1.12,1.46 <0.001 113 1.06, 1.20
Ethnicity Non-white 1.34 1.06, 1.70 0.02 1.08 1.01,1.14
Inverse of body mass index 10/(kg/m2) 0.20 0.06, 0.66 0.008 0.91 0.85, 0.97
Cancer — haematological Yes 2.73 1.62, 4.60 <0.001 1.09 1.04,1.13
Cancer - non-haematological Yes 1.29 1.08, 1.54 0.005 1.09 1.03, 1.15
Cerebrovascular disease Yes 1.50 1.17,1.92 0.001 1.08 1.03,1.14
Diabetes Yes 1.54 1.26, 1.87 <0.001 1.12 1.06, 1.18
Hypertension Yes 1.34 1.15, 1.56 <0.001 1.12 1.06, 1.19
Kidney disease Yes 2.00 1.53, 2.61 <0.001 1.12 1.07,1.17
::t;‘:::)tory disease (excluding 3.23 2.71,3.85 <0.001 135 129, 1.42
rs112641600 Per T allele 0.79 0.68,0.92 0.003 0.90 0.84,0.97
rs10755709 Per G allele 113 1.02,1.25 0.02 1.09 1.02,1.16
rs118072448 Per C allele 0.82 0.69, 0.98 0.03 0.93 0.86, 0.99
rs7027911 Per A allele 1.11 1.00, 1.23 0.05 1.07 1.00, 1.15
rs71481792 Per T allele 0.90 0.82,1.00 0.04 0.93 0.87,0.99
rs112317747 Per C allele 1.31 1.02,1.70 0.04 1.06 1.00,1.13
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Adjusted odds  95% confidence Odds per adjusted
P value

Variable ratio interval standard deviation

95% confidence
interval

rs2034831 Per C allele 1.27 1.05,1.53 0.01 1.08

1.02,1.15

Note: Using multiple imputation data; odds per adjusted standard deviation calculated using only the first imputation dataset.
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Figure 1. Receiver operating characteristic curves for the age and sex model and the new
model in the validation dataset. The new model has an area under the curve (AUC) of 0.732
(95% CI=0.708, 0.756), and the age and sex model has an AUC of 0.671 (95% CI1=0.646,

0.696).
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Figure 2. Calibration plots for the (A) age and sex model and (B) new model in the validation

dataset.
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Figure 3. Distribution of probability of severe COVID-19 in all of UK Biobank for (A) the

age and sex model and (B) the new model.
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Supplementary Figure S1. Distribution of probability of severe COVID-19 by 5-year
age group.
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Supplementary tables
Supplementary Table S1. Allele frequencies and unadjusted odds ratios for the full list

of SNPs identified as potential risk factors for severe COVID-19 — training dataset
(shaded SNPs were selected)

Reference allele Effect allele

Chr SNP frequency frequency OR 95% ClI P
64 SNPs from Dite et al. [1]
1 rs12745140 G 0.91 A 0.09 090 0.77,1.06 0.2
1 rs12083278 G 0.29 C 0.71 1.05 0.96,1.16 0.3
1 rs2765013 C 0.91 T 0.09 110  0.96,1.27 0.2
1 rs2274122 G 0.20 A 0.80 097 0.88,1.07 0.5
1 rs10873821 C 0.75 T 0.25 092 0.84,1.02 0.1
2 rs6714112 C 0.86 A 0.14 1.03 091,116 0.7
2 rs2270360 A 0.74 C 0.26 094 0.85,1.04 0.2
3 rs1504061 C 0.95 G 0.05 113 0.94,1.36 0.2
3 rs17317135 G 0.95 A 0.05 0.89 0.73,1.09 0.2
3 rs1868132 C 0.90 T 0.10 1.02  0.89,1.17 0.8
3 rs6440031 A 0.08 G 0.92 095 0.80,1.13 0.6
4 rs3774881 T 0.84 C 0.16 091 0.82,1.02 0.1
4 rs3774882 C 0.92 G 0.08 089 0.76,1.05 0.2
4 rs6810404 C 0.51 A 0.49 097  0.89,1.05 0.5
4 rs35540967 T 0.93 C 0.07 1.01 087,119 0.9
4 rs115162070 G 0.93 A 0.07 090 0.75,1.07 0.2
4 rs11729561 T 0.92 C 0.08 096 0.82,1.12 0.6
4 rs112641600 C 0.89 T 0.11 083 0.72,0.96 0.01
S rs62377777 T 0.79 C 0.21 096 0.87,1.07 0.5
5  rs4240376 G 0.80 T 0.20 0.98 0.88,1.09 0.7
5 1510039856 C 0.90 T 0.10 110  0.96,1.26 0.2
9 152220543 T 0.71 A 0.29 1.03  0.94,1.14 0.5
5  rs113791144 C 0.93 T 0.07 097 0.82,1.14 0.7
6 rs6933436 A 0.71 C 0.29 1.01  0.92,1.11 0.9
6 rs10755709 A 0.70 G 0.30 111 1.01,1.21 0.03
6 rs140247774 C 0.93 T 0.07 093 0.78,1.10 0.4
6 rs16873740 T 0.88 A 0.12 116 1.03,1.32 0.02
6  rs9386484 T 0.76 A 0.24 095 0.85,1.06 0.4
8  rs118072448 T 0.92 C 0.08 082 0.70,0.97 0.02
8  rs10808999 A 0.13 G 0.87 1.01  0.89,1.14 0.9
8 rs13282163 A 0.92 C 0.08 093  0.80,1.09 0.4
8  rs11779911 C 0.67 A 0.33 099 091,1.09 0.9
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Chr SNP Refference allele Effect allele OR 95% Cl p
requency frequency

8 rs2010843 T 0.47 C 0.53 1.04  0.96,1.13 04
9 rs3895472 T 0.08 C 0.92 1.03 0.88,1.21 0.7
9 rs12236000 G 0.92 C 0.08 095 0.81,1.11 0.5
9  rs7027911 G 0.57 A 0.43 110  1.01,1.21 0.04
10 rs71481792 A 0.38 T 0.62 089 0.82,097 0.01
10 rs2091431 A 0.28 G 0.72 1.04 094,114 0.5
10 rs1892429 A 0.84 G 0.16 098 0.87,1.11 0.8
10 rs10793436 G 0.68 T 0.32 094 0.85,1.04 0.2
10  rs1441121 T 0.57 A 043 095 0.87,1.03 0.2
11 rs10766439 A 0.37 G 0.63 097 0.89,1.05 04
12 rs11613792 A 0.85 G 0.15 1.01  0.89,1.14 0.9
12 rs12823094 T 0.76 A 0.24 1.08 0.98,1.19 0.1
13 rs1984162 A 0.75 G 0.25 1.10  1.00, 1.21 0.05
13 rs12871414 C 0.74 T 0.26 095 0.86,1.05 0.3
14 rs2238187 A 0.65 G 0.35 1.07 0.98,1.17 0.1
14 rs12587980 C 0.63 T 0.37 1.03 094,113 0.5
15 rs12593288 C 0.80 T 0.20 091  0.82,1.01 0.08
15 rs2229117 G 0.86 C 0.14 0.90 0.80,1.02 0.1
16 rs72803978 A 0.94 G 0.06 0.88 0.74,1.05 0.2
17 rs34761447 C 0.90 T 0.10 1.02 0.89,1.18 0.8
17 rs178840 G 0.75 A 0.25 0.94 0.85,1.04 0.2
18 rs12958013 T 0.86 C 0.14 1.08  0.96,1.22 0.2
19 rs8105499 C 0.70 A 0.30 0.98  0.90,1.08 0.7
19 rs60744406 A 0.41 G 0.59 1.02  0.94,1.11 0.7
19 rs10411226 G 0.25 A 0.75 1.04 094,115 0.5
21 rs2252109 A 0.48 T 0.52 098 0.90,1.06 0.6
22 rs5757427 T 0.65 A 0.35 096 0.88,1.05 04
22 rs7290963 G 0.55 T 045 1.00  0.92,1.09 0.9
22 rs11090305 T 0.80 C 0.20 1.06  0.96,1.18 0.2
22 1862220604 G 0.73 A 0.27 0.97 0.88,1.07 0.5
3 rs11385942 G 0.92 GA 0.08 1.16  1.00,1.34 0.05
9  rs657152 C 0.63 A 0.37 095 0.87,1.03 0.2
12 SNPs from Pairo-Castineira et al. [2]

3 rs71325088 T 0.92 C 0.08 1.15 0.99,1.33  0.07

3 rs73064425 C 0.92 T 0.08 1.15 0.99,1.33  0.07

6 rs9380142 G 0.30 A 0.70 1.08 0.99,119  0.09

6 rs143334143 G 0.93 A 0.07 1.00 0.851.18 1.0

6 rs3131294 A 0.13 G 0.87 1.00 088,113 1.0
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Chr SNP Refference allele Effect allele OR 95% Cl p
requency frequency

12 rs6489867 C 0.36 T 0.64 098 090,107 0.7

12 rs10735079 G 0.36 A 0.64 098 090,107 06

19 rs2109069 G 0.68 A 0.32 1.01 092,111 0.8

19 rs74956615 T 0.95 A 0.05 1.05 087,129 0.6

19 rs11085727 C 0.72 T 0.28 1.06 096,116 0.2

21 rs13050728 C 0.68 T 0.32 1.08 099,118 0.1

21 rs2236757 G 0.70 A 0.30 1.06 097,116 0.2

40 SNPs identified from Host Genetics Initiative [3]

1 rs17102023 A 1.00 G 0.00 1.03 0.62,2.74 0.5
1 rs115492982 G 1.00 A 0.00 246  1.23,4.91 0.01
1 rs2224986 C 0.91 T 0.09 098 0.85,1.14 0.8
1 rs74508649 C 1.00 T 0.00 1.05 047,234 0.9
1 rs112317747 T 0.97 C 0.03 126  1.00,1.58 0.05
2 15183569214 G 1.00 A 0.00 071 0.15,3.41 0.7
2 rs77764981 T 1.00 C 0.00 129 0.54,3.10 0.6
2 rs2034831 A 0.94 C 0.06 123  1.04,1.45 0.02
3 rs1705826 C 0.63 G 0.37 1.03 094,112 0.6
3 rs35896106 C 0.92 T 0.08 117  1.01,1.35 0.04
3 rs76374459 G 0.94 C 0.06 1.21 1.02,1.42 0.03
3 rs35652899 C 0.93 G 0.07 117  1.01,1.36 0.04
3 rs12639224 C 0.73 T 0.27 1.02 0.93,1.12 0.6
3 rs34901975 G 0.89 A 0.1 111 0.98,1.27 0.1
3 rs71615437 A 0.92 G 0.08 111 0.96,1.29 0.2
3 rs13433997 T 0.88 C 0.12 110 097,124 0.1
3 rs10510749 C 0.91 T 0.09 099 0.85,1.15 0.9
3 rs115102354 A 0.95 G 0.05 096 0.79,1.16 0.7
3 rs13062942 A 0.64 G 0.36 0.93  0.85,1.02 0.1
3 rs76488148 G 0.96 T 0.04 125 1.02,1.52 0.03
5  rs4478338 T 0.92 G 0.08 1.08 0.93,1.25 0.3
5 8111265173 C 1.00 T 0.00 0.98  0.35, 267 1.0
6 rs61611950 C 0.99 T 0.01 092 0.6, 1.51 0.8
7 rs6967210 T 0.99 C 0.01 116  0.84,1.59 04
8  rs332040 G 0.53 A 0.47 1.00 0.92,1.09 0.9
9  rs71480372 A 0.66 T 0.34 0.99  0.90,1.09 0.8
9 rs74790577 A 1.00 T 0.00 1.05 0.27,4.06 0.9
10 rs5016035 T 0.51 G 0.49 1.00 0.91,1.09 0.9
12 rs7397549 T 0.59 C 0.41 1.00 0.91,1.09 0.9
13 rs2649134 C 0.97 T 0.03 093 0.72,1.19 0.6
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Reference allele Effect allele OR

Chr SNP 95% ClI P
frequency frequency

14 rs144114696 G 1.00 A 0.00 249 0.50,12.38 0.3
15 rs77055952 A 0.95 G 0.05 1.07  0.88,1.29 0.5
15 rs74750712 T 1.00 G 0.00 1.33  0.66,2.70 0.4
16 rs72779789 G 0.95 C 0.05 1.03  0.85,1.26 0.8
16 rs145643452 G 0.99 A 0.01 1.03 0.61,1.74 0.9
17 rs9890316 G 0.69 A 0.31 1.01  0.92,1.11 0.9
18 rs142257532 T 0.97 C 0.03 1.01  0.78,1.30 1.0
20 rs56259900 A 1.00 G 0.00 111 0.63,1.94 0.7
20 rs76253189 C 0.99 G 0.01 1.01 072,142 1.0
21 rs75994231 C 0.98 T 0.02 1.06  0.79,1.43 0.7

Chr, chromosome number; Cl, confidence interval; OR, odds ratio per effect allele
Note: imputed data was used for the unadjusted odds ratios; the 64 SNPs used in Dite et al.[1] included
rs11385942 and rs657152 from Ellinghaus et al. [4]
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Supplementary Table S2. Characteristics of cases and controls for validation of the
prototype model to predict severe COVID-19

Variable Cases Controls
N=1,234 N=4,805
Mean (SD) Mean (SD)
SNP score % risk alleles 61.3(3.9) 61.4(3.8)
N (%) N (%)
Age group (years) 50-59 187 (15.2) 1,717 (35.7)
60-69 289 (23.4) 1,609 (33.5)
70+ 758 (61.4) 1,479 (30.8)
Sex Female 529 (42.9) 2,613 (54.4)
Male 705 (57.1) 2,192 (45.6)
Ethnicity White 1,137 (92.1) 4,433 (92.3)
Other 87 (7.1) 359 (7.5)
Missing 10 (0.8) 13 (0.3)
ABO blood type 0 524 (42.5) 1,855 (38.6)
A 537 (43.5) 2,244 (46.7)
B 124 (10.1) 504 (10.5)
AB 49 (4.0) 202 (4.2)
Auto?nlwmune disease .(rhtlaumatoid No 1,160 (94.0) 4,635 (96.5)
arthritis, lupus or psoriasis)
Yes 74 (6.0) 170 (3.5)
Cancer — haematological No 1,206 (97.7) 4,775 (99.4)
Yes 28 (2.3) 30 (0.6)
Cancer — non-haematological No 978 (79.3) 4,227 (88.0)
Yes 256 (20.8) 578 (12.0)
Diabetes No 965 (78.2) 4,393 (91.4)
Yes 269 (21.8) 412 (8.6)
Hypertension No 577 (46.8) 3,428 (71.3)
Yes 657 (53.2) 1,377 (28.7)
Respiratory disease (excluding asthma) No 937 (75.9) 4,456 (92.7)
Yes 207 (24.1) 349 (7.3)

SD, standard deviation
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