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ABSTRACT 18 

Almost every lung cancer patient has multiple pulmonary nodules while the significance of 19 

nodule multiplicity in locally advanced non-small cell lung cancer (NSCLC) remained unclear. 20 

This study explores the relationship between deep learning detected total nodule number (TNN) 21 

and survival outcomes in patients with surgical resected stage I-III NSCLC. Patients who 22 

underwent surgical resection for stage I-III NSCLC with accessible preoperative chest CT scan 23 

from 2005 to 2018 were identified from our database. Deep learning-based AI algorithms using 24 

convolutional neural networks (CNN) was applied for pulmonary nodule (PN) detection and 25 

classification. Of the 2126 patients, a total number of 33410 PNs were detected by AI. Median 26 

TNN detected per person was 12 (IQR 7-20). AI-detected TNN (analyzed as continuous variable) 27 

was independent prognostic factor for both RFS (HR 1.012, 95% CI 1.002-1.022, p = 0.021) and 28 

OS (HR 1.013, 95% CI 1.002-1.025, p = 0.021) in multivariate analyses of stage III cohort; while 29 

it was not significantly associated with survival in stage I and II cohorts. In terms of nodule 30 

categories, the numbers of upper-lobe nodule, same-side nodule, other-side nodule, solid nodule, 31 

and even solid nodule at small size (≤ 6mm) were independent prognostic factors; while the 32 

numbers of middle/lower-lobe nodule, same-lobe nodule, subsolid nodule, calcific nodule and 33 

perifissural nodule were not associated with survival. In survival tree analysis, rather than using 34 

traditional IIIA and IIIB classification, the model grouped cases by AI-detected TNN (lower vs. 35 

higher: log-rank p < 0.001), which showed superior discrimination of survival in stage III cohort. 36 

In conclusion, AI-detected TNN was significantly associated with survival in patients with 37 

surgical resected stage III NSCLC. Lower TNN detected on preoperative CT scan indicated better 38 

prognosis in patients who underwent complete surgical resection. 39 

INTRODUCTION 40 

Lung cancer is a leading cause of cancer-related death worldwide [1] . Since early detection of 41 

cancer is an important opportunity for decreasing mortality, multiple randomized trials and 42 

guidelines recommend lung cancer screening using low-dose CT (LDCT) for high-risk 43 

individuals [2-7]. With the adoption of LDCT for lung cancer screening, the number of chest CT 44 

scans increase dramatically each year [8]. To address the repetitive and burdensome work of 45 

dealing with mostly normal images, computer aided detection/diagnosis (CAD), which has a 46 

computer to perform a given task consistently and tirelessly, becomes extremely appealing [9]. 47 

CAD supported by machine-learning techniques has been utilized to detect PN since 2002 [10]. 48 

Although standardized CAD systems have been proven to improve diagnostic accuracy, few of 49 

them have been implemented in actual clinical practice due to its high dependence on imaging 50 

processing and false positive rates [11, 12]. In recent years, deep-learning based AI algorithms 51 

using convolutional neural networks (CNN) have attracted considerable attention in the area of 52 

machine-learning. The key advantage that CNNs have over conventional CAD techniques is their 53 

ability to self-learn previously unknown features, maximizing classification with limited direct 54 

supervision [13]. Thus, CNNs bring about a significant false-positive reduction in PN detection, 55 

recognition, segmentation, and classification [14-19]. 56 

The key issue in the management of incidental PNs detected on CT images is to differentiate 57 

benign and malignant nodules. Radiological features, such as larger nodule size, upper lobe 58 

location, marginal spiculation, and faster growth rate are generally considered as risk factors for 59 
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malignancy [20-25]. These principles mainly focus on the assessment of the largest or most 60 

suspicious nodule. However, half of the patients detected with PNs have multiple nodules [26]. 61 

Nodule multiplicity, which is a potential indicator for malignancy, is commonly overlooked. Only 62 

limited data concerning the relationship between TNN and lung cancer probability is available. In 63 

the PanCan and BCCA trials, lower TNN was associated with an increased risk of lung cancer 64 

[20]. While another study analyzing patients from the NELSON trial showed that the risk of lung 65 

cancer increased as TNN rising from 1 to 4, but decreased in patients with 5 or more nodules [26]. 66 

The results of above-mentioned screening trials indicated that TNN was either negatively or not 67 

significantly associated with lung cancer probability, which might reflect a low incidence of 68 

multiple malignancies in screening population [27]. However, for patients with high pretest 69 

probability of malignancy, whether TNN plays a role in determining lung cancers probability with 70 

multiple pulmonary sites of involvement, distinguishing multiple primary lung cancers (MPLC) 71 

from intrapulmonary metastasis (IPM), and thus, predicting prognosis remains unknown. The 72 

purpose of this study was to calculate TNN detected on preoperative CT images using CNN-based 73 

AI algorithm, and explore in-depth the relationship between AI-detected TNN and survival 74 

outcomes in patients with resectable stage I-III NSCLC. 75 

MATERIALS AND METHODS 76 

Patients 77 

We retrospectively reviewed the medical records of patients pathologically diagnosed with 78 

stage I-III (according to the 8th edition of American Joint Committee on Cancer [AJCC] 79 

prognostic group) NSCLC who underwent surgical resection at the department of thoracic surgery 80 

of Peking University People’s Hospital from October 2005 to December 2018. Only patients 81 

received preoperative chest CT scan within 90 days prior to the surgery in our institution were 82 

included. Patients were excluded: 1) if they received neoadjuvant therapy; 2) if the surgical 83 

margin was positive; 3) if perioperative death occurred within 30 days; 4) if the follow-up 84 

information was inadequate. 85 

AI-Powered PN Detection 86 

InferReadTM CT Lung, a wildly used deep learning-based AI algorithm developed by 87 

InferVision, was applied for PN detection in this study. Only the last chest CT scan before surgery 88 

was chosen. Firstly, PNs was detected by AI algorithm and TNN was calculated accordingly. Then, 89 

PNs were classified according to their lobar distributions (left lower lobe, left upper lobe, right 90 

lower lobe, right middle lobe, and right upper lobe), locations (same lobe as the primary tumor 91 

[same-lobe], ipsilateral lobe different from the primary tumor [same-side], and contralateral lobe 92 

[other-side]), and types (solid nodule, mixed ground-glass nodule [m-GGN], pure ground-glass 93 

nodule [p-GGN], calcific nodule, and perifissural nodule). Moreover, solid and subsolid (m-GGN 94 

and p-GGN) nodules were further categorized based on their size. 95 

Statistical Analysis 96 

Continuous variables were presented as median with interquartile range (IQR) and were 97 

analyzed by using Wilcoxon rank-sum test and one-way analysis of variance (ANOVA). 98 

Categorical variables were presented as frequencies and percentages. Survival curves were 99 
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compared using Kaplan-Meier method with log-rank test. Univariate Cox proportional hazards 100 

models were built first to determine which factors were significantly associated with survival. 101 

Then, multivariate Cox models were constructed incorporating factors with p ≤ 0.10 identified in 102 

the univariate analyses. 103 

In stage III cohort, maximally selected log-rank statistics were used to determine the optimal 104 

cutoff value of nodule number for predicting OS. Patients were then dichotomized into lower- and 105 

higher-nodule number groups according to the estimated cut-point. Furthermore, least absolute 106 

shrinkage and selection operator (LASSO) Cox regression model with cross-validation was 107 

utilized to select the most useful prognostic features among all categories of AI-detected nodule 108 

numbers. 109 

Finally, survival tree analysis was conducted to generate a tree-based model for survival data 110 

using log-rank test statistics for recursive partitioning. This tree-based model grouped cases 111 

according to the best split of OS using AI-detected TNN and the 8th edition of AJCC prognostic 112 

group. A candidate grouping scheme was then developed based on this tree analysis. 113 

All the statistical analyses were executed using R version 4.0.0 for Windows (R Foundation for 114 

Statistical Computing, Vienna, Austria). All the statistical tests were two-sided and p values of 115 

0.05 or less were considered statistically significant. 116 

Ethics 117 

The study involving human participants were reviewed and approved by the Institutional 118 

Review Board of Peking University People’s Hospital (2020PHB385-01). Since only 119 

de-identified data were used in this study, informed consents for participants were waived by the 120 

committee. 121 

RESULTS 122 

Characteristics of Patients and Nodules 123 

A total of 2126 patients who underwent surgical resection for stage I-III NSCLC with 124 

accessible preoperative chest CT scan were included in this study. The median follow-up time 125 

was 33 months (IQR 21-48). The demographic and clinicopathologic characteristics of the 126 

patients are summarized in Table 1. 127 

The framework of deep-learning powered PN detection algorithm and an example of 3D 128 

reconstruction of AI-detected nodules are shown in Figure 1A and B. Of the 2126 patients, a total 129 

number of 33410 PNs were detected. The features of these AI-detected nodules are given in Table 130 

2. The distributions of AI-detected TNN, solid nodule number, and subsolid nodule number per 131 

person were all positively skewed, and the medians of these three above-mentioned nodules were 132 

12 (IQR 7-20), 6 (IQR 3-10), and 3 (IQR 1-6) respectively (Figure 2A to C). 133 

When considering the discrepancy of nodule number among different stages, we found that 134 

there was no statistically significant difference between means of TNN (one-way ANOVA p = 135 

0.655). However, means of solid nodules were significantly higher in patients with stage II and III 136 

disease, while means of subsolid ones were higher in those with stage I disease (both p < 0.001, 137 

Figure 2D to F). Moreover, patients with late-stage disease tended to have more solid nodules 138 
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with greater size (Supplementary Figure 1). 139 

Survival Analyses 140 

We analyzed the survival of the patients by stage according to the 8th edition of AJCC 141 

prognostic group (Figure 3A and B). The differences of both RFS and OS between any two stages 142 

were statistically significant (pairwise comparison p < 0.001). Cox proportional hazards models 143 

were then built to determine the prognostic factors of the entire cohort (Supplementary Table). In 144 

univariate analysis, lower AI-detected TNN (as continuous variable) was associated with 145 

improved RFS (HR 1.008, 95% CI 1.001-1.014, p = 0.017), while it was not significantly 146 

associated with improved OS (HR 1.006, 95% CI 0.999-1.012, p = 0.099). In multivariate 147 

analysis, TNN was neither an independent prognostic factor for RFS (HR 1.006, 95% CI 148 

0.999-1.012, p = 0.080) nor for OS (HR 1.002, 95% CI 0.995-1.009, p = 0.590) after adjusting for 149 

age, sex, smoking history, surgical approach, surgical procedure, histologic type, adjuvant therapy 150 

status, and pathologic T and N stage. 151 

Subgroup analysis stratified by stage was then performed to assess whether AI-detected TNN 152 

was an independent prognostic factor for patients in each stage. We found that TNN was not 153 

significantly associated with survival for patients with stage I (RFS: HR 1.010, 95% CI 154 

0.998-1.022, p = 0.102; OS: HR 1.003, 95% CI 0.989-1.017, p = 0.689) and stage II disease (RFS: 155 

HR 1.000, 95% CI 0.988-1.013, p = 0.973; OS: HR 1.000, 95% CI 0.989-1.012, p = 0.965). 156 

However, in stage III cohort, fewer TNN was independently associated with improved survival in 157 

multivariate analyses (RFS: HR 1.012, 95% CI 1.002-1.022, p = 0.021; OS: HR 1.013, 95% CI 158 

1.002-1.025, p = 0.021) (Table 3 and Table 4). 159 

Exploratory Analyses in Stage III Cohort 160 

To further evaluate the prognostic effect of AI-detected TNN, we used maximally selected 161 

log-rank statistics to dichotomize patients into lower- and higher-TNN groups. The optimal cutoff 162 

value of 8 was selected (Supplementary Figure 2). When compared with patients with higher 163 

TNN (> 8), those with lower TNN (≤ 8) had significantly improved OS (log-rank p < 0.001, 164 

Figure 4A). Lower TNN was also an independent favorable predictor for OS in multivariate 165 

analysis (HR 2.348, 95% CI 1.351-4.082, p = 0.002). 166 

To assess which of the components were associated with survival, we classified AI-detected 167 

nodules into different categories. When analyzed as continuous variables, the numbers of 168 

upper-lobe nodule (HR 1.028, 95% CI 1.008-1.049, p = 0.006), same-side nodule (HR 1.032, 95% 169 

CI 1.001-1.064, p = 0.046), other-side nodule (HR 1.020, 95% CI 1.001-1.039, p = 0.040), solid 170 

nodule (HR 1.020, 95% CI 1.004-1.036, p = 0.012), and even solid nodule at small size (≤ 6mm) 171 

(HR 1.027, 95% CI 1.007-1.047, p = 0.008) were independently associated with OS in 172 

multivariate analyses; however, none of the numbers of middle/lower-lobe nodule (HR 1.016, 95% 173 

CI 0.994-1.039, p = 0.153), same-lobe nodule (HR 1.021, 95% CI 0.986-1.056, p = 0.246), 174 

m-GGN (HR 1.104, 95% CI 0.885-1.376, p = 0.381), p-GGN (HR 1.015, 95% CI 0.976-1.056, p 175 

= 0.462), calcific nodule (HR 1.021, 95% CI 0.975-1.068, p = 0.384), and perifissural nodule (HR 176 

1.007, 95% CI 0.792-1.279, p = 0.957) were significantly associated with survival. 177 

The five above-mentioned nodule numbers, which were independent prognostic factors for OS 178 

as continuous variables, were set as binary variables according to their optimal cutoff values. 179 
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Similarly, compared with patients with higher nodule numbers, those with lower nodule numbers 180 

had significantly improved OS (Figure 4B to F). In addition, the numbers of upper-lobe nodule 181 

(HR 2.532, 95% CI 1.567-4.091, p < 0.001), other-side nodule (HR 1.957, 95% CI 1.322-2.898, p 182 

< 0.001), solid nodule (HR 1.851, 95% CI 1.241-2.761, p = 0.003), and solid nodule at small size 183 

(≤ 6mm) (HR 1.862, 95% CI 1.248-2.779, p = 0.002) were still independent prognostic factors for 184 

OS in multivariate analyses. 185 

Finally, to evaluate which of the components contributed most to prognosis, LASSO Cox 186 

regression model incorporating both clinicopathologic features and all categories of AI-detected 187 

nodule numbers (as continuous variables) was built (Supplementary Figure 3). Seven features 188 

with nonzero coefficient were as follows: age (0.021), smoking history (0.106), surgical approach 189 

(0.669), adjuvant therapy status (-0.389), IIIA/IIIB classification (0.095), upper-lobe nodule 190 

number (0.014), and small (≤ 6mm) solid nodule number (0.008). Thus, the number of upper-lobe 191 

nodule, followed by solid nodule at small size, were individual features that contributed most to 192 

the model and corelated best with OS among all categories of AI-detected nodule numbers. 193 

Survival Tree Analyses 194 

A tree-based model incorporating AI-detected TNN and the 8th edition of AJCC prognostic 195 

group was constructed based on the best split of OS in the entire cohort (Figure 5A). We found 196 

that discrimination of survival curves of sub-stages was unsatisfactory with the current staging 197 

system in our study, especially in sub-stages of IA2 to IB (IA2 vs. IA3: log-rank p = 0.177; IA3 198 

vs. IB: log-rank p = 0.778) and IIA to IIB (log-rank p = 0.236). Moreover, in stage III cohort, 199 

rather than using the traditional IIIA and IIIB classification, the model grouped OS by AI-detected 200 

TNN (lower vs. higher: log-rank p < 0.001), since it showed superior discrimination of survival. 201 

Accordingly, Kaplan-Meier curves of OS by the tree-based grouping scheme were shown in 202 

Figure 5B. 203 

Treatment Failure Analyses 204 

To evaluate the potential relationship between AI-detected TNN and the tumor recurrence 205 

pattern, we further divided stage III cohort into two groups according to the first disease 206 

progression site. Among all 263 patients, 60 had local recurrent disease, 40 had distant metastatic 207 

disease, and 19 had progressive disease without specified pattern. Compared with distant 208 

metastasis group (median: 17 [IQR 10.75-23.25]), patients with local recurrent disease had lower 209 

AI-detected TNN (median: 14 [IQR 7.75-18.25]). However, the difference between these two 210 

groups was not statistically significant (Wilcoxon rank-sum p = 0.077, Supplementary Figure 4). 211 

DISCUSSION 212 

The widespread application of artificial intelligence algorithm in PN detection is reshaping our 213 

knowledge on this topic. The number of patients with tens or even hundreds of PNs is rapidly 214 

growing, while the interpretation of these lesions and its impact on surgical decision making are 215 

complicated and yet underrepresented. As the number of nodules grows, accurate diagnosis for 216 

every single nodule becomes labor-intensive and statistically challenging. As an alternative, we 217 

hypothesized that TNN measured by deep-learning algorithm may serve as a surrogate indicator 218 

of the probability of malignancy and metastasis in locally advanced NSCLC. Such hypothesis is 219 

proved preliminarily by our result that TNN is an independent prognostic factor in stage III lung 220 
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cancer. 221 

The accurate measurement of TNN is highly challenging. First, the definition of PN varies 222 

across radiologists and surgeons due to their different purposes: some may only report guideline 223 

mandated PNs in order not to provoke panic of patients, while others may report as many as one 224 

can detect for more accurate surgery planning. Unfortunately, both standards are rather subjective 225 

and less repeatable. Second, the accuracy and robustness of a single radiologist or surgeon is 226 

limited. The sensitivity of PN detection by a single radiologist is around 77% and can be 227 

increased to 90% with a concurrent radiologist’s help [28]. However, such method is 228 

time-consuming and still subjected to human error. 229 

The emerging of deep learning-based AI algorithm ensured the objectiveness and robustness of 230 

PN detection and thus the measurement of TNN. Mature algorithms have reached a diagnosis 231 

sensitivity of 85-100% [29-31]. The best-performing deep learning algorithm in LUNA16 232 

challenge, which based on the LIDC-IDRI dataset, exhibited an excellent sensitivity of over 95% 233 

at fewer than 1.0 false positives per scan [32]. The algorithm (InferReadTM CT Lung, InferVision) 234 

in this study is trained using over 350 thousand chest CTs labeled by radiologists [33]. In 235 

real-world, the performance of this model has reached AUC at 0.89 in PN detection and can 236 

significantly improve the performance assisting radiologists [33-35]. Our result showed median 237 

TNN at 12 per patient, much higher than the median of 2 per patient reported in the malignant 238 

cohort of NELSON study [26]. Such difference may, on one hand, because of the difference in CT 239 

radiation dosage, while on the other hand, reflect the difference in diagnosis preference and 240 

consistency between AI and human radiologists. 241 

From the clinical aspect, our results suggested that TNN may be a visualized representation of 242 

tumor burden in stage III NSCLC patients. Different from the result of NELSON study that shows 243 

higher nodule count is in favor of benign diagnosis [26], our study focused on more advanced 244 

NSCLC patients instead of high-risk screening population. Past evidences vaguely showed that, 245 

with confirmed histology, extensive nodal or systemic metastasis are relative arguments for 246 

multiple PNs to be IPM [36], suggesting that high TNN may relate to higher pretest probability of 247 

IPM. Our result further supported this speculation by revealing the survival advantage of lower 248 

TNN group comparing to higher TNN. Such advantage existed when analyzing TNN as either a 249 

continuous variable or a binary variable, which strengthened the argument. 250 

It is worth notice that the major impact on survival was caused by the number of solid nodules 251 

but not GGNs. For GGN components, the IASLC guideline suggested that the prognosis of 252 

multifocal GGNs is similar to single MIA or AIS [37], while others indicated that there are 253 

metastatic GGNs on molecular level [38]. In our study, concurrent multiple GGNs in all three 254 

stages did not increase HR, indicating that concurrent multiple GGNs in invasive lung cancer 255 

possessed the same biological behavior as in multifocal GGN cases. For solid components, most 256 

of the nodules were ≤ 6mm and radiologically benign, with round shape, no speculation, no 257 

lobulation. But the growth of a few unresected nodules suggested their malignancy 258 

(Supplementary Figure 5). It showed that the diagnosis using traditional radiological 259 

characteristics for multiple PNs in stage III NSCLC patients is less reliable. The treatment failure 260 

pattern analysis showed that higher TNN was related to distant metastasis (without statistical 261 

significance due to small sample size) indicating that TNN was not only an indicator of IPM, but 262 

also a visual representation of systematic tumor burden. 263 
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From a surgeon’s perspective, the impact of PNs on surgical planning is dramatic. Convincing a 264 

patient to accept unresected GGNs after surgery is difficult even if with the guideline’s support. A 265 

sublobar resection of a GGN may turn into lobectomy due to multiple GGNs detected by AI, 266 

while lobectomy may also be altered into sublobar resection due to bilateral nodules clinically 267 

diagnosed as separate primary lung cancer. However, no evidence showed the validity of such 268 

approach. Our study provided the first proof of concept that TNN, driven by deep learning 269 

algorithm, should be considered as a mandatory test before surgery planning. It would be 270 

reasonable for surgeons to be more aggressive in resection of solid nodules instead of GGNs. 271 

Moreover, neoadjuvant therapy should be considered for stage III patients with higher TNN for 272 

better PN evaluation since empirical diagnosis may not be reliable. 273 

Some may argue that PET-CT is a valid method in differentiating MPLC and IPM before 274 

surgery, but the partial-volume effect of PET-CT prevented it from a proper diagnostic 275 

performance for solid nodules less than 8mm, which represented 85.6% of the solid nodules in 276 

our study [23, 39, 40]. Moreover, PET-CT is relatively expensive for most under-development 277 

countries and is not affordable by every patient. 278 

As a retrospective study, our results need validation before clinical application, however, no 279 

public databases provide sufficient data, thus a prospective validation is needed and may be 280 

time-consuming. The AI algorithm needs optimization to further reduce false positive rate, and 281 

the performance in the detection of peri-vascular nodule still needs improvement. Currently, there 282 

is a technological barrier in the alignment of pre- and post-operative PNs on chest CT. Given time, 283 

we may be able to analyze the growth speed of PN and other information for better prognostic 284 

modeling. 285 

To our knowledge, this study is the first to identify that TNN measured by deep-learning 286 

algorithm is an independent prognostic factor in stage III lung cancer. Our results suggested a 287 

potentially critical clinical application of AI as a mandatory examination for surgery decision. The 288 

current cut-off point of TNN is still preliminary but shows great potential and appeals to future 289 

validation. 290 
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TABLES 394 

Table 1. Characteristics of the Patient Cohort (N = 2126) 

Variables Value 

Age, y   

    Median (IQR) 61 (54-68) 

Sex   

    Male 998 (46.9%) 

    Female 1128 (53.1%) 

Smoking history   

    No 1456 (68.5%) 

    Yes 670 (31.5%) 

Comorbid   

    No 850 (40.0%) 

    Yes 1276 (60.0%) 

Surgical approach   

    VATS 1997 (93.9%) 

    VATS converted to open 61 (2.9%) 

    Open 68 (3.2%) 

Surgical procedure   

    Sublobar resection 636 (29.9%) 

    Lobectomy 1419 (66.8%) 

    Sleeve lobectomy 39 (1.8%) 

    Pneumonectomy 32 (1.5%) 

Histologic type   

    Adenocarcinoma 1780 (83.7%) 

    Squamous Cell Carcinoma 280 (13.2%) 

    Others 66 (3.1%) 

Pathologic T Stage   

    T1  1383 (65.1%) 

    T2 579 (27.2%) 

    T3 115 (5.4%) 

    T4 49 (2.3%) 

Pathologic N Stage   

    N0 1765 (83.0%) 

    N1 145 (6.8%) 

    N2 216 (10.2%) 

AJCC Stage (8th edition)   

    IA1 499 (23.5%) 

    IA2 515 (24.2%) 

    IA3 265 (12.5%) 

    IB 347 (16.3%) 

    IIA 53 (2.5%) 

    IIB 184 (8.7%) 

    IIIA 213 (10.0%) 

    IIIB 50 (2.3%) 

Complication   
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    No 2038 (95.9%) 

    Yes 88 (4.1%) 

Adjuvant therapy   

    No 1294 (60.9%) 

    Yes 445 (20.9%) 

    Unknown 387 (18.2%) 

IQR, interquartile range; VATS, video-assisted thoracoscopic surgery. 

 395 

Table 2. Characteristics of AI-Detected Pulmonary Nodules (n = 33410) 

Features Value 

Total Nodule Number, per person   

    Median (IQR) 12 (7-20) 

Lobar Distribution   

    Left Lower Lobe Nodule 6630 (19.9%) 

    Left Upper Lobe Nodule 7934 (23.7%) 

    Right Lower Lobe Nodule 6631 (19.9%) 

    Right Middle Lobe Nodule 2680 (8.0%) 

    Right Upper Lobe Nodule 9535 (28.5%) 

Nodule Location   

    Same-Lobe Nodule 9039 (27.0%) 

    Same-Side Nodule 9114 (27.3%) 

    Other-Side Nodule 15257 (45.7%) 

Nodule Type   

    Solid Nodule 17790 (53.2%) 

    Mixed Ground Glass Nodule 1616 (4.8%) 

    Pure Ground Glass Nodule 10276 (30.8%) 

    Calcific Nodule 2799 (8.4%) 

    Perifissural Nodule 929 (2.8%) 

Solid Nodule Size   

    ≤ 6mm 13745 (77.2%) 

    > 6mm & ≤ 8mm 1487 (8.4%) 

    > 8mm 2558 (14.4%) 

Mixed Ground Glass Nodule Size   

    ≤ 6mm 273 (16.9%) 

    > 6mm 1343 (83.1%) 

Pure Ground Glass Nodule Size   

    ≤ 6mm 6675 (65.0%) 

    > 6mm 3601 (35.0%) 

IQR, interquartile range. 

 396 

Table 3. Univariate and Multivariate Analyses of Recurrence-Free Survival (RFS) Stratified by Stage 

Variables 

Univariate Analysis Multivariate Analysis 

HR 95% CI P Value HR 95% CI P Value 

Stage I (n = 1626, event = 83) 

    TNN (per 1 nodule increased) 1.010  0.998-1.022 0.102  1.007  0.994-1.020 0.292  

    Age (per 1 year increased) 1.034  1.012-1.057 0.002  1.016  0.994-1.039 0.156  
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    Female Sex 0.650  0.422-0.999 0.050  1.088  0.613-1.933 0.773  

    Positive Smoking History 2.038  1.319-3.149 0.001  1.155  0.632-2.111 0.639  

    Comorbid Conditions 1.302  0.829-2.046 0.252        

    Non-VATS Approach 3.280  1.483-7.256 0.003  1.814  0.805-4.087 0.151  

    Non-Sublobar Resection 1.861  1.087-3.186 0.024  1.027  0.585-1.803 0.926  

    Non-Adenocarcinoma 3.459  2.155-5.553 <0.001 2.217  1.271-3.866 0.005  

    Postoperative Complications 0.901  0.284-2.862 0.860        

    Adjuvant Therapy 2.309  1.325-4.025 0.003  1.409  0.780-2.545 0.256  

    AJCC Stage IA2 (8th edition) 5.868  1.743-19.750 0.004  4.497  1.306-15.486 0.017  

    AJCC Stage IA3 (8th edition) 11.566  3.448-38.790 <0.001 7.719  2.202-27.065 0.001  

    AJCC Stage IB (8th edition) 13.864  4.272-44.990 <0.001 8.504  2.466-29.325 <0.001 

Stage II (n = 237, event = 70) 

    TNN (per 1 nodule increased) 1.000  0.988-1.013 0.973  1.001  0.987-1.015 0.880  

    Age (per 1 year increased) 1.031  1.004-1.058 0.022  1.030  1.002-1.059 0.034  

    Female Sex 1.504  0.924-2.449 0.100  1.588  0.966-2.611 0.068  

    Positive Smoking History 0.866  0.541-1.387 0.549        

    Comorbid Conditions 1.545  0.941-2.536 0.085  1.274  0.758-2.139 0.361  

    Non-VATS Approach 1.393  0.820-2.367 0.220        

    Non-Sublobar Resection 0.871  0.273-2.776 0.816        

    Non-Adenocarcinoma 0.785  0.487-1.267 0.322        

    Postoperative Complications 0.420  0.058-3.023 0.389        

    Adjuvant Therapy 1.038  0.637-1.693 0.881        

    AJCC Stage IIB (8th edition) 0.837  0.484-1.445 0.523        

Stage III (n = 263, event = 119) 

    TNN (per 1 nodule increased) 1.015  1.005-1.024 0.003  1.012  1.002-1.022 0.021  

    Age (per 1 year increased) 1.022  1.004-1.041 0.019  1.019  1.000-1.039 0.051  

    Female Sex 1.062  0.734-1.535 0.751        

    Positive Smoking History 1.013  0.707-1.452 0.942        

    Comorbid Conditions 0.862  0.600-1.238 0.421        

    Non-VATS Approach 1.574  1.029-2.407 0.036  1.700  1.105-2.614 0.016  

    Non-Sublobar Resection 0.835  0.367-1.902 0.668        

    Non-Adenocarcinoma 0.958  0.646-1.422 0.832        

    Postoperative Complications 1.425  0.718-2.828 0.311        

    Adjuvant Therapy 0.694  0.467-1.031 0.070  0.812  0.539-1.224 0.319  

    AJCC Stage IIIB (8th edition) 1.421  0.912-2.215 0.121        

HR, hazard ratio; CI, confidence interval; TNN, total nodule number; VATS, video-assisted thoracoscopic surgery; AJCC, 

American Joint Committee on Cancer; Bold value, statistical significance. 

 397 

Table 4. Univariate and Multivariate Analyses of Overall Survival (OS) Stratified by Stage 

Variables 

Univariate Analysis Multivariate Analysis 

HR 95% CI P Value HR 95% CI P Value 

Stage I (n = 1626, event = 80) 

    TNN (per 1 nodule increased) 1.003  0.989-1.017 0.689  0.995  0.978-1.012 0.572  

    Age (per 1 year increased) 1.080  1.054-1.106 <0.001 1.062  1.035-1.090 <0.001 

    Female Sex 0.381  0.241-0.603 <0.001 0.722  0.403-1.295 0.274  

    Positive Smoking History 2.634  1.697-4.090 <0.001 1.259  0.705-2.250 0.436  
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    Comorbid Conditions 1.883  1.152-3.077 0.012  1.182  0.713-1.962 0.517  

    Non-VATS Approach 3.415  1.656-7.043 <0.001 2.163  1.028-4.553 0.042  

    Non-Sublobar Resection 1.232  0.737-2.059 0.427        

    Non-Adenocarcinoma 3.921  2.472-6.220 <0.001 1.990  1.173-3.375 0.011  

    Postoperative Complications 1.155  0.418-3.191 0.782        

    Adjuvant Therapy 1.044  0.531-2.052 0.900        

    AJCC Stage IA2 (8th edition) 9.332  2.199-39.600 0.002  5.510  1.285-23.633 0.022  

    AJCC Stage IA3 (8th edition) 14.513  3.389-62.150 <0.001 6.554  1.494-28.743 0.013  

    AJCC Stage IB (8th edition) 14.918  3.575-62.240 <0.001 6.839  1.606-29.127 0.009  

Stage II (n = 237, event = 61) 

    TNN (per 1 nodule increased) 1.000  0.989-1.012 0.965  1.001  0.988-1.013 0.934  

    Age (per 1 year increased) 1.044  1.015-1.074 0.003  1.044  1.015-1.074 0.003  

    Female Sex 1.275  0.737-2.209 0.385        

    Positive Smoking History 1.138  0.678-1.909 0.625        

    Comorbid Conditions 1.394  0.831-2.339 0.208        

    Non-VATS Approach 1.327  0.763-2.309 0.317        

    Non-Sublobar Resection 0.601  0.187-1.929 0.392        

    Non-Adenocarcinoma 1.105  0.668-1.827 0.699        

    Postoperative Complications 0.496  0.069-3.587 0.488        

    Adjuvant Therapy 0.723  0.436-1.201 0.210        

    AJCC Stage IIB (8th edition) 0.700  0.395-1.240 0.222        

Stage III (n = 263, event = 108) 

    TNN (per 1 nodule increased) 1.018  1.008-1.029 <0.001 1.013  1.002-1.025 0.021  

    Age (per 1 year increased) 1.035  1.015-1.056 <0.001 1.036  1.014-1.058 <0.001 

    Female Sex 0.645  0.428-0.972 0.036  1.054  0.568-1.955 0.868  

    Positive Smoking History 1.716  1.168-2.521 0.006  1.443  0.792-2.631 0.231  

    Comorbid Conditions 0.826  0.565-1.209 0.325        

    Non-VATS Approach 2.340  1.556-3.517 <0.001 2.480  1.541-3.990 <0.001 

    Non-Sublobar Resection 0.724  0.293-1.789 0.483        

    Non-Adenocarcinoma 1.614  1.093-2.384 0.016  0.933  0.567-1.535 0.784  

    Postoperative Complications 1.380  0.690-2.761 0.362        

    Adjuvant Therapy 0.458  0.309-0.679 <0.001 0.560  0.394-0.913 0.017  

    AJCC Stage IIIB (8th edition) 1.841  1.176-2.882 0.008  1.338  0.823-2.175 0.241  

HR, hazard ratio; CI, confidence interval; TNN, total nodule number; VATS, video-assisted thoracoscopic surgery; AJCC, 

American Joint Committee on Cancer; Bold value, statistical significance. 

 398 
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FIGURE CAPTIONS 400 

 401 

Figure 1. The framework of deep learning powered pulmonary nodule detection algorithm 402 

and an example of 3D reconstruction of AI-detected nodules with corresponding CT images 403 

under the lung window setting. (A) Feature maps are extracted using CNN. A RPN is used to 404 

obtain potential regions from extracted features. After ROI pooling and fully-connected layers, 405 

nodules are detected with rectangular proposals. (B) Seven nodules are detected by AI algorithm, 406 

including 1 solid nodule (#5), 2 mixed GGNs (#4, #7), and 4 pure GGNs (#1, #2, #3, #6). RPN, 407 

regional proposal network; ROI, region of interest; TNN, total nodule number; CNN, 408 

convolutional neural network; GGN, ground-glass nodule. 409 

 410 
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 411 

Figure 2. Frequency distribution of AI-detected nodules. (A) TNN, (B) solid nodule number, 412 

(C) subsolid nodule number, (D) TNN stratified by pathological stage, (E) solid nodule number 413 

stratified by pathological stage, (F) subsolid nodule number stratified by pathological stage. TNN, 414 

total nodule number; IQR, interquartile range; ANOVA, analysis of variance. 415 

 416 
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 417 

Figure 3. Kaplan-Meier curves showing survival by stage in entire cohort. (A) 418 

recurrence-free survival, (B) overall survival. Comparisons were conducted using log-rank test. 419 

 420 
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 421 

Figure 4. Kaplan-Meier curves showing overall survival by AI-detected nodule number in 422 

stage III cohort. (A) TNN, (B) upper-lobe nodule number, (C) same-side nodule number, (D) 423 

other-side nodule number, (E) solid nodule number, (F) small (≤ 6mm) solid nodule number. 424 

Comparisons were conducted using log-rank test. TNN, total nodule number. 425 

 426 
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 427 

Figure 5. Survival tree analysis. (A) Recursive partitioning-generated survival tree based on the 428 

best split of overall survival using AI-detected TNN and the 8th edition of AJCC stage. Both TNN 429 

and stage were modeled as categorical variables. (B) Kaplan-Meier curves showing overall 430 

survival by tree-based scheme in entire cohort. Comparisons were conducted using log-rank test. 431 

AJCC, American Joint Committee on Cancer; TNN, total nodule number. 432 
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