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Abstract 

 

Sex is an important factor that contributes to the clinical and biological heterogeneities in Alzheimer’s 

disease (AD), but the regulatory mechanisms underlying sex disparity in AD are still not well understood. 

DNA methylation is an important epigenetic modification that regulates gene transcription and is known to 

be involved in AD. We performed the first large-scale sex-specific meta-analysis of DNA methylation 

changes in AD, by re-analyzing four recent epigenome-wide association studies totaling more than 1000 

postmortem prefrontal cortex brain samples using a uniform analytical pipeline. For each cohort we 

employed two complementary analytical strategies, a sex-stratified analysis that examined methylation-

Braak stage associations in male and female samples separately, and a sex-by-Braak stage interaction 

analysis that compared the magnitude of these associations between different sexes. Our analysis uncovered 

14 novel CpGs, mapped to genes such as TMEM39A and TNXB that are associated with AD in a sex-specific 

manner. TMEM39A is known to be involved in inflammation, dysregulated type I interferon responses, and 

other immune processes. TNXB encodes tenascin proteins, which are extracellular matrix glycoproteins 

demonstrated to modulate synaptic plasticity in the brain. Moreover, for many previously implicated AD 

genes, such as MBP and AZU1, our analysis provided the new insights that they were predominately driven 

by effects in only one sex. These sex-specific DNA methylation changes were enriched in divergent 

biological processes such as integrin activation in females and complement activation in males. Importantly,  

a number of drugs commonly prescribed for AD patients also targeted these genes with sex-specific DNA 

methylation changes. Our study implicated multiple new loci and biological processes that affected AD in 

a sex-specific manner and highlighted the importance of sex-specific treatment regimens for AD patients.  
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Introduction  

 

Alzheimer’s disease (AD) is the most common cause of dementia. With the aging population in the U.S., 

AD has become a major public health concern and one of the most financially costly diseases [1]. Almost 

two-thirds of AD patients in the U.S. are women [2]. After diagnosis, women also progress faster with more 

rapid cognitive and functional declines [3-8].  On the other hand, it has also been reported men with AD 

have increased risk for death [9-11]. However, the molecular mechanisms underlying these observed 

disparities in AD are still not well understood. Previous studies have shown that epigenetics is an important 

contributor to the sex differences in brain functions and vulnerability to diseases [12-16]. Among epigenetic 

modifications, DNA methylation profiles differ significantly between males and females at a number of 

loci in adult brains [17]. Importantly, alterations of DNA methylation levels have also been implicated in 

multiple neurological disorders including AD [18-22].  

 However, thus far, a comprehensive characterization for the contribution of sex to DNA methylation 

changes in AD has not been performed. In the identification of sex-specific effects, statistical power is a 

major challenge [23]. Stratifying by sex reduces the sample size of both groups. Also, comparing 

methylation to disease associations between the sexes by testing interaction effect would require a much 

larger sample size than detecting a main effect with the same magnitude [24]. To address these challenges, 

we performed a comprehensive meta-analysis of more than 1000 post-mortem brain prefrontal cortex 

samples, collected from four recent AD epigenome-wide association studies [18-21], to identify the most 

consistent DNA methylation changes affected by AD in a sex-specific manner. As sex is a strong factor in 

driving inter-personal variabilities in AD, the results of this study are particularly relevant for precision 

medicine.   

 

Methods 

 

Study cohorts 
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Our meta-analysis included 1,030 prefrontal cortex brain samples (642 female samples and 388 male 

samples) from four independent cohorts (Supplementary Table 1), previously described in the ROSMAP 

[18], Mt. Sinai [20], London [19], and Gasparoni [21] DNA methylation studies.  

  

Pre-processing of DNA methylation data 

As described elsewhere [22], for each cohort quality control included removing probes with detection P-

value < 0.01 in all samples and those associated with cigarette smoking [25] or SNPs, and removing samples 

with low bisulfite conversion efficiency or detected as outliers in principal component analysis (see details 

in Supplementary Note 1). Next, the QN.BMIQ normalization procedure [26] was performed on the quality-

controlled methylation data, followed by fitting linear model methylation M value ~  methylation slide to 

remove batch effects. The methylation residuals from these linear models were then used for subsequent 

analysis.  

 

Single cohort and meta-analysis  

 In sex-stratified analysis, for each CpG, we applied the model methylation residuals ~ age at death + 

Braak stage + CETS estimated neuron proportions [27]  to female samples and male samples separately. For 

the analysis of differentially methylated regions (DMRs), we used the coMethDMR R package [28] to 

identify co-methylated DMRs associated with Braak stage (Supplementary Note 2), by implementing the 

same linear model described above. We considered CpGs (or DMRs) with false discovery rate (FDR) less 

than 0.05 in female samples or male samples to be significant.  

 To assess inflation of the test statistics, we used quantile-quantile (QQ) plots and estimated genomic 

inflation factors using both the conventional approach and the bacon method [29] (Supplementary Note 3). 

The bacon method was also used to obtain inflation-corrected effect sizes, standard errors, and p-values for 

each cohort, which were then combined by inverse-variance weighted meta-analysis models using R 

package meta (Supplementary Note 4).  
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 In sex-by-Braak stage interaction analysis, for each CpG, we applied the model methylation residuals 

~ age at death + sex + Braak stage + sex*Braak stage + sex*age at death + CETS estimated neuron 

proportions to samples including both sexes. To select significant CpGs and DMRs, we applied a stagewise 

analysis approach, previously proposed by van de Berge et al. (2017) [30] (Supplementary Note 5), which 

was shown to have improved power in high-throughput experiments where multiple hypotheses are tested 

for each gene.  

   

Enrichment and pathway analysis  

We tested over- and under-representation of significant CpGs and DMRs in different types of genomic 

regions and chromatin states using Fisher’s exact test.  Pathway analysis was performed by comparing the 

genes with significant sex-specific DNA methylation changes in AD with the canonical pathways and 

biological process GO terms in MSigDB using GSEA analysis [31] (Supplementary Note 6).  

 

Integrative methylation – gene expression analysis 

Integrative methylation – gene expression analysis was performed using the ROSMAP study samples with 

matched DNA methylation and gene expression data. First, we linked significant CpGs (or DMRs) to 

nearby genes using GREAT [32]. Next, we removed confounding effects due to batch, age at death, and 

cell types in methylation data and gene expression data separately by fitting linear models and extracting 

residuals. Finally, for each gene expression – CpG (or DMR) pair, we tested the association between gene 

expression residuals and methylation residuals, adjusting for Braak stage (Supplementary Note 7).  

 

Sex-specific mQTL analysis 

The ROSMAP dataset, imputed to HRC r1.1 reference panel [33], with matched genotype data and DNA 

methylation data for 688 samples (434 females, 254 males) was used for this analysis. We considered SNPs 

that are within 500kb from FDR significant CpGs (or DMRs), with MAF > 1%, info score ≥ 0.4, and are 
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significantly associated with AD status (P < 0.05) (Supplementary Note 8). Association between 

methylation residuals (after removing batch, age at death, and cell type effects) and SNPs were then tested 

using linear models, adjusting for batch in genotype data and first three PCs estimated from genotype data.  

 

Drug target analysis  

We compared our list of sex-specific DNA methylation changes with targets of drugs prescribed to AD 

patients or in the development in the ChEMBL database [34] (https://www.ebi.ac.uk/chembl/). To this end, 

we overlapped genes mapped to significant CpGs or DMRs with the genes targeted by compounds 

annotated to “Alzheimer Disease” in ChEMBL.  

 

Results  

 

Description of EWAS cohorts and data 

Among the four cohorts (Supplementary Table 1), the mean age at death ranged from 79.3 to 87.2 years in 

females and from 67.5 to 85.0 years in males. The number of CpGs and samples removed at each quality 

control step are presented in Supplementary Table 2. For females, inflation factor lambdas (𝜆𝜆) by the 

conventional approach ranged from 1.060 to 1.154, and lambdas based on the bacon approach [29] (𝜆𝜆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

ranged from 1.021 to 1.059 (Supplementary Figure 1). Similarly, for males, 𝜆𝜆 ranged from 0.906 to 1.265, 

and 𝜆𝜆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ranged from 0.957 to 1.114. These values are comparable to those obtained in other recent large 

scale EWAS [35].  

 

Sex-specific DNA methylation changes in AD 

 In sex-stratified analysis, our meta-analysis identified 381 and 76 CpGs, mapped to 245 and 51 genes 

at 5% FDR in female and male samples, respectively (Figure 1, Table 1, Supplementary Table 3-4). 

Similarly, we identified 72 and 27 DMRs, mapped to 66 and 22 genes, at 5% FDR in female and male 

samples, respectively (Table 2, Supplementary Tables 5-6). Among them, 3.6% (16 out of 441 unique FDR 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.01.21252029doi: medRxiv preprint 

https://www.ebi.ac.uk/chembl/
https://doi.org/10.1101/2021.03.01.21252029
http://creativecommons.org/licenses/by-nc-nd/4.0/


significant CpGs) and 12.5% (11 out of 88 unique FDR significant DMRs) were significant in both females 

and males with the same direction of change. The average number of CpGs per DMR was 6.5 ± 8.9. The 

FDR significant methylation changes at CpGs and DMRs did not completely overlap. Only 89 out of the 

381 (23.4%) significant CpGs in females, and 13 out of the 76 (17.1%) significant CpGs in males 

overlapped with the significant DMRs. Among all CpGs and all DMRs, the effect estimates in males and 

females correlated only modestly (rCpG = 0.124, rDMR = 0.170) and about half (53% of CpGs, 54% of DMRs) 

were in the same direction of change in males and females, similar to what would be expected by chance.  

  In sex-by-Braak stage interaction analysis, we identified significant interaction at 14 CpGs, but no 

significant interactions at DMRs at 5% FDR. There was also little overlap between significant DNA 

methylation changes identified in sex-stratified and sex-by-Braak stage interaction analyses. Only 4 CpGs 

were identified by both analyses (Table 3). To understand this discrepancy, note that the sex-stratified 

analysis detected many changes that are attenuated but might be in the same direction in one sex group 

compared to the other. For example, among the 10 most significant CpGs from the sex-stratified analysis, 

9 female-specific and 6 male-specific CpGs (Table 1) had the same direction of methylation-Braak stage 

association in both sexes. On the other hand, in sex-by-Braak stage interaction analysis, 13 out of the 14 

significant CpGs had the opposite directions of changes for methylation-Braak stage associations in females 

and males (Table 3). Therefore, the interaction analysis was able to identify CpGs (or DMRs) with large 

differences in sex-specific effect estimates, often in different directions, but these effects might not have 

reached FDR significance in sex-stratified analysis. For example, from Table 3, the CpG with the most 

significant interaction (cg13212831) had effect estimates 0.083 and -0.139 for females and males, 

respectively. In sex-stratified analysis, although the methylation-Braak stage associations were highly 

significant (P-valuefemale = 0.006, P-valuemale = 4.1 × 10-5), they did not reach 5% FDR significance threshold 

(FDRfemale = 0.413, FDRmale = 0.097). Therefore, the results from sex-stratified analysis and sex-by-Braak 

stage interaction analysis complemented each other.  

 Consistent with previous studies [18, 19, 36, 37], we observed the majority of these sex-specific 

changes were hyper-methylated in AD samples, for which methylation levels increased as AD Braak stage 
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increased. More specifically, 59% of the significant CpGs and 69% of the significant DMRs in females, 

along with 66% of the significant CpGs and 89% of the significant DMRs in males were hyper-methylated 

in AD (Supplementary Table 3-6).  

 

Enrichment analysis of sex-specific DNA methylation changes in different genomic features 

Compared to background probes, significant hypermethylated DMRs and CpGs in females are over-

represented in CpG islands and gene bodies and under-represented in open sea and intergenic regions 

(Supplementary Figure 2a, Supplementary Table 7). In contrast, significant hypermethylated DMRs and 

CpGs in males are over-represented in shores, 5’UTRs and TSS1500s, but under-represented in open seas, 

gene bodies, and intergenic regions.  

 Significant hypomethylated changes in females are over-represented in open seas, but under-

represented in CpG islands, TSS200s, and intergenic regions, while significant hypomethylated changes in 

males are over-represented in open seas (Supplementary Figure 2b, Supplementary Table 7). Interestingly, 

compared to males, significant hyper-methylated changes in females are more likely to occur in CpG islands 

and gene bodies and less likely to occur in shores and 5’UTRs. On the other hand, significant 

hypomethylated CpGs in females are less likely to occur in CpG islands.  

 Our enrichment analysis with respect to chromatin states showed that significant hyper-methylated 

changes in females were enriched in bivalent enhancer, flanking active TSS, repressed polycomb, and 

transcription at gene 5’ and 3’ regions, but depleted in quiescent/low, strong transcription, weakly repressed 

polycomb, and weak transcription regions (Supplementary Figure 2c, Supplementary Table 8). In contrast, 

significant hypermethylated changes in males were enriched in active TSS, flanking active TSS, and 

repressed polycomb regions, but depleted in quiescent/low, strong transcription, weak repressed polycomb, 

and weak transcription regions.  

 Hypomethylated changes in females were enriched in enhancers, weak repressed polycomb, and weak 

transcription regions, but depleted in active TSS, bivalent/poised TSS, and repressed polycomb regions, 

while hypomethylated changes in males were enriched in flanking active TSS and weak repressed 
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polycomb regions (Supplementary Figure 2d, Supplementary Table 8). Compared to males, significant 

hyper-methylated changes in females are more likely to occur at bivalent enhancer and flaking active TSS, 

but less likely to occur in active TSS, flanking bivalent TSS/Enh, and quiescent/low regions, while 

significant hypomethylated changes in females are less likely to occur at active TSS and weakly repressed 

polycomb regions.  

 Similarly, enrichment tests for regulatory elements using the LOLA software also supported the 

potential functional relevance of these significant changes in DNA methylation. Significant DMRs and 

CpGs in females and males were both enriched in binding sites of EZH2 and SUZ12 (Supplementary Table 

9), which are subunits of polycomb repressive complex 2 (PRC2), consistent with the observed enrichment 

of methylation differences in PRC2 repressed regions (Supplementary Figure 2c,d) and previous 

observations that DNA methylation often interact with PRC2 binding [38, 39]. Other top hits included 

binding sites for SPI1, TCF7L2, CEBPB, and CtBP2 in females, and MafK in males.   

 

Gene ontology and pathway analysis 

Because of the relatively smaller number of gene sets being tested, a 25% FDR significance threshold, 

instead of the conventional 5% FDR, was suggested for GSEA [40]. At 25% FDR, the significant DNA 

methylation changes in females were enriched in TYROBP causal network (FDR = 0.014), TCR signaling in 

naïve CD4+ T cells (FDR = 0.130) and ROBO receptors bind AKAP5 (FDR = 0.160) gene sets, and significant 

methylation changes in males were enriched in initial triggering of complement gene set (FDR = 0.245). 

The TYROBP causal network was previously inferred from a large-scale network analysis of human LOAD 

brains [41]; it was FDR significant (P-value < 0.001, FDR = 0.014) in females (Supplementary Figure 3a), 

compared to a nominal association in males (P-value < 0.001, FDR = 0.620). Interestingly, the core 

enrichment subset of genes identified by GSEA in the female and male subnetworks regulated by TYROBP 

involved DNA methylation changes at different genes (Supplementary Figure 3b), highlighting different 

regulatory mechanisms for this gene network in males and females.  
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 The comparison with gene ontology (GO) terms showed at 25% FDR, significant methylation changes 

in females were enriched in 25 GO biological processes (Table 4, Supplementary Table 10), many of which 

are involved in inflammatory responses associated with AD pathology including CD8 positive alpha beta T 

cell activation and interferon alpha production, as well as other biological processes critical for AD 

pathogenesis such as response to platelet derived growth factor and positive regulation of axon extension. 

For males, we did not identify any significant GO terms at 25% FDR; the strongest enrichment with nominal 

P-value less than 0.001 involved immune responses to the accumulation of amyloid-β (Aβ) in the brain, 

such as regulation of T cell activation via T cell receptor contact with antigen bound to MHC molecule on 

antigen presenting cell, and other biological processes recently implicated in AD such as response to 

angiotensin [42, 43] and cell redox homeostasis [44, 45].  

 

Correlation of sex-specific DNA methylation changes in AD with expression levels of nearby genes  

Using the ROSMAP dataset with 529 samples (333 females and 196 males) with both DNA methylation 

and RNA-seq gene expression data, we next evaluated the role of significant DMRs or CpGs by correlating 

their DNA methylation levels to the expression of genes linked by GREAT [32], which associates genomic 

regions to target genes.  At 5% FDR, for FDR significant CpGs in females, out of the 381 CpGs that were 

linked to a nearby gene, 14 were significantly associated with target gene expression levels (Supplementary 

Table 11), and half of them (n = 7)  had effects in the negative direction. Among FDR significant CpGs in 

males, out of the 46 CpGs that were linked to a nearby gene, 2 were significantly associated with target 

gene expression and both were in the negative direction. Notably, in females, several of the most significant 

CpG methylation-gene expression associations were observed for the HLA-DPA1 gene, which encodes 

microglia receptors involved in antigen presentation and is regulated by PU.1 [46]. In males, the most 

significant CpG-gene expression was for HLA-DRB1, another PU.1 target gene [46]. For the 14 CpGs 

identified by our sex-by-Braak stage interaction analysis, only one CpG (cg24917065) was significantly 

associated with target gene (SLC25A37) expressions.  
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Correlation and overlap of sex-specific DNA methylation changes in AD with genetic susceptibility 

loci 

To evaluate if the significant methylation differences are located in the vicinity of sex-specific genetic 

variants implicated in AD, we compared our sex-specific CpGs and DMRs with the recently identified sex-

specific SNPs associated with AD biomarkers [47] or AD pathology [48]. We found only 5 CpGs, mapped 

to the SERP2, KCNE1, TNKS1BP1, FAM165B, PLCB4 genes were located within 500 kb of the sex-specific 

SNPs (Supplementary Table 12).  

 To search for mQTLs, we next tested associations between the sex-specific CpGs and DMRs with SNPs 

that are located within 500 kb from them using 688 samples (434 females, 254 males) from the ROSMAP 

study, which had both genotype and DNA methylation data. While no mQTL-DMR pairs reached 5% FDR 

significance, we did identify 572 and 284 FDR-significant mQTL-CpG pairs associated with the sex-

specific CpGs in females and males, respectively (Supplementary Tables 13-15). Among the 381 and 76 

sex-specific CpGs identified in female and male samples, respectively, 41 (11%) and 15 (20%) had at least 

one corresponding mQTL in brain samples. Among the 14 CpGs identified in our sex-by-Braak stage 

interaction analysis, 2 and 7 CpGs with at least one brain mQTL, corresponding to 21 and 236 significant 

mQTL-CpG pairs, were identified at 5% FDR in females and males, respectively.     

 
Drug target analysis of sex-specific DNA methylation changes  
 
To  investigate the clinical impact of the sex-specific DNA methylation changes, we next compared them 

with targets of drugs in the ChEMBL database [34] that are annotated to Alzheimer disease, many of which 

are antipsychotic medications commonly prescribed to AD patients for treating psychiatric symptoms that 

accompany AD. We found that 13 CpGs and 2 DMRs, mapped to 20 genes, had overlap with targets of 16 

different drugs (Supplementary Table 16). Among them, CACNA1C encodes voltage-dependent calcium 

channel, which is a target of cholinesterase inhibitor donepezil. Previously, drug response for donepezil 

were shown to be modulated by the sex hormone estrogen receptor alpha (ESR1) genotype [49]. Also, 
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CHRM3 encodes muscarinic acetylcholine receptor, which is targeted by two commonly prescribed 

antipsychotic drugs for AD patients, trazodone and haloperidol. In both human and animal models, it has 

been observed treatment with haloperidol induces sex-specific DNA methylation changes [50, 51]. Several 

CpGs and one DMR are mapped to targets of valproic acid, a mood stabilizer often prescribed for AD 

patients and was shown to have different pharmacokinetic profiles between male and female subjects [52]. 

Interestingly, two CpGs and 1 DMR also mapped to targets of caffeine, which was included in cocktail 

therapy in AD clinical trials [53, 54]. Although caffeine reduces the risk for AD [55, 56] in both men and 

women, the protective effect seem to be greater in women [57]. Taken together, these results highlighted 

the clinical importance of the sex-specific DNA methylation changes.    

 

 

Discussion 

 

To identify sex-specific changes in AD, we employed two complementary approaches, a sex-stratified 

analysis that examined methylation-Braak stage associations in female and male samples separately, and a 

sex-by-Braak stage interaction analysis that compared the magnitude of these associations between 

different sexes. In sex-stratified analysis, as discussed above, a substantial number of the significant loci 

showed the same direction but attenuation of effect size for methylation-Braak stage association in a 

different sex (Table 1 and 2). Therefore, it is not surprising that many of these significant CpGs were 

identified previously in sex-combined meta-analysis [22]. Among FDR significant methylation changes in 

females, 325 CpGs (85%) and 40 DMRs (56%), mapped to genes such as HOXA3, AZU1, and MBP, were 

also previously identified in our sex-combined meta-analysis [22] (Supplementary Tables 3 and 5). 

Similarly, in the analysis of male samples, among FDR significant changes, 58 (76%) CpGs and 15 DMRs 

(56%), mapped to genes such as MAMSTR, RHBDF2, and AGAP2, overlapped with significant hits from 

sex-combined meta-analysis [22] (Supplementary Tables 4 and 6). However, our sex-specific analysis 
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provided the new insight that the effects of these known AD genes appear to be predominately driven by 

effects in only one sex (Table 1 and 2). 

 On the other hand, our sex-specific analysis also uncovered novel methylation changes at 84 CpGs and 

42 DMRs that were not identified previously by sex-combined analyses[22], which might have reduced 

power due to heterogeneity between the sexes. For example, among the top 10 CpGs in the sex-stratified 

analysis (Table 1), a new locus at cg22632947, which mapped to the gene body of the PRKCA gene, was 

highly significant in female samples (estimate = -0.139, P-value = 1.50 × 10-7, FDR = 3.00 × 10-3), but not 

significant in male samples (estimate = -0.005, P-value = 0.857, FDR = 0.995) (Supplementary Figure 4). 

The PRKCA gene encodes protein kinase Cα (PKCα), which participates in synaptic loss resulting from 

accumulation of amyloid-β (Aβ) in AD [58, 59]. Another novel locus is at cg18942110 in the promoter of 

the CRTC3 gene, where methylation-Braak stage association was highly significant in male samples 

(estimate = -0.164, P-value = 2.23 × 10-6, FDR = 3.19 × 10-2), but not significant in female samples (estimate 

= -0.031, P-value = 0.306, FDR = 0.952) (Supplementary Figure 4). CRTC3 is a member of the CRTC 

family, which are coactivators of the transcription factor CREB (cAMP-response element binding protein). 

In addition to its crucial role in maintaining synaptic plasticity and facilitation of short-term memory to 

long term memory, the CREB signaling pathway also mediates synapse loss induced by Aβ in AD [60]. 

Notably, synapse loss significantly correlates with cognitive impairment [61, 62] and has been observed to 

be an early feature of AD pathogenesis [63, 64].  

 The sex-by-Braak stage interaction analysis also uncovered a number of additional novel methylation 

loci that affected AD in a sex-specific manner. Notably, none of the 14 CpGs detected in our interaction 

analysis were identified in previous large-scale DNA methylation studies [18-22], suggesting that sex-

specific changes such as these can be missed by conventional studies that do not consider the impact of sex. 

This is likely due to cancelation of effects in sex-combined analysis, because the majority of these 14 CpGs 

had different directions of methylation-Braak stage effects in male and female samples (Table 3). Among 

genes mapped to these 14 CpGs, TMEM39A is a member of the transmembrane (TMEM) protein family. 

In recent GWAS, a genetic variant on TMEM39A was discovered and replicated as an important risk locus 
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for multiple sclerosis, an autoimmune condition of the central nervous system [65, 66]. While relatively 

little is known about the role of TMEM39A in AD, given its important contributions to inflammation, 

dysregulated type I interferon responses, and other immune processes [67] which are also implicated in 

AD, methylation differences affecting this gene are particularly relevant. Another noteworthy gene is TNXB 

and its pseudo gene TNXA, which are located in the major histocompatibility complex (MHC) class III 

region on chromosome 6. TNXB encodes tenascin proteins, which are extracellular matrix glycoproteins 

demonstrated to modulate synaptic plasticity in the brain [68]. In particular, genetic variants at the HLA-

DQB1 locus discovered in the recent AD genetic meta-analysis [69] included eQTLs for TNXB/TNXA in 

brain tissues [69, 70].  

 To better understand the relevance of these AD-associated sex-specific changes, we also compared our 

results with several previous studies. The comparison with Xia et al. (2019) [16] and Xu et al. (2014) [17], 

which examined differential methylation between males and females in the prefrontal cortex, but without 

considering AD status [16, 17], showed our results were largely distinct. Among 451 unique CpGs 

identified in our sex-stratified analysis or sex-by-Braak stage interaction analysis, only 16 were also 

identified in Xia et al. (2019) [16] and none were identified in Xu et al. (2014) [17] (Supplementary Tables 

3-6). This is probably due to different hypotheses tested in our study and the sexual dimorphism studies – 

while our study examined the impact of sex on methylation-Braak stage association, the previous studies 

examined differential methylation between the sexes, regardless of AD severity. The comparison of our 

results with sex-specific DNA methylation changes in fetal brain development [71, 72] also showed very 

little overlap (Supplementary Table 17); one hypothesis could be that the AD-associated sex-specific DNA 

methylation changes identified in this study might be influenced by environmental risk factors for AD, such 

as diet and exercise.  

 The results of our gene set analysis highlighted a number of critical sex-specific biological processes 

in AD. Notably, the TYROBP causal network reached FDR significance threshold in females (FDR = 

0.014) but was only nominally significant in males. Interestingly, AD- associated CpG methylation changes 

that drove pathway associations (core enrichment genes) occurred at different genes in females and males 
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(Supplementary Figure 3), indicating a potentially sex-specific regulatory mechanism for this network. 

TYROBP (TYRO protein tyrosine kinase-binding protein) is a key regulator of the complement pathway 

in the immune/microglia network, which is activated as Aβ accumulates in LOAD brains [41, 73]. 

TYROBP is a transmembrane adaptor protein for TREM2, SIRPβ1, and CR3 receptors, which are known 

to be involved in AD pathogenesis [73-75]. In addition, TYROBP is regulated by SPI1, a central hub for 

the network of genes involved in myeloid immune response in neurodegeneration [76]. In patients with 

LOAD, TYROBP was observed to be up-regulated in the brains in multiple cohorts [41]. Recent studies 

suggested TYROBP-mediated signaling is involved in multiple important functions as aggregating Aβ 

activates microglia, including enhanced phagocytosis of damaged neurons [41, 73] and suppression of 

inflammatory responses [77], as well as neuronal pruning activity [41]. Interestingly, in gene ontology (GO) 

analysis, among the most significant GO Biological Process terms (P-value < 0.001) in females and males, 

none of them overlapped (Supplementary Table 10), even though the relevancy of all the top biological 

processes were supported by recent AD literature (Table 4). These results suggest different biological 

processes are associated with AD pathology in males and females.  

 Importantly, a number of these sex-specific biological processes pointed to important potential 

biomarkers and therapeutic targets for the treatment of AD. For example, one of the top biological process 

enriched with significant methylation changes in female samples is response to platelet derived growth 

factor. Recently, multiple studies have shown that reduced levels of platelet-derived growth factors 

(PDGFs) in plasma significantly correlate with mild cognitive impairment and so have proposed PDGFs as 

a potential biomarker for AD [78, 79]. For the significant methylation changes in male samples, one of the 

top biological process highlighted by our enrichment analysis is dysregulation in the complement system. 

Recently, a number of novel agents targeting the complement system are being developed and tested in 

clinical trials for potential effective therapy for AD [80]. Therefore, clinical trials testing potential treatment 

for AD patients might have more power for detecting treatment effects by considering sex and targeting the 

subgroup with the higher predicted benefit based on patient molecular profiles such as DNA methylation. 
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 The comparison with ChEMBL database [34] showed a number of sex-specific DNA methylation 

changes were also located in regulatory regions of genes targeted by drugs often prescribed to AD patients, 

such as those treating neuropsychiatric symptoms accompanying AD. Several antipsychotic drugs, such as 

haloperidol, donepezil and valproic acid had targets in genomic regions where DNA methylation levels 

associated with AD in a sex-specific manner. Taken together, these results highlighted the importance of 

developing and applying sex-specific treatment regimens in AD.  

 Our study also provided support for the sex-specific effect of brain estrogen in AD. Among FDR 

significant CpGs in males is cg15626350, located on the gene body of ESR1 gene, which encodes estrogen 

receptor alpha, one of two subtypes of estrogen receptor. Genetic polymorphisms of ESR1 have been 

associated with risk of developing cognitive impairment in elders [81-85]. In addition, multiple animal and 

in vitro studies have demonstrated the neuroprotective effect of estrogen [86, 87], which promotes 

neurogenesis, neuronal plasticity, synaptic transmission and reduces Aβ production. Interestingly, 

cg15626350 reached 5% FDR significance threshold in males (estimate = 0.144, P-value = 2.54 × 10-6, 

FDR = 0.033), but is only nominally significant in females (estimate = 0.107, P-value = 5.08 × 10-4, FDR 

= 0.164), indicating a stronger methylation-AD Braak stage association in males (Supplementary Figure 4). 

Although not statistically significant, cg15626350 also showed stronger association with ESR1 gene 

expression in males (estimate = 0.152, P-value = 0.067) compared to females (estimate = 0.031, P-value = 

0.715). Importantly, the estrogen receptor is targeted by a number of drugs commonly prescribed for AD 

patients, such as trazodone, haloperidol, valproic acid (Supplementary Table 16). Together with the 

documented greater prevalence, disease severity and worse outcomes in females to infections and 

inflammation, particularly in the presence of reduced estradiol levels [88, 89], our findings suggest an 

interaction between estrogen levels and microglia activities, which may have led to altered inflammatory 

responses, ultimately resulting in sex differences in vulnerabilities to neurodegeneration in later life stages 

[90, 91]. Future experimental studies will help clarify the sex-specific epigenetic mechanisms of the 

estrogen pathway in modulating AD risk and drug responses.  
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 There are several limitations for this study. The methylation levels in the studies analyzed here were 

measured on the bulk prefrontal cortex, which contains a complex mixture of cell types. To reduce 

confounding effects due to different cell types, we included estimated neuron proportion of each brain 

sample as a covariate variable in all our analyses. Currently, a challenge with cell-type specific studies is 

that they are often limited to smaller sample sizes due to labor-intensive sample preparation procedures and 

therefore have limited statistical power. Also, we did not identify any CpGs or DMRs from chromosome 

X, this might suggest that sex-differences in AD are not primarily due to chromosome X. Alternatively, the 

lack of association might also be due to the limited coverage by the 450k array. Future studies utilizing high 

throughput sequencing that provides better coverage of the epigenome will help clarify the role of the X 

chromosome in AD.  

 In summary, our study highlights the importance of stratifying on sex and analyzing sex-by-disease 

interaction in the analysis of DNA methylation data to discover the epigenetic architectures underlying AD. 

Our meta-analysis discovered a number of novel sex-specific DNA methylation changes consistently 

associated with AD Braak stage in multiple studies. Because of cancelation of effects in different directions, 

or dilution from samples with no effect, these sex-specific effects would be missed by sex-combined 

analysis. Moreover, for many genes previously linked to AD, our work provided evidence that the DNA 

methylation changes at these genes were predominately driven by effects in only one sex. Our enrichment 

analysis highlighted divergent biological processes in males and females, which underscored sex-specific 

regulatory mechanisms involved in AD. Finally, our results also have important implications for precision 

medicine - many of the sex-specific DNA methylation changes also pointed to important potential AD 

biomarkers and therapeutic targets, suggesting a pressing need for developing and applying sex-specific 

treatment strategies for AD.
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Table 1 Top 10 CpGs in sex-stratified analysis. Shown are CpGs that are highly significant in one sex (FDR < 0.05), but not significant (P-value 
> 0.05) in the other sex. For each CpG, annotations include the location of the CpG based on hg19/GRCh37 genomic annotation (chr, position), 
Illumina gene annotations, nearby genes based on GREAT, and chromatin state. The inverse-variance weighted meta-analysis regression models 
results include estimated effect size (estimate) where CpGs that are hyper-methylated in AD have positive values, and its associated standard error 
(se), P-value, and false discovery rate (FDR) for multiple comparison corrections. Bold indicates significant association at 5% FDR. 
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Table 2 Top 10 and 6 DMRs in sex-stratified analysis. Shown are DMRs that are highly significant in one sex (FDR < 0.05), but not significant 
(P-value > 0.05) in another sex. Only 6 DMRs satisfied these criteria in male samples. For each DMR, annotations include location of the DMR 
based on hg19/GRCh37 genomic annotation (DMR), Illumina gene annotations, nearby genes based on GREAT, and chromatin state. The inverse-
variance weighted meta-analysis regression models results based on coMethDMR include estimated effect size (estimate) where DMRs that are 
hyper-methylated in AD have positive values, its associated standard error (se), P-value, and false discovery rate (FDR) for multiple comparison 
corrections. Shown in bold are significant results with FDR < 0.05. 
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Table 3 Results from sex-by-Braak stage interaction analysis. For each CpG, annotations include the location of the CpG based on hg19/GRCh37 
genomic annotation (chr, position), Illumina gene annotations, nearby genes based on GREAT, and chromatin state. The inverse-variance weighted 
meta-analysis regression models results include estimated effect size (estimate) where CpGs that are hyper-methylated in AD have positive values, 
its associated standard error (se), and P-value. Adj.pval is adjusted P-value from stageR analysis. Shown in bold are significant results (adj.pval < 
0.05 for interaction or P-value < 0.05 for one sex).  * indicates these CpGs also reached 5% FDR significance in sex-stratified analysis. 
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Table 4 Top 10 GO Biological processes enriched with sex-specific DNA methylation changes associated with AD Braak stage in females 
and males. Shown are GSEA results including number of genes in the gene set (SIZE), normalized enrichment score (NES), P-value, FDR and 
relevant AD literature for the gene set.  

Gene Set SIZE NES P-value FDR  Relevance to AD 

Top 10 GO Biological Process terms in females 
     

INTEGRIN_ACTIVATION 24 2.105 0 9.53E-02 Wennstrome et al. 
(2012)[92] 

RESPONSE_TO_PLATELET_DERIVED_GROWTH_FACTOR 19 2.116 0 1.07E-01 Sil et al. (2018)[93] 
I_KAPPAB_PHOSPHORYLATION 19 2.081 0 1.13E-01 Jha et al. (2019)[94] 
NEGATIVE_REGULATION_OF_INTERLEUKIN_8_PRODUCTION 18 2.133 0 1.21E-01 Qin et al. (2016)[95] 
POSITIVE_REGULATION_OF_MACROPHAGE_MIGRATION 25 2.048 0 1.46E-01 Bacher et al. (2010) [96] 
TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 142 2.031 0 1.61E-01 Fiebich et al. (2018)[97] 
NEGATIVE_REGULATION_OF_TUMOR_NECROSIS_FACTOR_SUPERFAMILY_CYTOKINE_PRO
DUCTION 

57 2.007 0 1.90E-01 Chang et al. (2017) [98] 

REGULATION_OF_SYNCYTIUM_FORMATION_BY_PLASMA_MEMBRANE_FUSION 28 1.944 0 1.98E-01 Armoto et al. (2013)[99] 
RESPONSE_TO_VITAMIN_A 19 1.945 0 2.08E-01 Ono et al. (2012)[100] 
POSITIVE_REGULATION_OF_AXON_EXTENSION 42 1.931 0 2.08E-01 Kanaan et al. (2013)[101] 
  

    
 

Top 10 Biological Process terms in males  
    

 

REGULATION_OF_T_CELL_ACTIVATION_VIA_T_CELL_RECEPTOR_CONTACT_WITH_ANTIGE
N_BOUND_TO_MHC_MOLECULE_ON_ANTIGEN_PRESENTING_CELL 

6 1.869 0 5.98E-01 Schetters et al. (2017)[102] 

REGULATION_OF_SYSTEMIC_ARTERIAL_BLOOD_PRESSURE_BY_CIRCULATORY_RENIN_AN
GIOTENSIN 

18 1.964 0 6.11E-01 Cosarderelioglu et al. 
(2020)[42] 

NEGATIVE_REGULATION_OF_REACTIVE_OXYGEN_SPECIES_BIOSYNTHETIC_PROCESS 29 1.745 0 6.12E-01 Manoharan et al. 
(2016)[44] 

COMPLEMENT_ACTIVATION 68 1.741 0 6.26E-01 Morgan (2018)[80] 
RESPONSE_TO_ANGIOTENSIN 26 1.746 0 6.36E-01 Benigni et al. (2010)[43] 
CELL_REDOX_HOMEOSTASIS 55 1.721 0 6.49E-01 Chen et al. (2020)[45] 
PROTEIN_DEMETHYLATION 28 1.832 0 6.77E-01 Esposito et al. (2019)[103] 
IMMUNE_RESPONSE_INHIBITING_CELL_SURFACE_RECEPTOR_SIGNALING_PATHWAY 6 1.781 0 7.02E-01 Schetters et al. (2017)[102] 
DICARBOXYLIC_ACID_CATABOLIC_PROCESS 17 2.052 0 7.57E-01 Griffin et al. (2017)[104] 
GLUTAMINE_FAMILY_AMINO_ACID_METABOLIC_PROCESS 70 1.657 0 7.75E-01 Conway et al. (2020)[105] 
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Figure 1 Miami plot of sex‐stratified analysis results. The X‐axis are chromosome numbers. The Y‐axis show 
–log10(P‐value) of CpG – Braak stage associations in males (above X‐axis) or in females (below 
X‐axis). The genes corresponding to top 10 CpGs that are the most significant in one sex (FDR < 0.05), but 
not significant in another sex (P‐value > 0.05) are highlighted.

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted M

arch 2, 2021. 
; 

https://doi.org/10.1101/2021.03.01.21252029
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2021.03.01.21252029
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Sex-specific DNA methylation changes in Alzheimer’s disease pathology 

Lanyu Zhang1, Juan I. Young2,3, Lissette Gomez3, Tiago C. Silva1, Michael A. Schmidt2,3, Jesse Cai4, Xi 

Chen1,5, Eden R. Martin2,3, Lily Wang1,2,3,5* 

 
1 Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, 

Miami, FL 33136, USA 
2 Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of 

Medicine, Miami, FL 33136, USA  
3 John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 

33136, USA 
4 Brentwood High School, 5304 Murray Ln, Brentwood, TN 37027 
5 Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA 

* To whom correspondence should be addressed.  

 

 
Supplementary Text on Detailed Methods 
 
1. Pre-processing of DNA methylation data 
 
2. Single cohort analysis 
 
3. Inflation assessment and correction 
 
4. Meta-analysis 
 
5. Identifying sex-specific changes   

6. Enrichment and pathway analysis 
 
7. Integrative methylation – gene expression analysis 
 
8. Sex-specific mQTL analysis 
 
 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.01.21252029doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.01.21252029
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Pre-processing of DNA methylation data 
 
Quality control for CpG probes included removing probes with detection P-value < 0.01 in all samples of 
a cohort, those associated with cigarette smoking1, or those having a single nucleotide polymorphism (SNP) 
with minor allele frequency (MAF) ൒ 0.01 present in the last 5 base pairs of the probe. Quality control for 
samples included restricting our analysis to samples with good bisulfite conversion efficiency (i.e., ≥ 88%) 
and principal component analysis (PCA). More specifically, PCA was performed using the 50,000 most 
variable CpGs for each cohort. Samples that were within േ 3 standard deviations from the mean of PC1 
and PC2 were selected to be included in the final sample set. The quality controlled methylation datasets 
were next subjected to the QN.BMIQ normalization procedure2 as previously described3. The recorded sex 
status of all samples matched those predicted based on methylation levels using getSex function in R 
package minfi. We removed batch effects by applying linear model methylation M value ~ methylation 

slide. For the ROSMAP cohort, we additionally included the variable “batch” that was available in the 
dataset to adjust for technical batches which occurred during data generation. The residuals (methylation 

residuals) estimated from this model were then used for subsequent analyses. 
 
2. Single cohort analysis  
 
To identify sex-specific DNA methylation changes in AD, we performed both a sex-stratified analysis and 
a sex-by-Braak stage interaction analysis for each of the four brain sample cohorts. In sex-stratified analysis, 
we tested methylation-Braak stage associations in female and male samples separately. In sex-by-Braak 
stage interaction analysis, we analyzed both female and male samples simultaneously and compared slopes 
for methylation-Braak stage associations in females and males.  
  
In sex-stratified analysis, for each CpG, we applied the model methylation residuals ~ age at death + Braak 

stage + CETS4 estimated neuron proportions to female samples and male samples separately. In sex-by-
Braak stage interaction analysis, for each CpG, we applied the model methylation residuals ~ age at death 

+ sex + Braak stage + sex*Braak stage + sex*age at death + CETS estimated neuron proportions to samples 
of both sexes.  
 
For the analysis of differentially methylated regions (DMRs), we used the coMethDMR R package5 to 
analyze 40,010 pre-defined genomic regions on the Illumina 450k arrays and identify co-methylated DMRs 
associated with Braak stage. The pre-defined genomic regions are regions on the Illumina array covered 
with clusters of contiguous CpGs where the maximum separation between any two consecutive probes is 
200 base pairs. First, coMethDMR selects co-methylated sub-regions within these pre-defined contiguous 
genomic regions. Next, we summarized methylation M values within these co-methylated sub-regions using 
medians and tested them against AD Braak stage. The same linear models described for the analysis of 
CpGs were then applied to median value of each DMR.  
 
3. Inflation assessment and correction  
 
To assess inflation of the test statistics, we used quantile-quantile (QQ) plots of observed and expected 
distributions of P-values for each cohort. Because the conventional genomic inflation factor (lambda or λ 
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used interchangeably below) is dependent on the expected number of true associations, and in a typical 
EWAS it is expected that small effects from many CpGs might be associated with the phenotype, Iterson 
et al. (2017)6 showed that the conventional genomic inflation factor would overestimate actual test-statistic 
inflation in EWAS. To estimate genomic inflations more accurately in EWAS, Iterson et al. (2017)6 
developed a Bayesian method that estimates and corrects inflation in EWAS based on empirical null 
distributions, which is implemented in the Bioconductor package bacon. We estimated genomic inflation 
factors using both the conventional approach and the bacon method. In addition, we also applied the bacon 
method to single cohort analysis results to obtain inflation-corrected effect sizes, standard errors, and p-
values for each cohort.  
 
4. Meta-analysis 
 
The results of the bacon-corrected cohort-specific analysis were then combined using inverse-variance 
weighted meta-analysis models. The evidence for heterogeneity of study effects was tested using Cochran’s 
Q statistic7. More specifically, the inverse-variance weighted fixed effects model was first applied to 
synthesize statistical significance from individual cohorts. Even though the fixed effects model for meta-
analysis does not require the assumption of homogeneity8, for the regions with nominal evidence for 
heterogeneity (nominal Pheterogeneity < 0.05), we also applied random effects meta-analysis9 and assigned final 
meta-analysis P-value based on the random effects model. For each CpG (and for each DMR), we used the 
R package meta to obtain meta-analysis p-values for sex-by-Braak stage interaction, as well as Braak stage 
effect in female samples and male samples separately in sex-stratified analysis.  
   
5. Identifying sex-specific changes   
 
In sex-stratified analysis, we selected significant CpGs (or DMRs) with FDR < 0.05 in female samples or 
male samples separately. In sex-by-Braak stage interaction analysis, because the standard error of 
interaction effect sex × Braak stage is typically much larger than those for main Braak stage effects, the 
conventional approach for controlling false discovery rate often results in low power for discovering 
interaction effects10. Therefore, we used a stagewise analysis approach, previously proposed by van de 
Berge et al. (2017)10, to help improve power in high-throughput experiments where multiple hypotheses 
are tested for each gene. More specifically, in the screening step, for each CpG (or DMR), we tested the 
global null hypothesis that there is methylation-Braak stage association in either male or female samples. 
Next, in the confirmation step, we considered three individual null hypotheses for each CpG (or DMR): (a) 
there is no methylation-Braak stage association in male samples; (b) there is no methylation-Braak stage 
association in female samples; and (c) the methylation-Braak stage associations in male samples and female 
samples are the same. For the CpGs (or DMRs) selected in the screening step, these three individual 
hypotheses were then tested while controlling family-wise error rate (FWER) as described in van de Berge 
et al. (2017)10.  
 
The stagewise analysis described above was implemented using the stageR package to identify CpGs (or 
DMRs) with significant differential methylation - Braak stage associations in females and males. In the 
screening step, we considered meta-analysis p-values for Braak stage in female samples and male samples 
(p.meta.female, p.meta.male), and used the minimum of these two meta-analysis p-values to represent 
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each CpG (or DMR). In the confirmation step, the parameter pConfirmation was defined using three p-
values for each CpG (or DMR): p.meta.female, p.meta.male, and p.meta.interaction (meta-analysis p-
value for sex × Braak stage).   
  
6. Enrichment and pathway analysis  
 
The probes on the Illumina 450k array are annotated according to their locations with respect to genes 
(TSS1500, TSS200, 5’UTR, 1stExon, gene body, 3’UTR, intergenic) or to CpG islands (island, shore, shelf, 
open sea). To understand the genomic context of sex-specific DNA methylation changes in AD, we 
compared the FDR significant methylation changes from sex-stratified analysis with different types of 
genomic features. As pathological AD-associated methylation changes can occur at both significant 
individual CpGs and significant DMRs, we considered the CpGs located at significant individual CpGs or 
within significant DMRs jointly in this analysis, by testing their over- and under-representation in different 
types of genomic features using Fisher’s exact test. More specifically, the proportion of significant CpGs  
mapped to a particular type of genomic feature (e.g., CpG islands) (foreground) was compared to the 
proportion of CpGs on the array that mapped to the same type of genomic feature (background). 
 
In addition, we used Fisher’s test to assess enrichment of significant CpGs and DMRs in different chromatin 
states by comparing with the 15-chromatin state data for DLPFC tissue samples (E073) from the Roadmap 
Epigenomics Project11. Using combinations of histone modification marks, ChromHMM12 was previously 
used to annotate segments of the genome with different chromatin states (repressed, poised and active 
promoters, strong and weak enhancers, putative insulators, transcribed regions, and large-scale repressed 
and inactive domains), which were shown to vary across sex, tissue type, and developmental age13. 
Similarly, we tested enrichment of significant CpGs and DMRs in binding sites of transcription factors and 
chromatin proteins from the ENCODE project14 and CODEX database15 using the LOLA R package16.  
 
Finally, we performed pathway analysis by comparing the genes with significant DNA methylation changes 
in AD (identified in sex-stratified analysis) with the canonical pathways and biological process GO terms 
in MSigDB using GSEA analysis17. First, we linked each CpG and each pre-defined genomic region tested 
in DMR analysis (see Section “2. Single cohort analysis” above) to genes by annotating them using the 
GREAT (Genomic Regions Enrichment of Annotations Tool) software18 (with default “Basal plus 
method”), which associates genomic regions to target genes. Next, we represented each gene by the smallest 
p-value if multiple CpGs or  genomic regions are associated with them. To remove selection bias due to 
different numbers of CpGs or genomic regions associated with each gene (i.e., P-values from a gene with 
many CpGs or genomic regions linked to it are likely to be smaller than a gene with few linked CpGs or 
DMRs), we next fit a generalized additive model19 using the R package mgcv: 𝑌௜~𝑓ሺ𝑛. 𝑙𝑖𝑛𝑘𝑠௜ሻ where Yi is 
negative log (base 10) transformation of the P-value for gene i in the analysis of female samples (or male 
samples), n.linksi is the number of CpGs or DMRs associated with gene i, and f  is a penalized spline 
function. We assumed gamma distribution for Yi, as under the null hypothesis of no association, Yi follows 
the chi-square distribution (a special case of gamma distribution). The residuals from this model were 
estimated and used to generate a ranked gene list, which was then used as input for GSEA (in pre-ranked 
mode) to identify canonical pathways and gene ontology terms (MsigDB C2:CP and C5:BP collections of 
gene sets) enriched with significant methylation changes in female samples and male samples separately.     
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7. Integrative methylation – gene expression analysis 
 
To systematically evaluate transcriptional changes near the sex-specific DNA methylation changes, we next 
performed integrative methylation – gene expression analysis using 529 (333 female and 196 male) samples 
from the ROSMAP study with matched DNA methylation and gene expression data. To this end, 
normalized FPKM (Fragments Per Kilobase of transcript per Million mapped reads) gene expression values 
for the ROSMAP study were downloaded from the AMP-AD Knowledge Portal (Synapse ID: syn3388564). 
First, we linked significant CpGs (or DMRs) to nearby genes using GREAT18, which associates genomic 
regions to regulatory domains of genes. Next, we removed confounding effects in DNA methylation data 
by fitting the model methylation M value ~ neuron.proportion + batch + sample.plate + ageAtDeath and 
extracting residuals from this model; these are the methylation residuals. Similarly, we also removed 
potential confounding effects in RNA-seq data by fitting model log2(normalized  FPKM  values  +  1)  ~ 

ageAtDeath + markers for cell types. The last term, “markers for cell types,” included multiple covariate 
variables to adjust for the multiple types of cells in the brain samples. More specifically, we estimated 
expression levels of genes that are specific for the five main cell types present in the CNS: ENO2 for 
neurons, GFAP for astrocytes, CD68 for microglia, OLIG2 for oligodendrocytes, and CD34 for endothelial 
cells, and included these as variables in the above linear regression model, as was done in a previous large 
study of AD samples20. The residuals extracted from this model are the gene expression residuals.  
 
Finally, for each gene expression and CpG (or DMR) pair, we then tested the association between gene 
expression residuals and methylation residuals using a linear model: gene  expression  residuals  ~ 
methylation  residuals  +  Braak  stage. For significant DMRs, this analysis was repeated, except that  
methylation M value was replaced with median methylation M value from multiple CpGs in the DMR.  
 
8. Sex-specific mQTL analysis 
 
To identify methylation quantitative trait loci (mQTLs) for the significant DMRs and CpGs, we tested 
associations between the methylation levels with nearby SNPs, using the ROSMAP study dataset, which 
had matched genotype data and DNA methylation data for 688 samples (434 females, 254 males). 
ROSMAP genotype data was downloaded from AMP-AD (syn3157325) and imputed to the Haplotype 
Reference Consortium r1.1 reference panel21. The male samples and female samples were analyzed 
separately.  
 
To reduce the number of tests, we focused on identifying cis mQTLs located within 500kb from the start 
or end of the DMR (or position of the significant CpG)22. We additionally required SNPs to (1) have minor 
allele frequency of at least 1%, (2) be imputed with good certainty: information metric (info score) ൒ 0.4, 
and (3) be associated with AD case-control status (as determined by clinical consensus diagnosis of 
cognitive status), after adjusting for age, batch, and the first 3 PCs estimated from genotype data, at nominal 
P-value less than 0.05. We then fit the linear model methylation residual ~ SNP dosage + batch + PC1 + PC2 

+ PC3, where PC1, PC2, and PC3 are the first three PCs estimated from genotype data, to test the association 
between methylation residuals in CpGs and the imputed allele dosages for SNPs to identify mQTLs. The 
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analysis for DMRs was the same except that we replaced methylation residual with median (methylation 
residuals) of all CpGs located within the DMR.   
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Supplementary Figure 1 Quantile‐quantile (QQ) plots of observed and expected distributions of p‐values 
in Gasparoni, London, Mount Sinai, and ROSMAP cohorts. λ is the genomic inflation factor, and λbacon is 
the genomic  inflation factor estimated using the method of  Iterson et al. (2017) (PMID: 28129774), as 
implemented in the bacon R package. Shading indicates 95% confidence intervals. Reference line in red 
indicates expected distribution of ‐log10(P‐values) under the null hypothesis of no association. 
 
(A) for analysis results of female samples  
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(B) for analysis results of male samples 
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Supplementary Table 2 Enrichment of FDR significant CpGs and CpGs located 
within FDR significant DMRs with positive and negative effect estimates in 
various (A) (B) genomic features and (C) (D) chromatin states. *** indicates P-
value < 0.001, ** indicates P-value < 0.01, * indicates P-value < 0.05 
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Supplementary Figure 3 The TYROBP causal network.  

(A) Genes with significant DNA methylation changes in female samples are enriched in the TYROBP
causal network (FDR = 0.014).
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(B) Core enrichment genes identified by GSEA. 
Orange = core enrichment genes identified by GSEA in the analysis of female samples, blue = core 
enrichment genes identified by GSEA in the analysis of male samples, and green = core enrichment 
genes identified by GSEA in both male and female samples analysis.
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Supplementary Figure 4 Forest plots for example top CpGs. 
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