The accuracy of novel antigen rapid diagnostics for SARS-CoV-2: a living systematic review and meta-analysis ============================================================================================================ * Lukas E. Brümmer * Stephan Katzenschlager * Mary Gaeddert * Christian Erdmann * Stephani Schmitz * Marc Bota * Maurizio Grilli * Jan Larmann * Markus A. Weigand * Nira R. Pollock * Aurélien Macé * Sergio Carmona * Stefano Ongarello * Jilian A. Sacks * Claudia M. Denkinger ## ABSTRACT **Background** SARS-CoV-2 antigen rapid diagnostic tests (Ag-RDTs) are increasingly being integrated in testing strategies around the world. Studies of the Ag-RDTs have shown variable performance. In this systematic review and meta-analysis, we assessed the clinical accuracy (sensitivity and specificity) of commercially available Ag-RDTs. **Methods and Results** We registered the review on PROSPERO (Registration number: CRD42020225140). We systematically searched multiple databases (PubMed, Web of Science Core Collection, medRvix and bioRvix, FIND) for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 up until April 30th, 2021. Descriptive analyses of all studies were performed and when more than four studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity in comparison to reverse transcriptase polymerase chain reaction testing. We assessed heterogeneity by subgroup analyses, and rated study quality and risk of bias using the QUADAS 2 assessment tool. From a total of 14,254 articles, we included 133 analytical and clinical studies resulting in 214 clinical accuracy data sets with 112,323 samples. Across all meta-analyzed samples, the pooled Ag-RDT sensitivity was 71.2% (95% confidence interval [CI] 68.2 to 74.0) and increased to 76.3% (CI 73.1 to 79.2) if analysis was restricted to studies that followed the Ag-RDT manufacturers’ instructions. The LumiraDx showed the highest sensitivity with 88.2% (CI 59.0 to 97.5). Of instrument-free Ag-RDTs, Standard Q nasal performed best with 80.2% sensitivity (CI 70.3 to 87.4). Across all Ag-RDTs sensitivity was markedly better on samples with lower Ct-values, i.e., <20 (96.5%, CI 92.6 to 98.4) and <25 (95.8%, CI 92.3 to 97.8), in comparison to those with Ct ≥25 (50.7%, CI 35.6 to 65.8) and ≥30 (20.9%, CI 12.5 to 32.8). Testing in the first week from symptom onset resulted in substantially higher sensitivity (83.8%, CI 76.3 to 89.2) compared to testing after one week (61.5%, CI 52.2 to 70.0). The best Ag-RDT sensitivity was found with anterior nasal sampling (75.5%, CI 70.4 to 79.9) in comparison to other sample types (e.g., nasopharyngeal 71.6%, CI 68.1 to 74.9) although CIs were overlapping. Concerns of bias were raised across all data sets, and financial support from the manufacturer was reported in 24.1% of data sets. Our analysis was limited by the included studies’ heterogeneity in design and reporting, making it difficult to draw conclusions from. **Conclusion** In this study we found that Ag-RDTs detect the vast majority of cases within the first week of symptom onset and those with high viral load. Thus, they can have high utility for diagnostic purposes in the early phase of disease, making them a valuable tool to fight the spread of SARS-CoV-2. Standardization in conduct and reporting of clinical accuracy studies would improve comparability and use of data. **AUTHOR SUMMARY** Why was this study done? * – Antigen rapid diagnostic tests (Ag-RDTs) are considered an important diagnostic tool to fight the spread of SARS-CoV-2 * – An increasing number of Ag-RDTs is offered on the market, and a constantly growing body of literature evaluating their performance is available * – To inform decision makers about the best test to choose, an up to date summary of their performance is needed What did the researchers do and find? * – On a weekly basis, we search multiple data bases for evaluations of Ag-RDTs detecting SARS-CoV-2 and post the results on [www.diagnosticsglobalhealth.org](http://www.diagnosticsglobalhealth.org) * – Based on the search results up until April 30th, 2021, we conducted a systematic review and meta-analysis, including a total of 133 clinical and analytical accuracy studies * – Across all meta-analyzed studies, when Ag-RDTs were performed according to manufacturers’ recommendations, they showed a sensitivity of 76.3% (CI 73.1 to 79.2), with the LumiraDx (sensitivity 88.2%, CI 59.0 to 97.5) and of the instrument-free Ag-RDT Standard Q (74.9% sensitivity, CI 69.3 to 79.7) performing best. * – Across all Ag-RDTs, sensitivity increased to 95.8% (CI 92.3 to 97.8) when restricting the analysis to samples with high viral loads (i.e., a Ct-value <25) and to 83.8% (CI 76.3 to 89.2) when tests were performed on patients within the first week after symptom onset What do these findings mean? * – Ag-RDTs detect the vast majority of cases within the first week of symptom onset and those with high viral load. Thus, they can have high utility for diagnostic purposes in the early phase of disease * – Out of all assessed tests, the Lumira Dx showed the highest accuracy. The Standard Q wasthe best performing test when only considering those that don’t require an instrument * – A standardization of reporting methods for clinical accuracy studies would enhance future test-comparisons Keywords * SARS-CoV-2 * Antigen Test * PCR * meta-analysis ## INTRODUCTION As the COVID-19 pandemic continues around the globe, antigen rapid diagnostic tests (Ag-RDTs) for SARS-CoV-2 are seen as an important diagnostic tool to fight the virus’ spread [1, 2]. The number of Ag-RDTs on the market is increasing constantly [3]. Initial data from independent evaluations suggests that the performance of SARS-CoV-2 Ag-RDTs may be lower than what is reported by the manufacturers. In addition, Ag-RDT accuracy seems to vary substantially between tests [4–6]. With the increased availability of Ag-RDTs, an increasing number of independent validations have been published. Such evaluations differ widely in their quality, methods and results, making it difficult to assess the true performance of the respective tests [7]. To inform decision makers on the best choice of individual tests, an aggregated, widely available and frequently updated assessment of the quality, performance and independence of the data is urgently necessary. While other systematic reviews have been published, they only include data up until Nov 2020 [8–11], exclude preprints [12], or were industry sponsored [13]. In addition, only one assessed the quality of studies in detail, with data up until Nov, 2020 [7, 11]. With our systematic review and meta-analysis, we aim to close this gap in the literature and link to a website ([www.diagnosticsglobalhealth.org](http://www.diagnosticsglobalhealth.org)) that is regularly updated. ## METHODS We developed a study protocol following standard guidelines for systematic reviews [14, 15], which is available in the Supplement (S15). We have also completed the PRISMA checklist, which can be found in the Supplement (S1_PRISMA_Checklists) as well. Furthermore, we registered the review on PROSPERO (Registration number: CRD42020225140). ### SEARCH STRATEGY We performed a search of the databases PubMed, Web of Science, medRxiv and bioRxiv using search terms that were developed with an experienced medical librarian (MauG) using combinations of subject headings (when applicable) and text-words for the concepts of the search question. The main search terms were “Severe Acute Respiratory Syndrome Corona-virus 2”, “COVID-19”, “Betacoronavirus”, “Coronavirus” and “Point of Care Testing”. The full list of search terms is available in the Supplement (S2). We also searched the FIND website ([https://www.finddx.org/sarscov2-eval-antigen/](https://www.finddx.org/sarscov2-eval-antigen/)) for relevant studies manually. We performed the search up until April 30th, 2021. No language restrictions were applied. ### INCLUSION CRITERIA We included studies evaluating the accuracy of commercially available Ag-RDTs to establish a diagnosis of a SARS-CoV-2 infection against reverse transcriptase polymerase chain reaction (RT-PCR) or cell culture as reference standard. We included all study populations irrespective of age, presence of symptoms, or the study location. We considered cohort studies, nested cohort studies, case-control or cross-sectional studies and randomized studies. We included both peer reviewed publications and preprints. We excluded studies in which patients were tested for the purpose of monitoring or ending quarantine. Also, publications with a population size smaller than 10 were excluded. Although the size threshold of 10 is arbitrary, such small studies are more likely to give unreliable estimates of sensitivity or specificity. ### INDEX TESTS Ag-RDTs for SARS-CoV-2 aim to detect infection by recognizing viral proteins. Most Ag-RDTs use specific labeled antibodies attached to a nitrocellulose matrix strip, to capture the virus antigen. Successful binding of the antibodies to the antigen is either detected visually (through the appearance of a line on the matrix strip (lateral flow assay)) or requires a specific reader for fluorescence detection. Microfluidic enzyme-linked immunosorbent assays have also been developed. Ag-RDTs typically provide results within 10 to 30 minutes [6]. ### REFERENCE STANDARD Viral culture detects viable virus that is relevant for transmission but is available in research settings only. Since RT-PCR tests are more widely available and SARS-CoV-2 RNA (as reflected by RT-PCR cycle threshold (Ct) value) highly correlates with SARS-CoV-2 antigen quantities, we considered it an acceptable reference standard for the purposes of this systematic review [16]. It is of note that there is currently no international standard for the classification of viral load available. ### STUDY SELECTION AND DATA EXTRACTION Two reviewers (LEB and CE, LEB and SS or LEB and MB) reviewed the titles and abstracts of all publications identified by the search algorithm independently, followed by a full-text review for those eligible, to select the articles for inclusion in the systematic review. Any disputes were solved by discussion or by a third reviewer (CMD). A full list of the parameters extracted is included in the Supplement (S14) and the data extraction file is available upon request. Studies that assessed multiple Ag-RDTs or presented results based on differing parameters (e.g., various sample types) were considered as individual data sets. At first, four authors (SK, CE, SS, MB) extracted five randomly selected papers in parallel to align data extraction methods. Afterwards, data extraction and the assessment of methodological quality and independence from test manufacturers (see below) were performed by one author per paper (SK, CE, SS, MB) and controlled by a second (LEB, SK, SS, MB). Any differences were resolved by discussion or by consulting a third author (CMD). ### STUDY TYPES We differentiated between clinical accuracy studies (performed on clinical samples) or analytical accuracy studies (performed on spiked samples with a known quantity of virus). Analytical accuracy studies can differ widely in methodology, impeding an aggregation of their results. Thus, while we extracted the data for both kinds of studies, we only considered data from clinical accuracy studies as eligible for the meta-analysis. Separately, we summarized the results of analytical studies and compared them with the results of the meta-analysis for individual tests. ### ASSESSMENT OF METHODOLOGICAL QUALITY The quality of the clinical accuracy studies was assessed by applying the QUADAS-2 tool [17]. The tool evaluates four domains: patient selection, index test, reference standard, and flow and timing. For each domain, the risk of bias is analyzed using different signaling questions. Beyond the risk of bias, the tool also evaluates the applicability of the study of each included study to the research question for every domain. The QUADAS 2 tool was adjusted to the needs of this review and can be found in the Supplement (S3). ### ASSESSMENT OF INDEPENDENCY FROM MANUFACTURERS We examined whether a study received financial support from a test manufacturer (including the free provision of Ag-RDTs), whether any study author was affiliated with a test manufacturer, or a respective conflict of interest was declared. Studies were judged not to be independent from the test manufacturers if at least one of these aspects was present, otherwise they were considered to be independent. ### STATISTICAL ANALYSIS AND DATA SYNTHESIS We extracted raw data from the studies and recalculated performance estimates where possible based on the extracted data. The raw data can be found in the Supplement (S4). We prepared forest plots for the sensitivity and specificity of each test and visually evaluated the heterogeneity between studies. If four or more data sets were available with at least 20 positive RT-PCR samples per data set for a predefined analysis, a meta-analysis was performed. We report point estimates of sensitivity and specificity for SARS-CoV-2 detection compared to the reference standard along with 95% confidence intervals (CI) using a bivariate model (implemented with the ‘reitsma’ command from the R package “mada” version 0.5.10). When there were less than four studies for an index test, only a descriptive analysis was performed and accuracy ranges were reported. In sub-group analyses where papers presented data only on sensitivity, a univariate random-effects inverse variance metaanalysis was done (using the ‘metagen’ command from the R package “meta” version 4.11-0). We predefined the following subgroups for meta-analysis: by Ct-value range, by sampling and testing procedure in accordance with manufacturer’s instructions as detailed in the instructions for use (henceforth called IFU-conforming) vs. not IFU-conforming, age (<18; ≥ 8), sample type, by presence or absence of symptoms, symptom duration (<7 days vs. ≥7 days), by viral load and by type of RT-PCR used. In an effort to use as much of the heterogeneous data as possible, the cut-offs for the Ct-value groups were relaxed by 2-3 points within each range. The <20 group included values reported up to ≤20, the <25 group included values reported as ≤24 or <25 or 20-25, the <30 group included values from ≤29 to ≤33 and 25-30. The ≥25 group included values reported as ≥25 or 25-30, the ≥30 group included values from ≥30 to ≥35. For categorization by sample type, we assessed (1) nasopharyngeal (NP) alone or combined with other (e.g., oropharyngeal (OP)), (2) OP alone, (3) anterior nasal or mid-turbinate (AN/MT), (4) a combination of bronchial alveolar lavage and throat wash (BAL/TW) or (5) saliva. For categorization by age, the pediatric group included values reported as <16 or <18, whereas values reported as ≥16 or ≥18 were included in the adult group. Analyses were preformed using R 4.0.3 (R Foundation for Statistical Computing, Vienna, Austria). We aimed to do meta-regression to examine the impact of covariates including symptom duration and Ct-value range. We also performed the Deeks’ test for funnel-plot asymmetry as recommended to investigate publication bias for diagnostic test accuracy meta-analyses ([18], using the ‘midas’ command in Stata version 15); a p-value< 0.10 for the slope coefficient indicates significant asymmetry. ### SENSITIVITY ANALYSIS Two types of sensitivity analyses were planned: an estimation of sensitivity and specificity excluding case-control studies, and estimation of sensitivity and specificity excluding non-peer-reviewed studies. We compared the results of each sensitivity analysis against overall results to assess the potential bias introduced by considering case-control studies and non-peer reviewed studies. ## RESULTS ### SUMMARY OF STUDIES The systematic search resulted in 14,254 articles. After removing duplicates, 8,921 articles were screened, and 266 papers were considered eligible for full-text review. Of these, 148 were excluded because they did not present primary data [13,19–131] or the Ag-RDT was not commercially available [16,132–164], leaving 133 studies to be included in the systematic review (Fig 1) [4,165–296]. ![Figure 1](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/06/19/2021.02.26.21252546/F1.medium.gif) [Figure 1](http://medrxiv.org/content/early/2021/06/19/2021.02.26.21252546/F1) Figure 1 At the end of the data extraction process, 37 studies were still in preprint form [4,171,173,174,177,180,190,192,201,204,205,207,211,214–216,218,220,222,223,225,227,231,233,234,238,240,244,247,253,257,265,267,284,287,290,293]. All studies were written in English, except for two in Spanish [175, 280]. Out of the 133 studies, nine reported analytical accuracy [173,191,198,208,227,256,274,275,282] and the remaining 124 reported clinical accuracy. The clinical accuracy studies were divided into 214 data sets, while the nine analytical accuracy studies accounted for 62 data sets. A total of 61 different Ag-RDTs were evaluated (48 lateral flow with visual readout, twelve requiring an automated reader), with 56 being assessed in a clinical accuracy study. 39 studies reported data for more than one test and 19 studies of these conducted a head-to-head assessment, i.e., testing at least two Ag-RDTs on the same sample or participant. The reference method was RT-PCR in all except one study, which used viral culture [281]. The most common reasons for testing were the occurrence of symptoms (55/19.9% of data sets), screening independent of symptoms (19/6.9%) and close contact to a SARS-CoV-2 confirmed case (10/3.6%). In 79 (28.6%) of the data sets, persons were tested due to more than one of the reasons mentioned before and for 163 (59.1%) the reason for testing was unclear. In total, 113,242 Ag-RDTs were performed, 112,323 (99.2%) in clinical accuracy studies and 919 (0.8%) in analytical accuracy studies. In the clinical accuracy studies, the mean number of samples per study was 525 (Range 16 to 6,954). Only 4,752 (4.2%) tests were performed on pediatric samples and 21,351 (18.9%) on samples from adults. For the remaining 87,139 (76.9%) samples it was not specified whether they originate from adults or children. Symptomatic patients comprised 36,981 (32.7%) samples, 32,799 (29.0%) samples originated from asymptomatic patients, and for 42,462 (38.4%) samples the patient’s symptom status could not be identified. The most common sample type evaluated was NP and mixed NP/OP (67,036 samples, 59.2%), followed by AN/MT (27,045 samples, 23.9%). There was substantially less testing done for the other sample types, with 6,254 (5.5%) tests done from OP samples, 1,351 (1.2%) from saliva, 219 (0.2%) from BAL/TW and for 11,337 (10.0%) tests we could not tell the type of sample. Of the data sets assessing clinical accuracy, 89 (41.6%) performed testing according to the manufacturers’ recommendations (i.e., IFU-conforming), while 100 (46.7%) were not IFU-conforming and for 25 (11.7%) it was unclear. The most common deviations from the IFU were (1) use of samples that were prediluted in transport media not recommended by the manufacturer (80 data sets; seven unclear), (2) use of banked samples (60 data sets; 14 unclear) and (3) a sample type that was not recommended for Ag-RDTs (17 data sets; 8 unclear). A summary of the tests evaluated in clinical accuracy studies, including study author, sample size, sample type, sample condition and IFU conformity, can be found in Table 1. The Panbio test by Abbott Rapid Diagnostics (Germany; henceforth called Panbio) was reported the most frequently with 39 (18.2%) data sets and 28,089 (25.0%) tests, while Standard Q test by SD Biosensor (South Korea; distributed in Europe by Roche, Germany; henceforth called Standard Q) was assessed in 37 (17.3%) data sets with 16,820 (15.0%) tests performed. Detailed results for each clinical accuracy study are available in the Supplement (S 4). View this table: [Table 1:](http://medrxiv.org/content/early/2021/06/19/2021.02.26.21252546/T1) Table 1: Clinical accuracy data for Ag-RDTs against SARS-CoV-2 ### METHOLOGICAL QUALITY OF STUDIES The findings on study quality using the QUADAS 2 tool are presented in Fig 2. In 190 (88.8%) data sets a relevant patient population was assessed. However, for only 44 (20.6%) of the data sets the patient selection was considered representative of the setting and population chosen (i.e., they avoided inappropriate exclusions, a case-control design and enrollment occurred consecutive or randomly). ![](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/06/19/2021.02.26.21252546/F2/graphic-11.medium.gif) [](http://medrxiv.org/content/early/2021/06/19/2021.02.26.21252546/F2/graphic-11) ![](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/06/19/2021.02.26.21252546/F2/graphic-12.medium.gif) [](http://medrxiv.org/content/early/2021/06/19/2021.02.26.21252546/F2/graphic-12) Figure 2 The conduct and interpretation of the index tests was considered to have low risk for introduction of bias in 113 (52.8%) of data sets (through e.g., appropriate blinding of persons interpreting the visual read-out). However, for 99 (46.3%) of data sets sufficient information to clearly judge the risk of bias was not provided. In only 89 (41.6%) of data sets the Ag-RDTs were performed according to IFU, while 100 (46.7%) were not IFU-conforming, potentially impacting the diagnostic accuracy (for 25 (11.7%) of data sets the IFU status was unclear). In 81 (37.9%) of data sets the reference standard was performed before the Ag-RDT, or the operator conducting the reference standard was blinded to the Ag-RDT results, resulting in a low risk of bias. In almost all other data sets (132/61.7%) this risk could not be assessed due to missing data. The applicability of the reference test was judged to be of low concern for all data sets, as cell culture or RT-PCR are expected to adequately define the target condition. In 209 (97.7%) data sets, the sample for the index test and reference test were obtained at the same time, while this was unclear in five (2.3%). All samples included in a data set were applied to the same type of RT-PCR in 145 (67.8%) data sets, while different types of RT-PCR were used within the same data set in 50 (23.4%) data sets. For 19 (8.9%), it was unclear. Furthermore, for 11 (5.1%) of data sets, there was a concern that not all selected patients were included in the analysis. Finally, 32 (24.1%) of the studies received financial support from the Ag-RDT manufacturer and in another nine (6.8%) employment of the authors by the manufacturer of the Ag-RDT studied was indicated. Overall, a conflict of interest was found in 33 (24.8%) of the studies. ### DETECTION OF SARS-COV-2 INFECTION Out of 214 clinical data sets (from 124 studies), 20 were excluded from the meta-analysis, as they included less than 20 RT-PCR positive samples. Further 21 data sets were missing either sensitivity or specificity and were only considered for univariate analyses. Across the remaining 173 data sets, including any test and type of sample, the pooled sensitivity and specificity were 71.2% (95%CI 68.2 to 74.0) and 98.9% (95%CI 98.6 to 99.1), respectively. If testing was performed in conformity with IFU, sensitivity increased to 76.3% (95%CI 73.1 to 79.2) compared to not IFU-conforming testing with a sensitivity of 65.9% (95%CI 60.6 to 70.8). Pooled specificity was similar in both groups (99.1% (95% CI 98.8-99.4)and 98.3% (95% CI 97.7 to 98.8), respectively). ### ANALYSIS OF SPECIFIC TESTS Based on 119 data sets with 71,424 tests performed, we were able to perform bivariate meta-analysis of the sensitivity and specificity for twelve different Ag-RDTs (Fig 3A). Across these, pooled estimates of sensitivity and specificity on all samples were 72.1% (95%CI 68.8 to 75.3) and 99.0% (95% CI 98.7 to 99.2), which were very similar to the overall pooled estimate across all meta-analyzed data sets (71.2% and 98.9%, above). ![Figure 3a](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/06/19/2021.02.26.21252546/F3.medium.gif) [Figure 3a](http://medrxiv.org/content/early/2021/06/19/2021.02.26.21252546/F3) Figure 3a The highest pooled sensitivity was found for the SARS-CoV-2 Antigen Test by LumiraDx (United Kingdom; henceforth called LumiraDx) and the Lumipulse G SARS-CoV-2 Ag by Fujirebio (Japan; henceforth called Lumipulse G) with 88.2% (95% CI 59.0 to 97.5) and 87.2% (95% CI 78.0 to 92.9), respectively. The Sofia SARS Antigen FIA by QUIDEL (California, US; henceforth called Sofia) had a pooled sensitivity with 77.4% (95% CI 74.2 to 80.3). Of the non-instrument tests, the Standard Q and the Standard Q nasal test by SD Biosensor (South Korea; distributed in Europe by Roche, Germany; henceforth called Standard Q nasal) performed best with a pooled sensitivity of 74.9% (95% CI 69.3 to 79.7) and 80.2% (95% CI 70.3 to 87.4), respectively. The pooled sensitivity for Panbio was 71.8% (95%CI 65.4 to 77.5). From all Ag-RDTs, the COVID-19 Ag Respi-Strip by Coris BioConcept (Belgium; henceforth called Coris) had the lowest pooled sensitivity of 40.0% (95% CI 28.7 to 52.4). The pooled specificity was above 98% for all of the tests, except for the Standard F by SD Bio-sensor (South Korea) and Lumipulse G with specificities of 97.7% (95% CI 96.6 to 98.5) and 96.7% (95% CI 88.6 to 99.1), respectively. Hierarchical summary receiver-operating characteristic for Standard Q and LumiraDx are available in the Supplement (S6). Three Ag-RDTs did not have sufficient data to allow for a bivariate meta-analysis, wherefore a univariate analysis was conducted (Fig 3B). For the INNOVA SARS-CoV-2 Antigen Rapid Qualitative Test by Innova Medical Group (California, US) this resulted in a pooled sensitivity and specificity of 76.1% (95% CI 68.1 to 84.1) and 99.4% (95% CI 98.7 to 100), respectively. For the NADAL by NAL von Minden (Germany) and the COVID-19 Rapid Antigen Visual Read by SureScreen (United Kingdom), sufficient data was only available to analyze sensitivity, resulting in polled sensitivity estimates of 58.4% (95% CI 29.2 to 87.6) and 58.0% (95% CI 38.3 to 77.6) and, respectively. ![Figure 3b](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/06/19/2021.02.26.21252546/F4.medium.gif) [Figure 3b](http://medrxiv.org/content/early/2021/06/19/2021.02.26.21252546/F4) Figure 3b The remaining 35 Ag-RDTs did not present sufficient data for neither a uninor a bivariate meta-analysis. However, 9/35 have results presented in more than one data set and are summarized in Table 2. Herein, the widest ranges of sensitivity were found for the ESPLINE SARS-CoV-2 by Fujirebio (Japan) with sensitivity reported between 8.1% and 80.7%, and the RIDA®QUICK SARS-CoV-2 Antigen by R-Biopharm (Germany) with sensitivity between 39.2% and 77.6%, both with three data sets each. In contrast, two other test with two data sets each showed the least variability in sensitivity: the Zhuhai Encode Medical Engineering, SARS-CoV-2 Antigen Rapid Test (China) reported sensitivity between 74.0% and 74.4% and the COVID-19 Rapid Antigen Flourescent by SureScreen (UK) reported sensitivity between 60.3% and 69.0%. However, for both tests both data sets originated from the same studies. Overall, the lowest sensitivity range was reported for the SARS-CoV-2 Antigen Rapid Test by MEDsan (Germany) with 36.5% to 45.2% across two data sets. The specificity ranges were above 96% for most of the tests. A notable outlier was the 2019-nCov Antigen Rapid Test Kit by Shenzhen Bioeasy Biotechnology (China; henceforth called Bioeasy), reporting the worst with a specificity as low as 85.6% in one study. Forest plots for the data sets for each Ag-RDT are provided in the Supplement (S5). The remaining 26 Ag-RDTs that were evaluated in one data set only are included in Table 1 and Supplement (S5). View this table: [Table 2:](http://medrxiv.org/content/early/2021/06/19/2021.02.26.21252546/T2) Table 2: Summary clinical accuracy data for major Ag-RDTs not included in the meta-analysis In total, 16 studies accounting for 53 data sets conducted head-to-head clinical accuracy evaluations of different tests using the same sample(s) from the same participant. These data sets are underlined in Table 1; 15 such studies included more than 100 samples, and one study included too few samples to draw clear conclusions [286]. Four studies performed their head-to-head evaluation as per manufacturers’ instructions and on symptomatic patients. Across three of them, the Standard Q (sensitivity 73.2% to 91.2%) and the Standard Q nasal (sensitivity 82.5% to 91.2%) showed a similar range of sensitivity [207,215,271]. The fourth reported a sensitivity of 56.4% (95% CI 44.7 to 67.6) for the Biocredit Covid-19 Antigen rapid test kit by RapiGEN (South Korea; henceforth called Rapigen) and 52.6% (95% CI 40.9 to 64) for the SGTi-flex COVID-19 Ag by Sugentech (South Korea) [233]. All other head-to-head comparisons were not IFU-conforming. In one of these, the Rapid COVID-19 Ag Test by Healgen (sensitivity 77.1%) performed better than the Standard Q and Panbio (sensitivity 69.8% and 67.7%, respectively) [178]. In contrast to the overall findings of the meta-analysis above, two other head-to-head studies found that both the Standard Q (sensitivity 43.6% and 49.4) and Panbio (sensitivity 38.6% and 44.6%) had lower performance than the CLINITEST® Rapid COVID-19 Antigen Test by Siemens Healthineers (Germany; henceforth called Clinitest), which reported sensitivities 51.5% and 54.9% [167, 279]. However, another study found both the Standard Q and Panbio (sensitivity 81.0% and 82.9%, respectively) to have a higher accuracy than the Sofia (sensitivity 80.4%) [196]. ### SUBGROUP ANALYSIS The results are presented in Fig 4. Detailed results for the subgroup analysis are available in the Supplement (S7 to 11). #### Subgroup analysis by Ct-values High sensitivity was achieved for Ct-values <20 with 96.5% (95% CI 92.6 to 98.4). The pooled sensitivity for Ct-values <25 was markedly better at 95.8% (95% CI 92.3 to 97.8) compared to the group with Ct ≥ 25 at 50.7% (95% CI 35.6 to 65.8). A similar pattern was observed when the Ct-values were analyzed using cut-offs <30 or ≥30, resulting in a sensitivity of 79.9% (95% CI 70.3 to 86.9) and 20.9% (95% CI 12.5 to 32.8), respectively (Fig 4A). ![Figure 4a](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/06/19/2021.02.26.21252546/F5.medium.gif) [Figure 4a](http://medrxiv.org/content/early/2021/06/19/2021.02.26.21252546/F5) Figure 4a In addition, it was possible to meta-analyze test specific pooled sensitivity for the Panbio: 97.7% sensitivity (95% CI 95.3 to 98.9) for Ct-value <20, 95.8% (95% CI 92.3 to 97.8) for Ct-value <25 and 83.4% (95% CI 69.1 to 91.9) for Ct-value <30. For Ct-value ≥25 sensitivity was 61.2% (95% CI 38.8 to 79.7) and 30.5% (95% CI 16.0 to 50.4) for Ct-value ≥30. For the other Ag-RDTs only limited data was available, which is presented in the supplements (S10). #### Subgroup analysis by IFU conformity The summary results are presented in Fig 4B. When assessing only studies with an IFU-conforming testing, pooled sensitivity from 81 datasets with 49,643 samples was 76.3% (95% CI 73.1 to 79.2). When not IFU-conforming sampling (75 data sets, 31,416 samples) was performed sensitivity decreased to 65.9% (95% CI 60.6 to 70.8). ![Figure 4b](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/06/19/2021.02.26.21252546/F6.medium.gif) [Figure 4b](http://medrxiv.org/content/early/2021/06/19/2021.02.26.21252546/F6) Figure 4b For five tests it was possible to calculate pooled sensitivity estimates only including data sets with an IFU-conforming testing: Panbio (sensitivity of 76.5% (95% CI 69.5 to 82.3); 17 data sets, 12,856 samples), Standard Q (sensitivity of 79.3% (95% CI 73.5 to 84.1); 15 data sets, 6,584 samples), BinaxNOW (sensitivity of 61.8% (95% CI 48.0 to 74.0); 4 data sets, 8,163 samples), Rapigen (sensitivity of 67.1% (95% CI 50.4 to 80.4); 4 data sets, 1,934 samples) and Standard Q nasal (sensitivity of 83.8% (95% CI 77.8 to 88.4); 5 data sets, 683 samples). Specificity was above 98.6% for all tests. In contrast, when the Panbio (14 data sets, 9,233 samples) and Standard Q (14 data sets, 4,714 samples) tests were not performed according to IFU, pooled sensitivity decreased to 64.3% (95% CI 50.9 to 75.8) and 67.4 (95% CI 57.2 to 76.2), respectively. #### Subgroup analysis by sample type Most data sets evaluated NP or combined NP/OP swabs (122 data sets and 59,810 samples) as the sample type for the Ag-RDT. NP or combined NP/OP swabs achieved a pooled sensitivity of 71.6% (95% CI 68.1 to 74.9). Data sets that used AN/MT swabs for Ag-RDTs (32 data sets and 25,814 samples) showed a summary estimate for sensitivity of 75.5% (95% CI 70.4 to 79.9). This was confirmed by two studies that reported direct head-to-head comparison of NP and MT samples from the same participants using the same Ag-RDT (Standard Q), where the two sample types showed equivalent performance [271, 272]. Analysis of performance with an OP swab (seven data sets, 5,165 samples), showed pooled sensitivity of only 53.1% (95%CI 40.9 to 65.0). Saliva swabs (four data sets, 1,088 samples) showed the lowest pooled sensitivity with only 37.9% (95% CI 11.8 to 73.5) (Fig 4C). ![Figure 4c](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/06/19/2021.02.26.21252546/F7.medium.gif) [Figure 4c](http://medrxiv.org/content/early/2021/06/19/2021.02.26.21252546/F7) Figure 4c We were not able to perform a subgroup meta-analysis for BAL/TW due to insufficient data as there was only one study with 73 samples evaluating the Rapigen, Panbio and Standard Q [286]. However, BAL/TW would in any case be considered an off-label use. #### Subgroup analysis in symptomatic and asymptomatic patients Within the data sets possible to meta-analyze, 17,964 (54.1%) samples were from symptomatic and 15,228 (45.9%) from asymptomatic patients. The pooled sensitivity for symptomatic patients was markedly different compared to asymptomatic patients with 76.7% (95% CI 70.6 to 81.9) vs. 52.5% (95% CI 43.7 to 61.1). Specificity was 99% for both groups (Figu 4D). Median Ct-values differed in symptomatic and asymptomatic patients. For those studies where it was possible to extract a median Ct-value, it ranged from 20.5 to 27.0 in symptomatic [170,207,226,258,271,272] and from 27.2 to 30.5 in asymptomatic [170,201,258] patients. #### Subgroup analysis comparing symptom duration Data were analyzed for 5,538 patients with symptoms less than 7 days, but very limited data were available for patients with symptoms ≥ days (397 patients). The pooled sensitivity for patients with onset of symptoms <7 days was 83.8% (95% CI 76.3 to 89.2) which is markedly higher than the 61.5% (95% CI 52.2 to 70.0) sensitivity for individuals tested ≥ 7 days from onset of symptoms (Fig 4D). ![Figure 4d](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/06/19/2021.02.26.21252546/F8.medium.gif) [Figure 4d](http://medrxiv.org/content/early/2021/06/19/2021.02.26.21252546/F8) Figure 4d #### Subgroup analysis by age For adult patients, it was possible to pool estimates across 3,837 samples, whereas the pediatricgroup included 7,326 samples. Sensitivity and specificity were 64.3% (95% CI 54.7 to 72.9) and 99.4% (95% CI 98.9 to 99.7) in mostly symptomatic patients <18 years. In patients ≥ sensitivity increased to 74.8% (95% CI 66.5 to 81.6), while the specificity was similar (98.7%, 95% CI 97.2 to 99.4) (Fig 4E). ![Figure 4e](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/06/19/2021.02.26.21252546/F9.medium.gif) [Figure 4e](http://medrxiv.org/content/early/2021/06/19/2021.02.26.21252546/F9) Figure 4e #### Subgroup analysis by type of RT-PCR and viral load We were not able to perform a meta-analysis for the subgroups by type of RT-PCR or viral load (viral copies/mL) due to insufficient data. In 152 (71.0%) of the data sets only one type of RT-PCR was used, whereas 37 (17.3%) tested samples in the same data set using different RT-PCRs. For 25 (11.7%) of the data sets the type of RT-PCR was not reported. The Cobas® SARS-CoV-2 Test from Roche (Germany) was used most frequently in 63 (29.4%) of the data sets, followed by the Allplex® 2019 n-CoV Assay from Seegene in 41 (19.2%) and the SARS CoV-2 assay from TaqPath in 20 (9.3%) of the data sets Median sensitivity in samples with viral load of >5 log 10 copies/ml was 72.4% (range 46.9 to 100), 97.8% (range 71.4 to 100) for >6 log 10 copies/ml and 100% (range 93.8 to 100) for >7 log 10 copies/ml, showing that the sensitivity increases with increasing viral load. #### Meta regression We were not able to perform a meta-regression due to the considerable heterogeneity in reporting sub-groups, which resulted in too few studies with sufficient data for comparison. #### Publication Bias The result of the Deeks’ test (p=0.001) shows significant asymmetry in the funnel plot for all datasets with complete results. This indicates there may be publication bias from studies with small sample sizes. However, when looking at publications specifically for LumiraDx (p=0.567), Standard Q (p=0.23), and Panbio (p=0.35), the results do not show significant asymmetry in the funnel plots, indicating these tests may have less publication bias. All funnel plots are listed in the Supplement (S12). ### COMPARISON WITH ANALYTICAL STUDIES The nine analytical studies were divided into 63 data sets, evaluating 23 different Ag-RDTs. Only seven studies reported a samples size, wherein 833 (90.6%) samples originated from NP swabs and for 86 (9.4%) the sample type was unclear. One of the two studies not reporting sample size used saliva samples [198], while the other used the sample type specified in the respective Ag-RDT’s IFU [173]. Overall, the reported analytical sensitivity (limit of detection) in the studies resembled the results of the meta-analysis presented above. Rapigen (limit of detection (LOD) in log10 copies per swab: 10.2) and Coris (LOD 7.46) were found to perform worse than Panbio (LOD 6.6 to 6.1) and Standard Q (LOD 6.8 to 6.0), whereas the Clinitest (LOD 6.0) and the BinaxNOW by Abbott (LOD 4.6 to 4.9) performed even better [191,256,282]. Similar results were found in another study, where the Standard Q showed the lowest LOD (detecting virus up to what is an equivalent Ct-value of 26.3 to 28.7), when compared to that of Rapigen and Coris (detecting virus up to what is an equivalent Ct-value of only 18.4 for both) [208,274,275]. However, another study found the Panbio, Standard Q, Coris and BinaxNOW to have a similar LOD of 5.0*103 plaque forming units (pfu) /milliliter (ml), but the ESPLINE SARS-CoV-2 by Fujirebio (Japan), the COVID-19 Rapid Antigen Test by MOLOGIC (United Kingdom) and the Sure Status COVID-19 Antigen Card Test by Premier Medical Corporation (India) to perform markedly better (LOD 2.5 to 5.0*102 pfu/ml) [173]. An overview of all LODs reported in the studies can be found in the Supplement (S13) ### SENSITIVITY ANALYSIS When the data sets from case control studies (25/173) were excluded, the estimated sensitivity did not differ greatly, with a value of 70.9% (95% CI 67.7 to 73.9) compared to 71.2% (95% CI 68.2 to 74.0) in the overall analysis with no change in pooled specificity. When excluding the data sets from pre-prints (64/173), sensitivity decreased slightly to 67.2% (95% CI 62.9 to 71.3) compared to the overall analysis. ## DISCUSSION In this comprehensive systematic review and meta-analysis, we have summarized the data of 133 studies evaluating the accuracy of 61 different Ag-RDTs. Across all meta-analyzed samples, our results show a pooled sensitivity and specificity of 71.2% (95% CI 68.2 to 74.0) and 98.9% (95% CI 98.6 to 99.1). Over half of the studies did not perform the Ag-RDT in accordance with the test manufacturers’ recommendation or the performance was unknown, which negatively impacted the sensitivity. When considering only IFU-conforming studies, the sensitivity increased to 76.3% (95% CI 73.1 to 79.2). While we found the sensitivity to vary across specific tests, the specificity was consistently high. The two Ag-RDTs that have been approved through the WHO emergency use listing procedure, Abbott Panbio and SD Biosensor Standard Q (distributed by Roche in Europe), have not only drawn the largest research interest, but also perform at or above average when comparing their pooled accuracy to that of all Ag-RDTs (sensitivity of 71.8% for Panbio and of 74.9% for Standard Q). The Standard Q nasal demonstrated an even higher pooled sensitivity (80.2% compared to the NP test), although this is likely due to variability in populations tested, as head-to-head performance showed a comparable sensitivity. Three other Ag-RDTs showed an even higher accuracy with sensitivities ranging from 77.4% to 88.2% (namely Sofia, Lumipulse G and LumiraDX), but were only assessed on relatively small samples sizes (ranging from 1,373 to 3,532) and all required an instrument/reader. Not surprisingly, lower Ct-values, the RT-PCR semi-quantitative correlate for a high virus concentration, resulted in a significantly higher Ag-RDT sensitivity than higher Ct-values (pooled sensitivity 96.5% and 95.8% for ct-values <20 and <25 vs. 50.7% and 20.9% for ct-values ≥25 and ≥30). This confirms prior data that suggested that antigen concentrations and Ct-values were highly correlated in NP samples [16]. Ag-RDTs also showed a higher sensitivity in patients within 7 days after symptom onset compared to patients later in the course of the disease (pooled sensitivity 83.8% vs. 61.5%), which is to be expected given that samples from patients within the first week after symptom onset have been shown to contain the highest virus concentrations [297]. In line with this, studies reporting an unexpectedly low overall sensitivity either shared a small population size with an on average high Ct-value [230,273,288] or performed the Ag-RDT not as per IFU, e.g., using saliva or prediluted samples [167,170,203,248,279]. In contrast, studies with an unusually high Ag-RDT sensitivity were based on study populations with a low median Ct-value, between 18 and 22 [189,255,284]. Our analysis also found that the accuracy of Ag-RDTs is substantially higher in symptomatic patients than in asymptomatic (pooled sensitivity 76.7% vs. 52.5%). This is not surprising as studies that enrolled symptomatic patients showed a lower range of median Ct-values (i.e., higher viral load), than studies enrolling asymptomatic patients. Given that other studies found symptomatic and asymptomatic patients to have comparable viral loads [298, 299], the differences found in our analysis are likely explained by the varied time in the course of the disease at which testing is performed in asymptomatic patients presenting for one-time screening testing. As symptoms start in the early phase of the disease when viral load is still high, studies testing only symptomatic patients have a higher chance of including patients with high viral loads. In contrast, study populations drawn from asymptomatic patients only have a higher chance of including patients at any point of disease (i.e., including late in disease, when PCR is still positive, but viable virus is rapidly decreasing) [300]. With regards to the sampling and testing procedure, we found Ag-RDTs to perform similarly across upper-respiratory swab samples (e.g., NP and AN/MT), particularly when considering the most reliable comparisons from head-to-head studies. Similar to previous assessment [7], the methodological quality of the included studies revealed a very heterogenous picture. In the future, aligning the design of clinical accuracy studies to common agreed upon minimal specifications (e.g., by WHO or European Center of Disease Control) and reporting the results in a standardized way [301] would improve data quality and comparability. The main strengths of our study lie in its comprehensive approach and continuous updates. By linking this review to our website [www.diagnosticsglobalhealth.org](http://www.diagnosticsglobalhealth.org), we strive to equip decision makers with the latest research findings on Ag-RDTs for SARS-CoV-2 and, to the best of our knowledge, are the first in doing so. At least once per week the website is updated by continuing the literature search and process described above. We plan to update the meta-analysis on a monthly basis and publish it on the website. Furthermore, our study used rigorous methods as both the study selection and data extraction were performed by one author and independently validated by a second, we conducted blinded pilot extractions before of the actual data extraction, and we prepared a detailed interpretation guide for the QUADAS-2 tool. The study may be limited by the inclusion of both preprints and peer-reviewed literature, which could affect the quality of the data extracted. However, we aimed to balance this potential effect by applying a thorough assessment of all clinical studies included, utilizing the QUADAS-2 tool and performing a sensitivity analysis excluding preprint manuscripts. In addition, the studies included in our analysis varied widely in the reported range of viral loads, limiting the comparability of their results. To control for this, we analyzed the Ag-RDTs’ performance at different levels of viral load. Finally, even though we are aware that further data exits from other sources, for example from governmental research institutes exists [302], such data could not be included as sufficient detail describing the methods and results are not publicly available. ## CONCLUSION In summary, it can be concluded that there are Ag-RDTs available that have high sensitivity, particularly when performed in the first week of illness when viral load is high, and excellent specificity. However, our analysis also highlights the variability in results between tests (which is not reflected in the manufacturer reported data), indicating the need for independent validations. Furthermore, the analysis highlights the importance of performing tests in accordance with the manufacturers’ recommended procedures, and in alignment with standard diagnostic evaluation and reporting guidelines. The accuracy achievable by the best-performing Ag-RDTs, combined with the rapid turn-around time compared to RT-PCR, suggests that these tests could have a significant impact on the pandemic if applied in thoughtful testing and screening strategies. ## Supporting information Supplement File [[supplements/252546_file13.docx]](pending:yes) ## Data Availability All data is available upon request. [https://zenodo.org/record/4924035#.YMSDcS2230p](https://zenodo.org/record/4924035#.YMSDcS2230p) ## Footnotes * This revision includes an update of the meta analysis up until 30th of April and a major revision from the respective journal ## ABBREVIATIONS Ag-RDT : = antigen rapid diagnostic test AN/MT : = anterior nasal or mid-turbinate BAL/TW : = bronchoalveolar lavage or throat wash CI : = confidence interval Ct-value : = cycle threshold value FIND : = Foundation for Innovative New Diagnostics FP : = false positive FN : = false negative IFU : = instructions for use LRT : = lower respiratory tract ML : = milliliter N : = sample size NP : = nasopharyngeal OP : = oropharyngeal PFU : = plaque forming units RT-PCR : = reverse transcriptase polymerase chain reaction TP : = true positive TN : = true negative VTM/UT : = viral or universal transport medium * Received February 26, 2021. * Revision received June 12, 2021. * Accepted June 19, 2021. * © 2021, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution-NoDerivs 4.0 International), CC BY-ND 4.0, as described at [http://creativecommons.org/licenses/by-nd/4.0/](http://creativecommons.org/licenses/by-nd/4.0/) ## SOURCES 1. 1.World Health Organization. Antigen-detection in the diagnosis of SARS-CoV-2 infection using rapid immunoassays: interim guid-ance, 11 September 2020. No WHO/2019-nCoV/Antigen_Detection/20201, 2020b. 2. 2.Mina MJ, Parker R, Larremore DB. Rethinking Covid-19 Test Sensitivity - A Strategy for Containment. New England Journal of Medicine, 2020; 383(22). DOI:10.1056/NEJMp2025631. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/NEJMp2025631&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32997903&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) 3. 3.Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte). Liste der Antigen-Tests zum direkten Erregernachweis des Coronavirus SARS-CoV-2 2021 [Available from: [https://www.bfarm.de/DE/Medizinprodukte/Antigentests/_node.html](https://www.bfarm.de/DE/Medizinprodukte/Antigentests/_node.html), accessed on June 07, 2021. 4. 4.Krüger LJ, Gaeddert M, Köppel L, Brümmer LE, Gottschalk C, Miranda IB, et al. Evaluation of the accuracy, ease of use and limit of detection of novel, rapid, antigen-detecting point-of-care diagnostics for SARS-CoV-2. medRxiv [Preprint]; published October 04, 2020. DOI:10.1101/2020.10.01.20203836. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMC4wMS4yMDIwMzgzNnYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 5. 5.Denkinger CM, Grenier J, Minion J, Pai M. Promise versus reality: optimism bias in package inserts for tuberculosis diagnostics. Journal of Clinical Microbiology, 2012; 50(7):2455–61. DOI:10.1128/JCM.00842-12. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNtIjtzOjU6InJlc2lkIjtzOjk6IjUwLzcvMjQ1NSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA2LzE5LzIwMjEuMDIuMjYuMjEyNTI1NDYuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 6. 6.World Health Organization. Advice on the use of point-of-care immunodiagnostic tests for COVID-19: scientific brief, 8 April 2020. No WHO/2019-nCoV/Sci\_Brief/POC\_immunodiagnostics/20201, 2020a. 7. 7.Dinnes J, Deeks JJ, Adriano A, Berhane S, Davenport C, Dittrich S, et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection (Review). Cochrane Database of Systematic Reviews, 2020; (8). DOI:10.1002/14651858.Cd013705. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/14651858.Cd013705&link_type=DOI) 8. 8.Olalekan A, Iwalokun B, Akinloye OM, Popoola O, Samuel TA, Akinloye O. COVID-19 rapid diagnostic test could contain transmission in low- And middle-income countries. African Journal of Laboratory Medicine, 2020; 9(1). DOI:10.4102/ajlm.v9i1.1255. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.4102/ajlm.v9i1.1255&link_type=DOI) 9. 9.Castro R, Luz PM, Wakimoto MD, Veloso VG, Grinsztejn B, Perazzo H. COVID-19: a meta-analysis of diagnostic test accuracy of commercial assays registered in Brazil. Brazilian Journal of Infectious Diseases, 2020; 24(2):180–187. DOI:10.1016/j.bjid.2020.04.003. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bjid.2020.04.003&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) 10. 10.La Marca A, Capuzzo M, Paglia T, Roli L, Trenti T, Nelson SM. Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reproductive Biomedicine Online, 2020; 41(3):483–499. DOI:10.1016/j.rbmo.2020.06.001. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.rbmo.2020.06.001&link_type=DOI) 11. 11.Dinnes J, Deeks JJ, Berhane S, Taylor M, Adriano A, Davenport C, et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database of Systematic Reviews, 2021; 3:CD013705. DOI:10.1002/14651858.CD013705.pub2. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/14651858.CD013705.pub2&link_type=DOI) 12. 12.Van Walle I, Leitmeyer K, Broberg E. Meta-analysis of the clinical performance of commercial SARS-CoV-2 nucleic acid, antigen and antibody tests up to 22 August 2020. medRxiv [Preprint]; published September 18, 2020, 2020. DOI:10.1101/2020.09.16.20195917. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4wOS4xNi4yMDE5NTkxN3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 13. 13.Hayer J, Kasapic D, Zemmrich C. Real-world clinical performance of commercial SARS-CoV-2 rapid antigen tests in suspected COVID-19: A systematic meta-analysis of available data as per November 20, 2020. medRxiv [Preprint]; published December 24, 2020. DOI:10.1101/2020.12.22.20248614. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMi4yMi4yMDI0ODYxNHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 14. 14.Leeflang MM, Deeks JJ, Gatsonis C, Bossuyt PM, Cochrane Diagnostic Test Accuracy Working G. Systematic reviews of diagnostic test accuracy. Annals of Internal Medicine, 2008; 149(12):889–97. DOI:10.7326/0003-4819-149-12-200812160-00008. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7326/0003-4819-149-12-200812160-00008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19075208&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000261771900006&link_type=ISI) 15. 15.Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of Internal Medicine, 2009; 151(4):264–9, W64. DOI:10.7326/0003-4819-151-4-200908180-00135. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7326/0003-4819-151-4-200908180-00135&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19622511&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000269038900006&link_type=ISI) 16. 16.Pollock N, Savage T, Wardell H, Lee R, Mathew A, Stengelin M, et al. Correlation of SARS-CoV-2 nucleocapsid antigen and RNA concentrations in nasopharyngeal samples from children and adults using an ultrasensitive and quantitative antigen assay. medRxiv [Preprint]; published November 13, 2020. DOI:10.1101/2020.11.10.20227371. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMS4xMC4yMDIyNzM3MXYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 17. 17.Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine, 2011; 155(8):529–36. DOI:10.7326/0003-4819-155-8-201110180-00009. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1059/0003-4819-155-8-201110180-00009&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22007046&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000296066300018&link_type=ISI) 18. 18.van Enst WA, Ochodo E, Scholten RJ, Hooft L, Leeflang MM. Investigation of publication bias in meta-analyses of diagnostic test accuracy: a meta-epidemiological study. BMC Med Research Methodology, 2014; 14:70. DOI:10.1186/1471-2288-14-70. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-2288-14-70&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24884381&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) 19. 19.Courtellemont L, Guinard J, Guillaume C, Giaché S, Rzepecki V, Seve A, et al. Real-life performance of a novel antigen detection test on nasopharyngeal specimens for SARS-CoV-2 infection diagnosis: a prospective study. medRxiv [Preprint]; published November 3, 2020. DOI:10.1101/2020.10.28.20220657. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMC4yOC4yMDIyMDY1N3YyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 20. 20.Diao B, Wen K, Chen J, Liu Y, Yuan Z, Han C, et al. Diagnosis of Acute Respiratory Syndrome Coronavirus 2 Infection by Detection of Nucleocapsid Protein. medRxiv [Preprint]; published March 13, 2020. DOI:10.1101/2020.03.07.20032524. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4wMy4wNy4yMDAzMjUyNHYyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 21. 21.Foundation for Innovative New Diagnostics. FIND Evaluation of Abbott Panbio COVID-19 Ag Rapid Test Device. External Report Version 21, 10 December, 2020. 22. 22.Foundation for Innovative New Diagnostics. FIND Evaluation of Coris BioConcept COVID-19 Ag Respi-Strip. External Report Version 12, 10 December, 2020. 23. 23.Foundation for Innovative New Diagnostics. FIND Evaluation of Shenzhen Bioeasy Biotechnology Co. Ltd. 2019-nCoV Ag Rapid Test Kit (Fluorescence). External Report Version 10, 11 February 2021, 2021. 24. 24.Ikeda M, Imai K, Tabata S, Miyoshi K, Mizuno T, Murahara N, et al. Clinical evaluation of self-collected saliva by RT-qPCR, direct RT-qPCR, RT-LAMP, and a rapid antigen test to diagnose COVID-19. medRxiv [Preprint]; published June 08, 2020. DOI:10.1101/2020.06.06.20124123. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4wNi4wNi4yMDEyNDEyM3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 25. 25.Klein JAF, Krüger L, Tobian F, Gaeddert M, Lainati F, Schnitzler P, et al. Head-to-head performance comparison of self-collected nasal versus professional-collected nasopharyngeal swab for a WHO-listed SARS-CoV-2 antigen-detecting rapid diagnostic test. medRxiv [Preprint]; published March 24, 2021. DOI:10.1101/2021.03.17.21253076. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMy4xNy4yMTI1MzA3NnYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 26. 26.Masiá M, Fernández-González M, Sánchez M, Carvajal M, García JA, Gonzalo N, et al. Nasopharyngeal Panbio COVID-19 antigen performed at point-of-care has a high sensitivity in symptomatic and asymptomatic patients with higher risk for transmission and older age. medRxiv [Preprint]; published November 17, 2020. DOI:10.1101/2020.11.16.20230003. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMS4xNi4yMDIzMDAwM3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 27. 27.Weitzel T, Legarraga P, Iruretagoyena M, Pizarro G, Vollrath V, Araos R, et al. Head-to-head comparison of four antigen-based rapid detection tests for the diagnosis of SARS-CoV-2 in respiratory samples. bioRxiv [Preprint]; published May 30, 2020. DOI:10.1101/2020.05.27.119255. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMC4wNS4yNy4xMTkyNTV2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA2LzE5LzIwMjEuMDIuMjYuMjEyNTI1NDYuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 28. 28.Peeling RW, Olliaro P. Rolling out COVID-19 antigen rapid diagnostic tests: the time is now. Lancet Infectious Diseases, 2021; online first. DOI:10.1016/s1473-3099(21)00152-3. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/s1473-3099(21)00152-3&link_type=DOI) 29. 29.Cui Z, Chang H, Wang H, Lim B, Hsu CC, Yu Y, et al. Development of a rapid test kit for SARS-CoV-2: an example of product design. Bio-Design and Manufacturing, 2020:1–4. DOI:10.1007/s42242-020-00075-7. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s42242-020-00075-7&link_type=DOI) 30. 30.Ndwandwe D, Mathebula L, Kamadjeu R, Wiysonge CS. Cochrane corner: rapid point-of-care antigen and molecular-based tests for the diagnosis of COVID-19 infection. The Pan African Medical Journal, 2020; 37(Suppl 1):10. DOI:10.11604/pamj.supp.2020.37.10.25982. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.11604/pamj.supp.2020.37.10.25982&link_type=DOI) 31. 31.Pavelka M, Van-Zandvoort K, Abbott S, Sherratt K, Majdan M, Jarčuška P, et al. The effectiveness of population-wide, rapid antigen test based screening in reducing SARS-CoV-2 infection prevalence in Slovakia. medRxiv [Preprint]; published December 04,, 2020. DOI:10.1101/2020.12.02.20240648. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMi4wMi4yMDI0MDY0OHYyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 32. 32.Ebrahimi M, Harmooshi NN, Rahim F. Diagnostic Utility of Antigen Detection Rapid Diagnostic Tests for Covid-19: A Systematic Review and Meta-Analysis. medRxiv [Preprint]; published April 05, 2021. DOI:10.1101/2021.04.02.21254714. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wNC4wMi4yMTI1NDcxNHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 33. 33.Everitt ML, Tillery A, David MG, Singh N, Borison A, White IM. A critical review of point-of-care diagnostic technologies to combat viral pandemics. Analytica Chimica Acta, 2021; 1146:184–199. DOI:10.1016/j.aca.2020.10.009. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.aca.2020.10.009&link_type=DOI) 34. 34.Hledík M, Polechová J, Beiglböck M, Herdina AN, Strassl R, Posch M. Analysis of the specificity of the SD Biosensor Standard Q Ag-Test based on Slovak mass testing data. medRxiv [Preprint]; published December 11, 2020. DOI:10.1101/2020.12.08.20246090. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMi4wOC4yMDI0NjA5MHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 35. 35.Huergo MAC, Thanh NTK. Current advances in the detection of COVID-19 and evaluation of the humoral response. Analyst, 2021; 146:382–402. DOI:10.1039/d0an01686a. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1039/d0an01686a&link_type=DOI) 36. 36.Laghrib F, Saqrane S, El Bouabi Y, Farahi A, Bakasse M, Lahrich S, et al. Current progress on COVID-19 related to biosensing technologies: New opportunity for detection and monitoring of viruses. Microchemical Journal, 2021; 160:105606. DOI:10.1016/j.microc.2020.105606. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.microc.2020.105606&link_type=DOI) 37. 37.Maddali H, Miles CE, Kohn J, O’Carroll DM. Optical Biosensors for Virus Detection: Prospects for SARS-CoV-2/COVID-19. Chembiochem, 2021; 22(7):1176–1189. DOI:10.1002/cbic.202000744. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/cbic.202000744&link_type=DOI) 38. 38.Marchán-López Á, García BA. Diagnostic performance of antigen testing for SARS-CoV-2. The Journal of Pediatrics, 2021; 233:283. DOI:10.1016/j.jpeds.2021.02.052. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jpeds.2021.02.052&link_type=DOI) 39. 39.McDermott JH, Stoddard D, Ellingford JM, Gokhale D, Reynard C, Black G, et al. Utilizing point-of-care diagnostics to minimize nosocomial infection in the 2019 novel coronavirus (SARS-CoV-2) pandemic. QJM: An International Journal of Medicine, 2020; 113(12):851–853. DOI:10.1093/qjmed/hcaa185. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/qjmed/hcaa185&link_type=DOI) 40. 40.Moreira V, Mascarenhas P, Machado V, Botelho J, Mendes JJ, Taveira N, et al. Diagnosis of SARS-Cov-2 infection using specimens other than naso- and oropharyngeal swabs: a systematic review and meta-analysis. Diagnostics, 2021; 11:363. DOI:10.1101/2021.01.19.21250094. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMS4xOS4yMTI1MDA5NHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 41. 41.Nimmo C, Agbetile J, Bhowmik A, Capocci S, Rajakulasingam RK. Implementing rapid diagnostics for COVID-19. The Lancet Respiratory Medicine, 2021; 9(1):e7. DOI:10.1016/s2213-2600(20)30526-9. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/s2213-2600(20)30526-9&link_type=DOI) 42. 42.Raimann FJ, Piekarski F, Adam EH, Zacharowski K, Neef V. Safety considerations for the use of Point-Of-Care diagnostics during SARS-CoV-2 pandemic. Journal of Clinical Laboratory Analysis, 2021; 35(1):e23631. DOI:10.1002/jcla.23631. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jcla.23631&link_type=DOI) 43. 43.Razmy AM, Junaideen SM. Issues of Random Sampling with Rapid Antigen Tests for COVID-19 Diagnosis: A Special Reference to Kalmunai RDHS Division. medRxiv [Preprint]; published January 20, 2021. DOI:10.1101/2021.01.11.21249636. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMS4xMS4yMTI0OTYzNnYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 44. 44.Salcedo N, Harmon A, Herrera BB. Pooling of samples for SARS-CoV-2 detection using rapid antigen tests. medRxiv [Preprint]; published February 12, 2021. DOI:10.1101/2021.02.09.21250610. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMi4wOS4yMTI1MDYxMHYyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 45. 45.Sanderlin JS, Golding JD, Wilcox T, Mason DH, McKelvey KS, Pearson DE, et al. Occupancy modeling and resampling overcomes low test sensitivity to produce accurate SARS-CoV-2 prevalence estimates. BMC Public Health, 2021; 21(1):577. DOI:10.1186/s12889-021-10609-y. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12889-021-10609-y&link_type=DOI) 46. 46.Scheier T, Schibli A, Eich G, Rüegg C, Kube F, Schmid A, et al. Universal Admission Screening for SARS-CoV-2 Infections among Hospitalized Patients, Switzerland, 2020. Emerging Infectious Diseases, 2021; 27(2). DOI:10.3201/eid2702.202318. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3201/eid2702.202318&link_type=DOI) 47. 47.Stovitz SD. In suspected SARS-CoV-2, rapid antigen detection tests had 67% to 73% sensitivity and 98% to 100% specificity. Annals of Internal Medicine, 2021; 174:JC56. DOI:10.7326/acpj202105180-056. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7326/acpj202105180-056&link_type=DOI) 48. 48.van Beek J, Igloi Z, Boelsums T, Fanoy E, Gotz H, Molenkamp R, et al. From more testing to smart testing: data-guided SARS-CoV-2 testing choices. medRxiv [Preprint]; published October 14, 2020. DOI:10.1101/2020.10.13.20211524. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMC4xMy4yMDIxMTUyNHYyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 49. 49.Weiss G, Bellmann-Weiler R. Rapid antigen testing and non-infectious shedding of SARS-Cov2. Infection, 2021; epub ahead of print. DOI:10.1007/s15010-020-01570-w. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s15010-020-01570-w&link_type=DOI) 50. 50.Ehrenberg A, Moehle E, Brook C, Doudna Cate A, Witkowsky L, Sachdeva R, et al. Launching a saliva-based SARS-CoV-2 surveillance testing program on a university campus. medRxiv [Preprint]; published January 30, 2021. DOI:10.1101/2021.01.24.21250385. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMS4yNC4yMTI1MDM4NXYzIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 51. 51.Boďová K, Kollár R. Characteristic spatial scales of SARS-CoV-2 pandemics: lessons from mass rapid antigen testing in Slovakia. medRxiv [Preprint]; published December 24, 2020. DOI:10.1101/2020.12.23.20248808. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMi4yMy4yMDI0ODgwOHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 52. 52.Canadian Public Health Laboratory Network. Interim guidance on the use of the Abbott Panbio™ COVID-19 Antigen Rapid Test. Canada Communicable Disease Report, 2021; 47(1):17–22. DOI:10.14745/ccdr.v47i01a04. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.14745/ccdr.v47i01a04&link_type=DOI) 53. 53.Crozier A, Rajan S, Buchan I, McKee M. Put to the test: use of rapid testing technologies for covid-19. British Medical Journal, 2021; 372:n208. DOI:10.1136/bmj.n208. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE2OiIzNzIvZmViMDNfOC9uMjA4IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 54. 54. D’Agostino McGowan L, Lee E, Grantz K, Kucirka L, Gurley E, Lessler J. Testing out of quarantine. medRxiv [Preprint]; published 01, 2021. DOI:10.1101/2021.01.29.21250764. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMS4yOS4yMTI1MDc2NHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 55. 55.. editorial. Rapid and frequent testing. Nature Biomedical Engineering, 2020; 4(12):1121–1122. DOI:10.1038/s41551-020-00670-0. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41551-020-00670-0&link_type=DOI) 56. 56.Fitzpatrick MC, Pandey A, Wells CR, Sah P, Galvani AP. Buyer beware: inflated claims of sensitivity for rapid COVID-19 tests. Lancet, 2021; 397(10268):24–25. DOI:10.1016/s0140-6736(20)32635-0. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(20)32635-0&link_type=DOI) 57. 57.Frnda J, Durica M. On Pilot Massive COVID-19 Testing by Antigen Tests in Europe. Case Study: Slovakia. Infectious Disease Reports, 2021; 13(1):45–57. DOI:10.3390/idr13010007. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/idr13010007&link_type=DOI) 58. 58.Ghaffari A, Meurant R, Ardakani A. COVID-19 Point-of-Care Diagnostics That Satisfy Global Target Product Profiles. Diagnostics, 2021; 11(1). DOI:10.3390/diagnostics11010115. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/diagnostics11010115&link_type=DOI) 59. 59.Ruhan A, Wang H, Wang W, Tan W. Summary of the Detection Kits for SARS-CoV-2 Approved by the National Medical Products Administration of China and Their Application for Diagnosis of COVID-19. Virologica Sinica, 2020; 35:699–712. DOI:10.1007/s12250-020-00331-1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12250-020-00331-1&link_type=DOI) 60. 60.Abdelrazik AM, Elshafie SM, Abdelaziz HM. Potential Use of Antigen-Based Rapid Test for SARS-CoV-2 in Respiratory Specimens in Low-Resource Settings in Egypt for Symptomatic Patients and High-Risk Contacts. Laboratory Medicine, 2020; 52:e46–e49. DOI:10.1093/labmed/lmaa104. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/labmed/lmaa104&link_type=DOI) 61. 61.Aoki K, Nagasawa T, Ishii Y, Yagi S, Okuma S, Kashiwagi K, et al. Clinical validation of quantitative SARS-CoV-2 antigen assays to estimate SARS-CoV-2 viral loads in nasopharyngeal swabs. Journal of Infection and Chemotherapy, 2020; 27(4):613–6. DOI:10.1016/j.jiac.2020.11.021. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jiac.2020.11.021&link_type=DOI) 62. 62.Bonde J, Ejegod D, Pedersen H, Smith B, Cortes D, Leding C, et al. Clinical validation of point-of-care SARS-COV-2 BD Veritor antigen test by a single throat swab for rapid COVID-19 status on hospital patients predominantly without overt COVID symptoms. medRxiv [Preprint]; published April 17, 2021. DOI:10.1101/2021.04.12.21255299. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wNC4xMi4yMTI1NTI5OXYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 63. 63.Boum Y, Fai KN, Nicolay B, Mboringong AB, Bebell LM, Ndifon M, et al. Performance and operational feasibility of antigen and antibody rapid diagnostic tests for COVID-19 in symptomatic and asymptomatic patients in Cameroon: a clinical, prospective, diagnostic accuracy study. Lancet Infectious Diseases, 2021; online first. DOI:10.1016/s1473-3099(21)00132-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/s1473-3099(21)00132-8&link_type=DOI) 64. 64.Courtellemont L, Guinard J, Guillaume C, Giaché S, Rzepecki V, Seve A, et al. High performance of a novel antigen detection test on nasopharyngeal specimens for diagnosing SARS-CoV-2 infection. Journal of Medical Virology, 2021; 93(5):3152–3157. DOI:10.1002/jmv.26896. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jmv.26896&link_type=DOI) 65. 65.Eshghifar N, Busheri A, Shrestha R, Beqaj S. Evaluation of Analytical Performance of Seven Rapid Antigen Detection Kits for Detection of SARS-CoV-2 Virus. International Journal of General Medicine, 2021; 14:435–440. DOI:10.2147/ijgm.S297762. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2147/ijgm.S297762&link_type=DOI) 66. 66.Hingrat QL, Visseaux B, Laouenan C, Tubiana S, Bouadma L, Yazdanpanah Y, et al. Detection of SARS-CoV-2 N-antigen in blood during acute COVID-19 provides a sensitive new marker and new testing alternatives. Clinical Microbiology and Infection, 2020. DOI:10.1016/j.cmi.2020.11.025. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cmi.2020.11.025&link_type=DOI) 67. 67.Kobayashi R, Murai R, Asanuma K, Fujiya Y, Takahashi S. Evaluating a novel, highly sensitive, and quantitative reagent for detecting SARS-CoV-2 antigen. Journal of Infection and Chemotherapy, 2021; 27(6):800–807. DOI:10.1016/j.jiac.2021.01.007. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jiac.2021.01.007&link_type=DOI) 68. 68.Kritikos A, Caruana G, Brouillet R, Miroz J-P, Samia A-M, Geraldine S, et al. Sensitivity of rapid antigen testing and RT-PCR performed on nasopharyngeal swabs versus saliva samples in COVID-19 hospitalized patients: results of a prospective comparative trial (RESTART). medRxiv [Preprint]; published April 15, 2021. DOI:10.1101/2021.04.09.21255105. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wNC4wOS4yMTI1NTEwNXYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 69. 69.Lanser L, Bellmann-Weiler R, Öttl KW, Huber L, Griesmacher A, Theurl I, et al. Evaluating the clinical utility and sensitivity of SARS-CoV-2 antigen testing in relation to RT-PCR Ct values. Infection, 2020:1–3. DOI:10.1007/s15010-020-01542-0. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s15010-020-01542-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33185807&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) 70. 70.Lv Y, Ma Y, Si Y, Zhu X, Zhang L, Feng H, et al. Rapid SARS-CoV-2 antigen detection potentiates early diagnosis of COVID-19 disease. Bioscience Trends, 2021; 15(2):93–99. DOI:10.5582/bst.2021.01090. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.5582/bst.2021.01090&link_type=DOI) 71. 71.Miyakawa K, Funabashi R, Yamaoka Y, Jeremiah SS, Katada J, Wada A, et al. SARS-CoV-2 antigen rapid diagnostic test enhanced with silver amplification technology. medRxiv [Preprint]; published January 31, 2021. DOI:10.1101/2021.01.27.21250659. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMS4yNy4yMTI1MDY1OXYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 72. 72.Nagura-Ikeda M, Imai K, Tabata S, Miyoshi K, Murahara N, Mizuno T, et al. Clinical Evaluation of Self-Collected Saliva by Quantitative Reverse Transcription-PCR (RT-qPCR), Direct RT-qPCR, Reverse Transcription-Loop-Mediated Isothermal Amplification, and a Rapid Antigen Test To Diagnose COVID-19. Journal of Clinical Microbiology, 2020; 58(9). DOI:10.1128/jcm.01438-20. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1128/jcm.01438-20&link_type=DOI) 73. 73.Oh SM, Jeong H, Chang E, Choe PG, Kang CK, Park WB, et al. Clinical Application of the Standard Q COVID-19 Ag Test for the Detection of SARS-CoV-2 Infection. Journal of Korean Medical Science, 2021; 36(14):e101. DOI:10.3346/jkms.2021.36.e101. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3346/jkms.2021.36.e101&link_type=DOI) 74. 74.Peña-Rodrígez M, Viera-Segura O, García-Chagollán M, Zepeda-Nuño JS, Muñoz-Valle JF, Mora-Mora J, et al. Performance evaluation of a lateral flow assays for nasopharyngeal antigen detection for SARS-CoV-2 diagnosis. Journal of Clinical Laboratory Analysis, 2021; 35:e23745. DOI:10.1002/jcla.23745. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jcla.23745&link_type=DOI) 75. 75.Regev-Yochay G, Kriger O, Beni S, Rubin C, Mina M, Mechnik B, et al. Real World Performance of SARS-CoV-2 Antigen Rapid Diagnostic Tests in Various Clinical Settings. medRxiv [Preprint]; published March 05, 2021. DOI:10.1101/2021.03.02.21252400. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMy4wMi4yMTI1MjQwMHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 76. 76.Ren A, Sohaei D, Zacharioudakis I, Sigal G, Stengelin M, Matthew A, et al. Ultrasensitive assay for saliva-based SARS-CoV-2 antigen detection. medRxiv [Preprint]; published February 19, 2021. DOI:10.1101/2021.02.17.21251863. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMi4xNy4yMTI1MTg2M3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 77. 77.Rodrigues J, Gouveia C, Santos MA, Costa O, Côrte-Real R, Brito MJ. Comparison of nasopharyngeal samples for SARS-CoV-2 detection in a paediatric cohort. Journal of Paediatrics and Child Health, 2021; online ahead of print. DOI:10.1111/jpc.15405. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/jpc.15405&link_type=DOI) 78. 78.Saeed U, Uppal SR, Piracha ZZ, Rasheed A, Aftab Z, Zaheer H, et al. Evaluation of SARS-CoV-2 antigen-based rapid diagnostic kits in Pakistan: formulation of COVID-19 national testing strategy. Virology Journal, 2021; 18(1):34. DOI:10.1186/s12985-021-01505-3. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12985-021-01505-3&link_type=DOI) 79. 79.Smith R, Gibson L, Martinez P, Ke R, Mirza A, Conte M, et al. Longitudinal assessment of diagnostic test performance over the course of acute SARS-CoV-2 infection. medRxiv [Preprint]; published March 22, 2021. DOI:10.1101/2021.03.19.21253964. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMy4xOS4yMTI1Mzk2NHYyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 80. 80.Stokes W, Berenger B, Portnoy D, Scott B, Szelewicki J, Singh T, et al. Real-World Clinical Performance of the Abbott Panbio with Nasopharyngeal, Throat and Saliva Swabs Among Symptomatic Individuals with COVID-19. European Journal of Clinical Microbiology & Infectious Diseases, 2021; online ahead of print. DOI:10.1101/2021.01.02.21249138. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMS4wMi4yMTI0OTEzOHYzIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 81. 81.Thommes L, Burkert FR, Öttl KW, Goldin D, Loacker L, Lanser L, et al. Comparative evaluation of four SARS-CoV-2 antigen tests in hospitalized patients. International Journal of Infectious Diseases, 2021; 105:144–146. DOI:10.1016/j.ijid.2021.02.052. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2021.02.052&link_type=DOI) 82. 82.Yokota I, Sakurazawa T, Sugita J, Iwasaki S, Yasuda K, Yamashita N, et al. Performance of qualitative and quantitative antigen tests for SARS-CoV-2 in early symptomatic patients using saliva. medRxiv [Preprint]; published November 10, 2020. DOI:10.1101/2020.11.06.20227363. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMS4wNi4yMDIyNzM2M3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 83. 83.Zacharias M, Stangl V, Thüringer A, Loibner M, Wurm P, Wolfgruber S, et al. Rapid Antigen Test for Postmortem Evaluation of SARS-CoV-2 Carriage. Emerging Infectious Diseases, 2021; 27(6). DOI:10.3201/eid2706.210226. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3201/eid2706.210226&link_type=DOI) 84. 84.Apostolou T, Kyritsi M, Vontas A, Loizou K, Hadjilouka A, Speletas M, et al. Development and performance characteristics evaluation of a new Bioelectric Recognition Assay (BERA) method for rapid Sars-CoV-2 detection in clinical samples. Journal of Virological Methods, 2021; 293:114166. DOI:10.1016/j.jviromet.2021.114166. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jviromet.2021.114166&link_type=DOI) 85. 85.Arnaout R, Lee RA, Lee GR, Callahan C, Cheng A, Yen CF, et al. The Limit of Detection Matters: The Case for Benchmarking Severe Acute Respiratory Syndrome Coronavirus 2 Testing. Clinical Infectious Diseases, 2021; ciaa1382. DOI:10.1093/cid/ciaa1382. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cid/ciaa1382&link_type=DOI) 86. 86.Cheah PK, Ongkili DF, Zaharuddin FS, Hashim MI, Ho CV, Lee HG, et al. Discrepancy in Screening Performances of Different Rapid Test Kits for SARS-CoV-2; a Letter to Editor. Archives of Academic Emergency Medicine, 2021; 9(1):e9. DOI:10.22037/aaem.v9i1.1045. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.22037/aaem.v9i1.1045&link_type=DOI) 87. 87.Doron S, Ingalls R, Beauchamp A, Boehm J, Boucher H, Chow L, et al. Weekly SARS-CoV-2 screening of asymptomatic students and staff to guide and evaluate strategies for safer in-person learning. medRxiv [Preprint]; published March 22, 2021. DOI:10.1101/2021.03.20.21253976. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMy4yMC4yMTI1Mzk3NnYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 88. 88.Grossi E, Agnoli B, Baldini M, Illari S, Bonini R, Scagnelli G. Universal Sars-Cov-2 Screening in Pregnant Women: Experience from the Italian Epidemic Outbreak. Acta Biomed, 2021; 92(S2):e2021001. DOI:10.23750/abm.v92iS2.11320. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.23750/abm.v92iS2.11320&link_type=DOI) 89. 89.Hicks SM, Pohl K, Neeman T, McNamara HA, Parsons KM, He JS, et al. A Dual-Antigen Enzyme-Linked Immunosorbent Assay Allows the Assessment of Severe Acute Respiratory Syndrome Coronavirus 2 Antibody Seroprevalence in a Low-Transmission Setting. Journal of Infectious Diseases, 2021; 223(1):10–14. DOI:10.1093/infdis/jiaa623. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/infdis/jiaa623&link_type=DOI) 90. 90.Kiyasu Y, Akashi Y, Sugiyama A, Takeuchi Y, Notake S, Naito A, et al. A prospective evaluation of the analytical performance of GENECUBE® HQ SARS-CoV-2 and GENECUBE® FLU A/B. medRxiv [Preprint]; published February 25, 2021. DOI:10.1101/2021.02.24.21252337. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMi4yNC4yMTI1MjMzN3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 91. 91.Lagi F, Trevisan S, Piccica M, Graziani L, Basile G, Mencarini J, et al. Use of the FebriDx point-of-care test for the exclusion of SARS-CoV-2 diagnosis in a population with acute respiratory infection during the second (COVID-19) wave in Italy. International Journal of Infectious Diseases, 2021; article in press. DOI:10.1016/j.ijid.2021.04.065. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2021.04.065&link_type=DOI) 92. 92.Latiano A, Tavano F, Panza A, Palmieri O, Niro GA, Andriulli N, et al. False Positive Results Of IgM/IgG antibodies against antigen of the SARS-CoV-2 in sera stored before the 2020 Endemia in Italy. International Journal of Infectious Diseases, 2020; 104:159–163. DOI:10.1016/j.ijid.2020.12.067. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2020.12.067&link_type=DOI) 93. 93.Li J, Hu X, Wang X, Yang J, Zhang L, Deng Q, et al. A novel One-pot rapid diagnostic technology for COVID-19. Analytica Chimica Acta, 2021; 1154:338310. DOI:10.1016/j.aca.2021.338310. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.aca.2021.338310&link_type=DOI) 94. 94.Marsic T, Ali Z, Tehseen M, Mahas A, Hamdan S, Mahfouz M. Vigilant: An Engineered VirD2-Cas9 Complex for Lateral Flow Assay-Based Detection of SARS-CoV2. Nano Letters, 2021; 21(8):3596– 3603. DOI:10.1021/acs.nanolett.1c00612. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1021/acs.nanolett.1c00612&link_type=DOI) 95. 95.Schleicher T, Spenlinhauer T, Amadei M, Dasch N, Gordon J, Macleod G, et al. Development of a Multiplexed Synthetic Control for Rapid Detection of SARS-CoV-2 and Other Respiratory Pathogens Using a Nucleic Acid Syndromic Testing Panel. Journal of Molecular Diagnostics, 2020; 22(11):S37–S37. 96. 96.Bello-Chavolla OY, Antonio-Villa NE, Fernández-Chirino L, Guerra E, Fermín-Martínez C, Márquez-Salinas A, et al. Diagnostic performance and clinical implications of rapid SARS-CoV-2 antigen testing in Mexico using real-world nationwide COVID-19 registry data. medRxiv [Preprint]; published January 04, 2021. DOI:10.1101/2021.01.02.21249141. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMS4wMi4yMTI0OTE0MXYyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 97. 97.Dalal A, Sonika U, Kumar M, George R, Kumar A, Srivastava S, et al. COVID-19 Rapid Antigen Test: Role in Screening Prior to Gastrointestinal Endoscopy. Clinical Endoscopy, 2021; online ahead of print. DOI:10.5946/ce.2020.295. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.5946/ce.2020.295&link_type=DOI) 98. 98.Downs LO, Eyre DW, O’Donnell D, Jeffery K. Home-based SARS-CoV-2 lateral flow antigen testing in hospital workers. Journal of Infection, 2021; 82(2):282–327. DOI:10.1016/j.jinf.2021.01.008. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jinf.2021.01.008&link_type=DOI) 99. 99.Haage VC, Moreira-Soto A, Sacks J, Corman V, Drosten C, Drexler JF. Limited specificity of SARS-CoV-2 antigen-detecting rapid diagnostic tests at low temperatures. medRxiv [Preprint]; published February 03, 2021. DOI:10.1101/2021.02.01.21250904. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMi4wMS4yMTI1MDkwNHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 100.100.Hoehl S, Schenk B, Rudych O, Göttig S, Foppa I, Kohmer N, et al. At-home self-testing of teachers with a SARS-CoV-2 rapid antigen test to reduce potential transmissions in schools. medRxiv [Preprint]; published December 07, 2020. DOI:10.1101/2020.12.04.20243410. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMi4wNC4yMDI0MzQxMHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 101.101.Marco A, Solé C, Abdo IJ, Turu E. Low sensitivity of rapid antigenic tests as a screening method in an outbreak of SARS-CoV-2 infection in prison. Enfermedades Infecciosas y Microbiología Clínica, 2021; online ahead of print. DOI:10.1016/j.eimc.2021.01.016. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.eimc.2021.01.016&link_type=DOI) 102.102.Matsuda EM, de Campos IB, de Oliveira IP, Colpas DR, Carmo A, Brígido LFM. Field evaluation of COVID-19 antigen tests versus RNA based detection: Potential lower sensitivity compensated by immediate results, technical simplicity and low cost. Journal of Medical Virology, 2021; 93(7):4405–4410. DOI:10.1002/jmv.26985. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jmv.26985&link_type=DOI) 103.103.Moreno G, Braun K, Pray I, Segaloff H, Lim A, Poulson K, et al. SARS-CoV-2 transmission in intercollegiate athletics not fully mitigated with daily antigen testing. medRxiv [Preprint]; published March 06, 2021. DOI:10.1101/2021.03.03.21252838. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMy4wMy4yMTI1MjgzOHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 104.104.Yamayoshi S, Sakai-Tagawa Y, Koga M, Akasaka O, Nakachi I, Koh H, et al. Comparison of Rapid Antigen Tests for COVID-19. Viruses-Basel, 2020; 12(12). DOI:10.3390/v12121420. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/v12121420&link_type=DOI) 105.105.Yokota I, Shane P, Teshima T. Logistic advantage of two-step screening strategy for SARS-CoV-2 at airport quarantine. medRxiv [Preprint]; published January 26, 2021. DOI:10.1101/2021.01.25.21250509. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMS4yNS4yMTI1MDUwOXYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 106.106.Häuser F, Sprinzl MF, Dreis KJ, Renzaho A, Youhanen S, Kremer WM, et al. Evaluation of a laboratory-based high-throughput SARS-CoV-2 antigen assay for non-COVID-19 patient screening at hospital admission. Medical Microbiology and Immunology, 2021; 201(2-3):165–171. DOI:10.1007/s00430-021-00706-5. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00430-021-00706-5&link_type=DOI) 107.107.Colavita F, Vairo F, Meschi S, Valli MB, Lalle E, Castilletti C, et al. COVID-19 Rapid Antigen Test as Screening Strategy at Points of Entry: Experience in Lazio Region, Central Italy, August-October 2020. Biomolecules, 2021; 11(3). DOI:10.3390/biom11030425. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/biom11030425&link_type=DOI) 108.108.Kotsiou OS, Pantazopoulos I, Papagiannis D, Fradelos EC, Kanellopoulos N, Siachpazidou D, et al. Repeated Antigen-Based Rapid Diagnostic Testing for Estimating the Coronavirus Disease 2019 Prevalence from the Perspective of the Workers’ Vulnerability before and during the Lockdown. International Journal of Environmental Research and Public Health, 2021; 18(4). DOI:10.3390/ijerph18041638. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/ijerph18041638&link_type=DOI) 109.109.Blairon L, Wilmet A, Beukinga I, Tre-Hardy M. Implementation of rapid SARS-CoV-2 antigenic testing in a laboratory without access to molecular methods: Experiences of a general hospital. Journal of Clinical Virology, 2020; 129:104472. DOI:10.1016/j.jcv.2020.104472. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jcv.2020.104472&link_type=DOI) 110.110.Kashiwagi K, Ishii Y, Aoki K, Yagi S, Maeda T, Miyazaki T, et al. Immunochromatographic test for the detection of SARS-CoV-2 in saliva. medRxiv [Preprint]; published May 25, 2020. DOI:10.1101/2020.05.20.20107631. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4wNS4yMC4yMDEwNzYzMXYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 111.111.Itoh K, Kawamitsu T, Osaka Y, Sato K, Suzuki Y, Kiriba C, et al. False positive results in severe acute respiratory coronavirus 2 (SARS-CoV-2) rapid antigen tests for inpatients. Journal of Infection and Chemotherapy, 2021; 27(7):1089–1091. DOI:10.1016/j.jiac.2021.03.011. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jiac.2021.03.011&link_type=DOI) 112.112.Prince-Guerra JL, Almendares O, Nolen LD, Gunn JKL, Dale AP, Buono SA, et al. Evaluation of Abbott BinaxNOW Rapid Antigen Test for SARS-CoV-2 Infection at Two Community-Based Testing Sites - Pima County, Arizona, November 3-17, 2020. Morbidity and Mortality Weekly Report, 2021; 70(3):100–105. DOI:10.15585/mmwr.mm7003e3. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.15585/mmwr.mm7003e3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33476316&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) 113.113.Aoki K, Nagasawa T, Ishii Y, Yagi S, Kashiwagi K, Miyazaki T, et al. Evaluation of clinical utility of novel coronavirus antigen detection reagent, Espline® SARS-CoV-2. Journal of Infection and Chemotherapy, 2021; 27(2):319–322. DOI:10.1016/j.jiac.2020.11.015. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jiac.2020.11.015&link_type=DOI) 114.114.Caputo V, Bax C, Colantoni L, Peconi C, Termine A, Fabrizio C, et al. Comparative analysis of antigen and molecular tests for the detection of Sars-CoV-2 and related variants: a study on 4266 samples. International Journal of Infectious Diseases, 2021; 21:S1201–9712. DOI:10.1016/j.ijid.2021.04.048. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2021.04.048&link_type=DOI) 115.115.Ford L, Lee C, Pray IW, Cole D, Bigouette JP, Abedi GR, et al. Epidemiologic characteristics associated with SARS-CoV-2 antigen-based test results, rRT-PCR cycle threshold values, subgenomic RNA, and viral culture results from university testing. Clinical Infectious Diseases, 2021; ciab303. DOI:10.1093/cid/ciab303. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cid/ciab303&link_type=DOI) 116.116.Hirotsu Y, Maejima M, Shibusawa M, Nagakubo Y, Hosaka K, Amemiya K, et al. Comparison of automated SARS-CoV-2 antigen test for COVID-19 infection with quantitative RT-PCR using 313 nasopharyngeal swabs, including from seven serially followed patients. International Journal of Infectious Diseases, 2020; 99:397–402. DOI:10.1016/j.ijid.2020.08.029. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2020.08.029&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32800855&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) 117.117.Ishii T, Sasaki M, Yamada K, Kato D, Osuka H, Aoki K, et al. Immunochromatography and chemiluminescent enzyme immunoassay for COVID-19 diagnosis. Journal of Infection and Chemotherapy, 2021; 27(6):915–918. DOI:10.1016/j.jiac.2021.02.025. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jiac.2021.02.025&link_type=DOI) 118.118.Kiyasu Y, Takeuchi Y, Akashi Y, Kato D, Kuwahara M, Muramatsu S, et al. Prospective analytical performance evaluation of the QuickNavi™-COVID19 Ag for asymptomatic individuals. medRxiv [Preprint]; published April 07, 2021. DOI:10.1101/2021.04.01.21254813. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wNC4wMS4yMTI1NDgxM3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 119.119.Korenkov M, Poopalasingam N, Madler M, Vanshylla K, Eggeling R, Wirtz M, et al. Reliable assessment of in vitro SARS-CoV-2 infectivity by a Rapid Antigen Detection Test. medRxiv [Preprint]; published April 06, 2021. DOI:10.1101/2021.03.30.21254624. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMy4zMC4yMTI1NDYyNHYyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 120.120. Kronberg Jakobsen K, Schmidt Jensen J, Todsen T, Lippert F, Jean-Marie Martel C, Klokker M, et al. Detection of SARS-CoV-2 infection by rapid antigen test in comparison with RT-PCR in a public setting. medRxiv [Preprint]; published January 25, 2021. DOI:10.1101/2021.01.22.21250042. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMS4yMi4yMTI1MDA0MnYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 121.121.Kweon OJ, Lim YK, Kim HR, Choi Y, Kim MC, Choi SH, et al. Evaluation of rapid SARS-CoV-2 antigen tests, AFIAS COVID-19 Ag and ichroma COVID-19 Ag, with serial nasopharyngeal specimens from COVID-19 patients. PLoS One, 2021; 16(4):e0249972. DOI:10.1371/journal.pone.0249972. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0249972&link_type=DOI) 122.122.Landaas ET, Storm ML, Tollånes MC, Barlinn R, Kran AB, Bragstad K, et al. Diagnostic performance of a SARS-CoV-2 rapid antigen test in a large, Norwegian cohort. Journal of Clinical Virology, 2021; 137:104789. DOI:10.1016/j.jcv.2021.104789. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jcv.2021.104789&link_type=DOI) 123.123.McAulay K, Kaleta EJ, Grys TE. Rapid Detection of SARS-CoV-2 Antigen from Serum in a Hospitalized Population. medRxiv [Preprint]; published December 22, 2020. DOI:10.1101/2020.12.21.20248140. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMi4yMS4yMDI0ODE0MHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 124.124.McKay SL, Tobolowsky FA, Moritz ED, Hatfield KM, Bhatnagar A, LaVoie SP, et al. Performance Evaluation of Serial SARS-CoV-2 Rapid Antigen Testing During a Nursing Home Outbreak. Annals of Internal Medicine, 2021; online ahead of print. DOI:10.7326/m21-0422. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7326/m21-0422&link_type=DOI) 125.125.Pray IW, Ford L, Cole D, Lee C, Bigouette JP, Abedi GR, et al. Performance of an Antigen-Based Test for Asymptomatic and Symptomatic SARS-CoV-2 Testing at Two University Campuses - Wisconsin, September-October 2020. Morbidity and Mortality Weekly Report, 2021; 69(5152):1642–1647. DOI:10.15585/mmwr.mm695152a3. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.15585/mmwr.mm695152a3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33382679&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) 126.126.Rastawicki W, Gierczyński R, Juszczyk G, Mitura K, Henry BM. Evaluation of PCL rapid point of care antigen test for detection of SARS-CoV-2 in nasopharyngeal swabs. Journal of Medical Virology, 2021; 93(4):1920–1922. DOI:10.1002/jmv.26765. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jmv.26765&link_type=DOI) 127.127.Shah M, Salvatore P, Ford L, Kamitani E, Whaley M, Mitchell K, et al. Performance of Repeat BinaxNOW SARS-CoV-2 Antigen Testing in a Community Setting, Wisconsin, November-December 2020. Clinical Infectious Diseases, 2021; online ahead of print. DOI:10.1101/2021.04.05.21254834. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1101/2021.04.05.21254834&link_type=DOI) 128.128.Uwamino Y, Nagata M, Aoki W, Nakagawa T, Inose R, Yokota H, et al. Accuracy of rapid antigen detection test for nasopharyngeal swab specimens and saliva samples in comparison with RT-PCR and viral culture for SARS-CoV-2 detection. Journal of Infection and Chemotherapy, 2021; 27(7):1058–1062. DOI:10.1016/j.jiac.2021.04.010. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jiac.2021.04.010&link_type=DOI) 129.129.Winkel BMF, Schram E, Gremmels H, Debast S, Schuurman R, Wensing AMJ, et al. Screening for SARS-CoV-2 infection in asymptomatic individuals using the Panbio™ COVID-19 Antigen Rapid Test (Abbott) compared to RT-qPCR. medRxiv [Preprint]; published December 04, 2020. DOI:10.1101/2020.12.03.20243311. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMi4wMy4yMDI0MzMxMXYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 130.130.Yamamoto K, Suzuki M, Yamada G, Sudo T, Nomoto H, Kinoshita N, et al. Utility of the antigen test for coronavirus disease 2019: Factors influencing the prediction of the possibility of disease transmission. International Journal of Infectious Diseases, 2021; 104:65–72. DOI:10.1016/j.ijid.2020.12.079. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2020.12.079&link_type=DOI) 131.131.Ahava M, Kurkela S, Kuivanen S, Lappalainen M, Jarva H, Jaaskelainen A. Detection of SARS-CoV-2 nucleocapsid antigen from serum can aid in timing of COVID-19 infection. medRxiv [Preprint]; published January 13, 2021. DOI:10.1101/2021.01.08.20248771. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMS4wOC4yMDI0ODc3MXYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 132.132.Azzi L, Baj A, Alberio T, Lualdi M, Veronesi G, Carcano G, et al. Rapid Salivary Test suitable for a mass screening program to detect SARS-CoV-2: A diagnostic accuracy study. Journal of Infection, 2020; 81(3):E75–E78. DOI:10.1016/j.jinf.2020.06.042. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jinf.2020.06.042&link_type=DOI) 133.133.Barauna VG, Singh MN, Barbosa LL, Marcarini WD, Vassallo PF, Mill JG, et al. Ultrarapid On- Site Detection of SARS-CoV-2 Infection Using Simple ATR-FTIR Spectroscopy and an Analysis Algorithm: High Sensitivity and Specificity. Analytical Chemistry, 2021; 93(5):2950–2958. DOI:10.1021/acs.analchem.0c04608. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1021/acs.analchem.0c04608&link_type=DOI) 134.134.Barlev-Gross M, Weiss S, Ben-Shmuel A, Sittner A, Eden K, Mazuz N, et al. Spike vs nucleocapsid SARS-CoV-2 antigen detection: application in nasopharyngeal swab specimens. Analytical and Bioanalytical Chemistry, 2021; 413:3501–3510. DOI:10.1101/2021.03.08.21253148. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMy4wOC4yMTI1MzE0OHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 135.135.Cardozo KHM, Lebkuchen A, Okai GG, Schuch RA, Viana LG, Olive AN, et al. Establishing a mass spectrometry-based system for rapid detection of SARS-CoV-2 in large clinical sample cohorts. Nature Communications, 2020; 11(1):6201. DOI:10.1038/s41467-020-19925-0. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41467-020-19925-0&link_type=DOI) 136.136.Cazares LH, Chaerkady R, Samuel Weng SH, Boo CC, Cimbro R, Hsu HE, et al. Development of a Parallel Reaction Monitoring Mass Spectrometry Assay for the Detection of SARS-CoV-2 Spike Glycoprotein and Nucleoprotein. Analytical Chemistry, 2020; 92(20):13813–13821. DOI:10.1021/acs.analchem.0c02288. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1021/acs.analchem.0c02288&link_type=DOI) 137.137.Chen H, Li Z, Feng S, Wang A, Richard-Greenblatt M, Hutson E, et al. Femtomolar SARS-CoV-2 Antigen Detection Using the Microbubbling Digital Assay with Smartphone Readout Enables Antigen Burden Quantitation and Dynamics Tracking. medRxiv [Preprint]; published March 26, 2021. DOI:10.1101/2021.03.17.21253847. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMy4xNy4yMTI1Mzg0N3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 138.138.Colavita F, Vairo F, Meschi S, Valli B, Lalle E, Castilletti C, et al. COVID-19 Antigen Rapid Test as Screening Strategy at the Points-of-Entry: Experience in Lazio Region, Central Italy, August-October 2020. medRxiv [Preprint]; published November 30, 2020. DOI:10.1101/2020.11.26.20232728. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMS4yNi4yMDIzMjcyOHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 139.139.Conzelmann C, Gilg A, Groß R, Schütz D, Preising N, Ständker L, et al. An enzyme-based immunodetection assay to quantify SARS-CoV-2 infection. Antiviral Research, 2020; 181:104882. DOI:10.1016/j.antiviral.2020.104882. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.antiviral.2020.104882&link_type=DOI) 140.140.Di Domenico M, De Rosa A, Boccellino M. Detection of SARS-COV-2 Proteins Using an ELISA Test. Diagnostics (Basel), 2021; 11(4). DOI:10.3390/diagnostics11040698. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/diagnostics11040698&link_type=DOI) 141.141.Diao B, Wen K, Zhang J, Chen J, Han C, Chen Y, et al. Accuracy of a nucleocapsid protein antigen rapid test in the diagnosis of SARS-CoV-2 infection. Clinical Microbiology and Infection, 2020; 27(2):289.e1-289.e4. DOI:10.1016/j.cmi.2020.09.057. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cmi.2020.09.057&link_type=DOI) 142.142.Ducrest PJ. Development and Evaluation of a new Swiss Made SARS-CoV-2 antigen-detecting rapid test. medRxiv [Preprint]; published March 26, 2021. DOI:10.1101/2021.03.25.21252280. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMy4yNS4yMTI1MjI4MHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 143.143.Grant BD, Anderson CE, Williford JR, Alonzo LF, Glukhova VA, Boyle DS, et al. SARS-CoV-2 Coronavirus Nucleocapsid Antigen-Detecting Half-Strip Lateral Flow Assay Toward the Development of Point of Care Tests Using Commercially Available Reagents. Analytical Chemistry, 2020; 92(16):11305–11309. DOI:10.1021/acs.analchem.0c01975. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1021/acs.analchem.0c01975&link_type=DOI) 144.144.Huang L, Ding L, Zhou J, Chen S, Chen F, Zhao C, et al. One-step rapid quantification of SARS-CoV-2 virus particles via low-cost nanoplasmonic sensors in generic microplate reader and point-of-care device. Biosensors and Bioelectronics, 2021; 171:112685. DOI:10.1016/j.bios.2020.112685. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bios.2020.112685&link_type=DOI) 145.145.Kyosei Y, Namba M, Yamura S, Takeuchi R, Aoki N, Nakaishi K, et al. Proposal of De Novo Antigen Test for COVID-19: Ultrasensitive Detection of Spike Proteins of SARS-CoV-2. Diagnostics, 2020; 10(8). DOI:10.3390/diagnostics10080594. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/diagnostics10080594&link_type=DOI) 146.146.Lee JH, Choi M, Jung Y, Lee SK, Lee CS, Kim J, et al. A novel rapid detection for SARS-CoV-2 spike 1 antigens using human angiotensin converting enzyme 2 (ACE2). Biosensors and Bioelectronics, 2021; 171:112715. DOI:10.1016/j.bios.2020.112715. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bios.2020.112715&link_type=DOI) 147.147.Lee L, Liu F, Chen Y, Roma G. Quantitative and Ultrasensitive In-situ Immunoassay Technology for SARS-CoV-2 Detection in Saliva. Research Square [Preprint]; published January 18, 2021. DOI:10.21203/rs.3.rs-138025/v1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.21203/rs.3.rs-138025/v1&link_type=DOI) 148.148.Li Y, Peng Z, Holl NJ, Hassan MR, Pappas JM, Wei C, et al. MXene-Graphene Field-Effect Transistor Sensing of Influenza Virus and SARS-CoV-2. ACS Omega, 2021; 6(10):6643–6653. DOI:10.1021/acsomega.0c05421. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1021/acsomega.0c05421&link_type=DOI) 149.149.Liu D, Ju C, Han C, Shi R, Chen X, Duan D, et al. Ultra-sensitive nanozyme-based chemiluminescence paper test for rapid diagnosis of SARS-CoV-2 infection. bioRxiv [Preprint]; published June 05, 2020. DOI:10.1101/2020.06.05.131748. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMC4wNi4wNS4xMzE3NDh2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA2LzE5LzIwMjEuMDIuMjYuMjEyNTI1NDYuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 150.150.Mahari S, Roberts A, Shahdeo D, Gandhi S. eCovSens-Ultrasensitive Novel In-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of nCovid-19. bioRxiv [Preprint]; published May 11, 2020. DOI:10.1101/2020.04.24.059204. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMC4wNC4yNC4wNTkyMDR2MyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA2LzE5LzIwMjEuMDIuMjYuMjEyNTI1NDYuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 151.151.Nash B, Badea A, Reddy A, Bosch M, Salcedo N, Gomez AR, et al. The impact of high frequency rapid viral antigen screening on COVID-19 spread and outcomes: a validation and modeling study. medRxiv [Preprint]; published November 04, 2020. DOI:10.1101/2020.09.01.20184713. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4wOS4wMS4yMDE4NDcxM3Y3IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 152.152.Renuse S, Vanderboom P, Maus A, Kemp J, Gurtner K, Madugundu A, et al. Development of mass spectrometry-based targeted assay for direct detection of novel SARS-CoV-2 coronavirus from clinical specimens. medRxiv [Preprint]; published August 06, 2020. DOI:10.1101/2020.08.05.20168948. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4wOC4wNS4yMDE2ODk0OHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 153.153.Ricks S, Kendall E, Dowdy D, Sacks J, Schumacher S, Arinaminpathy N. Quantifying the potential value of antigen-detection rapid diagnostic tests for COVID-19: a modelling analysis. BMC Medicine, 2020; 19:75. DOI:10.1101/2020.11.20.20235317. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMS4yMC4yMDIzNTMxN3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 154.154.Seo G, Lee G, Kim MJ, Baek SH, Choi M, Ku KB, et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. American Chemical Society, 2020; 14(4):5135–5142. DOI:10.1021/acsnano.0c02823. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1021/acsnano.0c02823&link_type=DOI) 155.155.Shao W, Shurin MR, Wheeler SE, He X, Star A. Rapid Detection of SARS-CoV-2 Antigens Using High-Purity Semiconducting Single-Walled Carbon Nanotube-Based Field-Effect Transistors. ACS Applied Materials & Interfaces, 2021; 13(8):10321–10327. DOI:10.1021/acsami.0c22589. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1021/acsami.0c22589&link_type=DOI) 156.156.Singh N, Ray P, Carlin A, Magallanes C, Morgan S, Laurent L, et al. Hitting the diagnostic sweet spot: Point-of-care SARS-CoV-2 salivary antigen testing with an off-the-shelf glucometer. medRxiv [Preprint]; published October 02, 2020. DOI:10.1101/2020.09.24.20200394. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4wOS4yNC4yMDIwMDM5NHYyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 157.157.Singh P, Chakraborty R, Marwal R, Radhakrishan VS, Bhaskar AK, Vashisht H, et al. A rapid and sensitive method to detect SARS-CoV-2 virus using targeted-mass spectrometry. Journal of Proteins and Proteomics, 2020:1–7. DOI:10.1007/s42485-020-00044-910.1007/s42485-020-00044-9. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s42485-020-00044-910.1007/s42485-020-00044-9&link_type=DOI) 158.158.Torrente-Rodríguez RM, Lukas H, Tu J, Min J, Yang Y, Xu C, et al. SARS-CoV-2 RapidPlex: A Graphene-based Multiplexed Telemedicine Platform for Rapid and Low-Cost COVID-19 Diagnosis and Monitoring. Matter, 2020; 3(6):1981–1998. DOI:10.1016/j.matt.2020.09.027. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.matt.2020.09.027&link_type=DOI) 159.159.Vadlamani BS, Uppal T, Verma S, Misra M. Functionalized TiO2 nanotube-based Electrochemical Biosensor for Rapid Detection of SARS-CoV-2. Sensors, 2020; 20(20):5871. DOI:10.1101/2020.09.07.20190173. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1101/2020.09.07.20190173&link_type=DOI) 160.160.Wang H, Hogan CA, Verghese M, Solis D, Sibai M, Huang C, et al. Ultra-sensitive Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antigen Detection for the Diagnosis of Coronavirus Disease 2019 (COVID-19) in Upper Respiratory Samples. Clinical Infectious Diseases, 2021; ciab063. DOI:10.1093/cid/ciab063. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cid/ciab063&link_type=DOI) 161.161.Yakoh A, Pimpitak U, Rengpipat S, Hirankarn N, Chailapakul O, Chaiyo S. Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosensors & Bioelectronics, 2021; 176:112912. DOI:10.1016/j.bios.2020.112912. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bios.2020.112912&link_type=DOI) 162.162.Zakashansky J, Imamura A, Salgado D, Romero Mercieca H, Aguas RFL, Lao A, et al. Detection of the SARS-CoV-2 spike protein in saliva with Shrinky-Dink© electrodes. medRxiv [Preprint]; published November 18, 2020. DOI:10.1101/2020.11.14.20231811. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMS4xNC4yMDIzMTgxMXYyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 163.163.Zhang CY, Zhou L, Du K, Zhang Y, Wang J, Chen LJ, et al. Foundation and Clinical Evaluation of a New Method for Detecting SARS-CoV-2 Antigen by Fluorescent Microsphere Immunochromatography. Frontiers in Cellular and Infection Microbiology, 2020; 10:553837. DOI:10.3389/fcimb.2020.553837. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fcimb.2020.553837&link_type=DOI) 164.164.Zou M, Su F, Zhang R, Jiang X, Xiao H, Yan X, et al. Rapid Point-of-Care Testing for SARS-CoV-2 Virus Nucleic Acid Detection by an Isothermal and Nonenzymatic Signal Amplification System Coupled with a Lateral Flow Immunoassay Strip. Sensors and Actuators B: Chemical, 2021; 342:129899. DOI:10.1016/j.snb.2021.129899. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.snb.2021.129899&link_type=DOI) 165.165.Akingba OL, Sprong K, Hardie DR. Field performance evaluation of the PanBio rapid SARS-CoV-2 antigen assay in an epidemic driven by 501Y.v2 (lineage B.1.351) in the Eastern Cape, South Africa. Journal of Clinical Virology Plus, 2021; 1(1–2):100013. DOI:10.1016/j.jcvp.2021.100013. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jcvp.2021.100013&link_type=DOI) 166.166.Asai N, Sakanashi D, Ohashi W, Nakamura A, Kawamoto Y, Miyazaki N, et al. Efficacy and validity of automated quantitative chemiluminescent enzyme immunoassay for SARS-CoV-2 antigen test from saliva specimen in the diagnosis of COVID-19. Journal of Infection and Chemotherapy, 2021; available online. DOI:10.1016/j.jiac.2021.03.021. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jiac.2021.03.021&link_type=DOI) 167.167.Baro B, Rodo P, Ouchi D, Bordoy A, Saya Amaro E, Salsench S, et al. Performance characteristics of five antigen-detecting rapid diagnostic test (Ag-RDT) for SARS-CoV-2 asymptomatic infection: a head-to-head benchmark comparison. Journal of Infection, 2021; 82(6):269–275. DOI:10.1016/j.jinf.2021.04.009. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jinf.2021.04.009&link_type=DOI) 168.168.Basso D, Aita A, Padoan A, Cosma C, Navaglia F, Moz S, et al. Salivary SARS-CoV-2 antigen rapid detection: a prospective cohort study. Clinica Chimica Acta, 2020; 517:54–59. DOI:10.1016/j.cca.2021.02.014. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cca.2021.02.014&link_type=DOI) 169.169.Bruzzone B, De Pace V, Caligiuri P, Ricucci V, Guarona G, Pennati BM, et al. Comparative diagnostic performance of different rapid antigen detection tests for COVID-19 in the real-world hospital setting. International Journal of Infectious Diseases, 2021; 107:215–218. DOI:10.1016/j.ijid.2021.04.072. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2021.04.072&link_type=DOI) 170.170.Caruana G, Croxatto A, Kampouri E, Kritikos A, Opota O, Foerster M, et al. ImplemeNting SARS-CoV-2 Rapid antigen testing in the Emergency wArd of a Swiss univErsity hospital: the INCREASE study. Microorganisms, 2021; 9(4):798. DOI:10.3390/microorganisms9040798. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/microorganisms9040798&link_type=DOI) 171.171.Caruana G, Lebrun L-L, Aebischer O, Opota O, Urbano L, DeRham M, et al. The dark side of SARS-CoV-2 rapid antigen testing: screening asymptomatic patients. medRxiv [Preprint]; published April 27, 2021. DOI:10.1101/2021.04.24.21256040. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wNC4yNC4yMTI1NjA0MHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 172.172.Ciotti M, Maurici M, Pieri M, Andreoni M, Bernardini S. Performance of a rapid antigen test in the diagnosis of SARS-CoV-2 infection. Journal of Medical Virology, 2021; 93:2988–2991. DOI:10.1002/jmv.26830. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jmv.26830&link_type=DOI) 173.173. Cubas Atienzar A, Kontogianni K, Edwards T, Wooding D, Buist K, Thompson C, et al. Limit of detection in different matrices of nineteen commercially available rapid antigen tests for the detection of SARS-CoV-2. medRxiv [Preprint]; published March 22, 2021. DOI:10.1101/2021.03.19.21253950. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMy4xOS4yMTI1Mzk1MHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 174.174.Del Vecchio C, Brancaccio G, Brazzale AR, Lavezzo E, Onelia F, Franchin E, et al. Emergence of N antigen SARS-CoV-2 genetic variants escaping detection of antigenic tests. medRxiv [Preprint]; published March 26, 2021. DOI:10.1101/2021.03.25.21253802. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMy4yNS4yMTI1MzgwMnYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 175.175. Domínguez Fernández M, Peña Rodríguez MF, Lamelo Alfonsín F, Bou Arévalo G. Experience with Panbio™ rapid antigens test device for the detection of SARS-CoV-2 in nursing homes. Enfermedades Infecciosas y Microbiología Clínica, 2021; S0213–005X. DOI:10.1016/j.eimc.2020.12.008. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.eimc.2020.12.008&link_type=DOI) 176.176.Drain PK, Ampajwala M, Chappel C, Gvozden AB, Hoppers M, Wang M, et al. A Rapid, High-Sensitivity SARS-CoV-2 Nucleocapsid Immunoassay to Aid Diagnosis of Acute COVID-19 at the Point of Care: A Clinical Performance Study. Infectious Diseases and Therapy, 2021; 10(2):753–761. DOI:10.1007/s40121-021-00413-x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s40121-021-00413-x&link_type=DOI) 177.177.Faíco-Filho KS, Finamor Júnior FE, Moreira LVL, Lins PRG, Justo AFO, Bellei N. Evaluation of the Panbio™ COVID-19 Ag Rapid Test at an Emergency Room in a Hospital in São Paulo, Brazil. medRxiv [Preprint]; published March 24, 2021. DOI:10.1101/2021.03.15.21253313. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMy4xNS4yMTI1MzMxM3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 178.178.Favresse J, Gillot C, Oliveira M, Cadrobbi J, Elsen M, Eucher C, et al. Head-to-Head Comparison of Rapid and Automated Antigen Detection Tests for the Diagnosis of SARS-CoV-2 Infection. Journal of Clinical Medicine, 2021; 10(2):265. DOI:10.3390/jcm10020265. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/jcm10020265&link_type=DOI) 179.179.Ferguson J, Dunn S, Best A, Mirza J, Percival B, Mayhew M, et al. Validation testing to determine the sensitivity of lateral flow testing for asymptomatic SARS-CoV-2 detection in low prevalence settings: Testing frequency and public health messaging is key. PLoS Biol, 2021; 19(4):e3001216. DOI:10.1371/journal.pbio.3001216. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pbio.3001216&link_type=DOI) 180.180.Filgueiras P, Corsini C, Almeida NBF, Assis J, Pedrosa ML, de Oliveira A, et al. COVID-19 Rapid Antigen Test at hospital admission associated to the knowledge of individual risk factors allow overcoming the difficulty of managing suspected patients in hospitals COVID-19 Rapid Antigen Test facilitates the management of suspected patients on hospital admission. medRxiv [Preprint]; published January 08, 2021. DOI:10.1101/2021.01.06.21249282. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMS4wNi4yMTI0OTI4MnYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 181.181.Foundation for Innovative New Diagnostics. FIND Evaluation of Boditech Medical, Inc. iChroma COVID-19 Ag Test. External Report Version 10, 23 February 2021, 2021. 182.182.Foundation for Innovative New Diagnostics. FIND Evaluation of Joysbio (Tianjin) Biotechnology Co., Ltd. SARS-CoV-2 Antigen Rapid Test Kit (Colloidal Gold). External Report Version 10, 11 February 2021, 2021. 183.183.Foundation for Innovative New Diagnostics. FIND Evaluation of Guangzhou Wondfo Biotech Co., Ltd Wondfo 2019-nCoV Antigen Test (Lateral Flow Method). Public Report Version 10, 25 February 2021, 2021. 184.184.Foundation for Innovative New Diagnostics. FIND Evaluation of Abbott Panbio COVID-19 Ag Rapid Test Device (NASAL). External Report Version 10, 11 February 2021, 2021. 185.185.Foundation for Innovative New Diagnostics. FIND Evaluation of Bionote, Inc. NowCheck COVID-19 Ag Test, nasal swab. External Report Version 10, 30 March 2021, 2021. 186.186.Foundation for Innovative New Diagnostics. FIND Evaluation of Fujirebio Inc. Espline SARS-CoV-2. External Report Version 10, 29 March 2021, 2021. 187.187.Foundation for Innovative New Diagnostics. FIND Evaluation of Mologic Ltd, COVID 19 RAPID ANTIGEN TEST. External Report Version 10, 23 April 2021, 2021. 188.188.Foundation for Innovative New Diagnostics. FIND Evaluation of NADAL COVID-19 Ag Rapid Test. External Report Version 10, 26 April 2021, 2021. 189.189.Gili A, Paggi R, Russo C, Cenci E, Pietrella D, Graziani A, et al. Evaluation of automated test Lumipulse® G SARS-CoV-2 antigen assay for detection of SARS-CoV-2 nucleocapsid protein (NP) in nasopharyngeal swabs for community and population screening. International Journal of Infectious Diseases, 2021; 105:P391–396. DOI:10.1016/j.ijid.2021.02.098. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2021.02.098&link_type=DOI) 190.190. Gomez Marti JL, Gribschaw J, McCullough M, Mallon A, Acero J, Kinzler A, et al. Differences in detected viral loads guide use of SARS-CoV-2 antigen-detection assays towards symptomatic college students and children. medRxiv [Preprint]; published February 01, 2021. DOI:10.1101/2021.01.28.21250365. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMS4yOC4yMTI1MDM2NXYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 191.191.Haage V, Ferreira de Oliveira-Filho E, Moreira-Soto A, Kühne A, Fischer C, Sacks JA, et al. Impaired performance of SARS-CoV-2 antigen-detecting rapid diagnostic tests at elevated and low temperatures. Journal of Clinical Virology, 2021; 138:104796. DOI:10.1016/j.jcv.2021.104796. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jcv.2021.104796&link_type=DOI) 192.192.Halfon P, Penaranda G, Khiri H, Garcia V, Drouet H, Philibert P, et al. An optimized stepwise algorithm combining rapid antigen and RT-qPCR for screening of COVID-19 patients. medRxiv [Preprint]; published January 15, 2021. DOI:10.1101/2021.01.13.21249254. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMS4xMy4yMTI0OTI1NHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 193.193.Hirotsu Y, Maejima M, Shibusawa M, Amemiya K, Nagakubo Y, Hosaka K, et al. Prospective Study of 1,308 Nasopharyngeal Swabs from 1,033 Patients using the LUMIPULSE SARS-CoV-2 Antigen Test: Comparison with RT-qPCR. International Journal of Infectious Diseases, 2021; 105:7–14. DOI:10.1016/j.ijid.2021.02.005. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2021.02.005&link_type=DOI) 194.194.Homza M, Zelena H, Janosek J, Tomaskova H, Jezo E, Kloudova A, et al. Five Antigen Tests for SARS-CoV-2: Virus Viability Matters. Viruses, 2021; 13(4). DOI:10.3390/v13040684. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/v13040684&link_type=DOI) 195.195.Houston H, Gupta-Wright A, Toke-Bjolgerud E, Biggin-Lamming J, John L. Diagnostic accuracy and utility of SARS-CoV-2 antigen lateral flow assays in medical admissions with possible COVID-19. Journal of Hospital Infection, 2021; 110:203–205. DOI:10.1016/j.jhin.2021.01.018. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jhin.2021.01.018&link_type=DOI) 196.196.Jääskeläinen AE, Ahava MJ, Jokela P, Szirovicza L, Pohjala S, Vapalahti O, et al. Evaluation of three rapid lateral flow antigen detection tests for the diagnosis of SARS-CoV-2 infection. Journal of Clinical Virology, 2021; 137:104785. DOI:10.1101/2020.12.30.20249057. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMi4zMC4yMDI0OTA1N3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 197.197.James AE, Gulley T, Kothari A, Holder K, Garner K, Patil N. Performance of the BinaxNOW COVID-19 Antigen Card test relative to the SARS-CoV-2 real-time reverse transcriptase polymerase chain reaction assay among symptomatic and asymptomatic healthcare employees. Infection Control and Hospital Epidemiology, 2021:1–3. DOI:10.1017/ice.2021.20. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/ice.2021.20&link_type=DOI) 198.198.Jungnick S, Hobmaier B, Mautner L, Hoyos M, Haase M, Baiker A, et al. Detection of the new SARS-CoV-2 variants of concern B.1.1.7 and B.1.351 in five SARS-CoV-2 rapid antigen tests (RATs), Germany, March 2021. Euro Surveillance, 2021; 26(16):2100413. DOI:10.2807/1560-7917.Es.2021.26.16.2100413. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2807/1560-7917.Es.2021.26.16.2100413&link_type=DOI) 199.199.Kannian P, Lavanya C, Ravichandran K, Gita JB, Mahanathi P, Ashwini V, et al. SARS-CoV2 antigen in whole mouth fluid may be a reliable rapid detection tool. Oral Diseases, 2021; 00:1–2. DOI:10.1111/odi.13793. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/odi.13793&link_type=DOI) 200.200.Kenyeres B, Ánosi N, Bányai K, Mátyus M, Orosz L, Kiss A, et al. Comparison of four PCR and two point of care assays used in the laboratory detection of SARS-CoV-2. Journal of Virological Methods, 2021; 293:114165. DOI:10.1016/j.jviromet.2021.114165. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jviromet.2021.114165&link_type=DOI) 201.201.Kernéis S, Elie C, Fourgeaud J, Choupeaux L, Delarue SM, Alby M-L, et al. Accuracy of antigen and nucleic acid amplification testing on saliva and naopharyngeal samples for detection of SARS-CoV-2 in ambulatory care. medRxiv [Preprint]; published April 11, 2021. DOI:10.1101/2021.04.08.21255144. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wNC4wOC4yMTI1NTE0NHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 202.202.Kilic A, Hiestand B, Palavecino E. Evaluation of Performance of the BD Veritor SARS-CoV-2 Chromatographic Immunoassay Test in Patients with Symptoms of COVID-19. Journal of Clinical Microbiology, 2021; 59(5). DOI:10.1128/jcm.00260-21. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1128/jcm.00260-21&link_type=DOI) 203.203.Kohmer N, Toptan T, Pallas C, Karaca O, Pfeiffer A, Westhaus S, et al. The Comparative Clinical Performance of Four SARS-CoV-2 Rapid Antigen Tests and Their Correlation to Infectivity In Vitro. Journal of Clinical Medicine, 2021; 10(2). DOI:10.3390/jcm10020328. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/jcm10020328&link_type=DOI) 204.204.Krüger L, Klein JAF, Tobian F, Gaeddert M, Lainati F, Klemm S, et al. Evaluation of accuracy, exclusivity, limit-of-detection and ease-of-use of LumiraDx™-Antigen-detecting point-of-care device for SARS-CoV-2. medRxiv [Preprint]; published March 05, 2021. DOI:10.1101/2021.03.02.21252430. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMy4wMi4yMTI1MjQzMHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 205.205.L’Huillier A, Lacour M, Sadiku D, Gadiri M, De Siebenthal L, Schibler M, et al. Diagnostic accuracy of SARS-CoV-2 rapid antigen detection testing in symptomatic and asymptomatic children in the clinical setting. medRxiv [Preprint]; published April 20, 2021. DOI:10.1101/2021.04.15.21255577. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wNC4xNS4yMTI1NTU3N3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 206.206.Lefever S, Indevuyst C, Cuypers L, Dewaele K, Yin N, Cotton F, et al. Comparison of the quantitative DiaSorin Liaison antigen test to RT-PCR for the diagnosis of COVID-19 in symptomatic and asymptomatic outpatients. Journal of Clinical Microbiology, 2021; Online ahead of print. DOI:10.1128/jcm.00374-21. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1128/jcm.00374-21&link_type=DOI) 207.207.Lindner A, Nikolai O, Rohardt C, Kausch F, Wintel M, Gertler M, et al. SARS-CoV-2 patient self-testing with an antigen-detecting rapid test: a head-to-head comparison with professional testing. medRxiv [Preprint]; published January 08, 2021. DOI:10.1101/2021.01.06.20249009. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMS4wNi4yMDI0OTAwOXYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 208.208.Mak GCK, Lau SSY, Wong KKY, Chow NLS, Lau CS, Lam ETK, et al. Evaluation of rapid antigen detection kit from the WHO Emergency Use List for detecting SARS-CoV-2. Journal of Clinical Virology, 2021; 134:104712. DOI:10.1016/j.jcv.2020.104712. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jcv.2020.104712&link_type=DOI) 209.209. Mboumba Bouassa RS, Veyer D, Péré H, Bélec L. Analytical performances of the point-of-care SIENNA™ COVID-19 Antigen Rapid Test for the detection of SARS-CoV-2 nucleocapsid protein in nasopharyngeal swabs: A prospective evaluation during the COVID-19 second wave in France. International Journal of Infectious Diseases, 2021; 106:8–12. DOI:10.1016/j.ijid.2021.03.051. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2021.03.051&link_type=DOI) 210.210.Menchinelli G, Bordi L, Marzialiotti F, Palucci I, Capobianchi M, Sberna G, et al. Lumipulse G SARS-CoV-2 Ag Assay Evaluation for SARS-CoV-2 Antigen Detection Using 594 Nasopharyngeal Swab Samples from Different Testing Groups. Clinical Chemistry and Laboratory Medicine, 2021; Online ahead of print. DOI:10.1515/cclm-2021-0182. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1515/cclm-2021-0182&link_type=DOI) 211.211.Micocci M, Buckle P, Hayward G, Allen J, Davies K, Kierkegaard P, et al. Point of Care Testing using rapid automated Antigen Testing for SARS-COV-2 in Care Homes – an exploratory safety, usability and diagnostic agreement evaluation. medRxiv [Preprint]; published April 26, 2021. DOI:10.1101/2021.04.22.21255948. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wNC4yMi4yMTI1NTk0OHYyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 212.212.Möckel M, Corman VM, Stegemann MS, Hofmann J, Stein A, Jones TC, et al. SARS-CoV-2 Antigen Rapid Immunoassay for Diagnosis of COVID-19 in the Emergency Department. Biomarkers, 2021; 26(3):213–220. DOI:10.1080/1354750x.2021.1876769. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/1354750x.2021.1876769&link_type=DOI) 213.213.Muhi S, Tayler N, Hoang T, Ballard SA, Graham M, Rojek A, et al. Multi-site assessment of rapid, point-of-care antigen testing for the diagnosis of SARS-CoV-2 infection in a low-prevalence setting: A validation and implementation study. Lancet Regional Health Western Pacific, 2021; 9:100115. DOI:10.1016/j.lanwpc.2021.100115. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.lanwpc.2021.100115&link_type=DOI) 214.214. Ngo Nsoga M-T, Kronig I, Perez Rodriguez FJ, Sattonnet-Roche P, Da Silva D, Helbling J, et al. Diagnostic accuracy of PanbioTM rapid antigen tests on oropharyngeal swabs for detection of SARS-CoV-2. medRxiv [Preprint]; published February 01, 2021. DOI:10.1101/2021.01.30.21250314. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMS4zMC4yMTI1MDMxNHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 215.215.Nikolai O, Rohardt C, Tobian F, Junge A, Corman V, Jones T, et al. Anterior nasal versus nasal mid-turbinate sampling for a SARS-CoV-2 antigen-detecting rapid test: does localisation or professional collection matter? medRxiv [Preprint]; published February 16, 2021. DOI:10.1101/2021.02.09.21251274. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMi4wOS4yMTI1MTI3NHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 216.216.Nörz D, Olearo F, Perisic S, Bauer M, Riester E, Schneider T, et al. Multicenter evaluation of a fully automated high-throughput SARS-CoV-2 antigen immunoassay. medRxiv [Preprint]; published April 15, 2021. DOI:10.1101/2021.04.09.21255047. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wNC4wOS4yMTI1NTA0N3YyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 217.217.Okoye NC, Barker AP, Curtis K, Orlandi RR, Snavely EA, Wright C, et al. Performance Characteristics of BinaxNOW COVID-19 Antigen Card for Screening Asymptomatic Individuals in a University Setting. Journal of Clinical Microbiology, 2021; 59(4):e03282–20. DOI:10.1128/jcm.03282-20. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1128/jcm.03282-20&link_type=DOI) 218.218.Osmanodja B, Budde K, Zickler D, Naik M, Hofmann J, Gertler M, et al. Diagnostic accuracy of a novel SARS-CoV-2 antigen-detecting rapid diagnostic test from standardized self-collected anterior nasal swabs. medRxiv [Preprint]; published April 23, 2021. DOI:10.1101/2021.04.20.21255797. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wNC4yMC4yMTI1NTc5N3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 219.219.Osterman A, Baldauf HM, Eletreby M, Wettengel JM, Afridi SQ, Fuchs T, et al. Evaluation of two rapid antigen tests to detect SARS-CoV-2 in a hospital setting. Medical Microbiology and Immunology, 2021; 210(1):65–72. DOI:10.1007/s00430-020-00698-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00430-020-00698-8&link_type=DOI) 220.220.Pena M, Ampuero M, Garces C, Gaggero A, Garcia P, Velasquez MS, et al. Performance of SARS-CoV-2 rapid antigen test compared with real-time RT-PCR in asymptomatic individuals. medRxiv [Preprint]; published February 13, 2021. DOI:10.1101/2021.02.12.21251643. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMi4xMi4yMTI1MTY0M3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 221.221.Pérez-García F, Romanyk J, Gómez-Herruz P, Arroyo T, Pérez-Tanoira R, Linares M, et al. Diagnostic performance of CerTest and Panbio antigen rapid diagnostic tests to diagnose SARS-CoV-2 infection. Journal of Clinical Virology, 2021; 137:104781. DOI:10.1016/j.jcv.2021.104781. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jcv.2021.104781&link_type=DOI) 222.222.Peto T, Team UC-LFO. COVID-19: Rapid Antigen detection for SARS-CoV-2 by lateral flow assay: a national systematic evaluation for mass-testing. medRxiv [Preprint]; published January 26, 2021. DOI:10.1101/2021.01.13.21249563. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMS4xMy4yMTI0OTU2M3YyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 223.223.Pickering S, Batra R, Snell L, Merrick B, Nebbia G, Douthwaite S, et al. Comparative performance of SARS-CoV-2 lateral flow antigen tests demonstrates their utility for high sensitivity detection of infectious virus in clinical specimens. medRxiv [Preprint]; published March 02, 2021. DOI:10.1101/2021.02.27.21252427. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMi4yNy4yMTI1MjQyN3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 224.224.Pollock N, Jacobs J, Tran K, Cranston A, Smith S, O’Kane C, et al. Performance and Implementation Evaluation of the Abbott BinaxNOW Rapid Antigen Test in a High-throughput Drive-through Community Testing Site in Massachusetts. Journal of Clinical Microbiology, 2021; 59(5). DOI:10.1101/2021.01.09.21249499. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1101/2021.01.09.21249499&link_type=DOI) 225.225.Pollock N, Tran K, Jacobs J, Cranston A, Smith S, O’Kane C, et al. Performance and Operational Evaluation of the Access Bio CareStart Rapid Antigen Test in a High-throughput Drive-through Community Testing Site in Massachusetts. medRxiv [Preprint]; published March 09, 2021. DOI:10.1101/2021.03.07.21253101. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMy4wNy4yMTI1MzEwMXYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 226.226.Ristić M, Nikolić N, Čabarkapa V, Turkulov V, Petrović V. Validation of the STANDARD Q COVID-19 antigen test in Vojvodina, Serbia. PLoS One, 2021; 16(2):e0247606. DOI:10.1371/journal.pone.0247606. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0247606&link_type=DOI) 227.227.Rodgers M, Batra R, Snell L, Daghfal D, Roth R, Huang S, et al. Detection of SARS-CoV-2 variants by Abbott molecular, antigen, and serological tests. medRxiv [Preprint]; published April 26, 2021. DOI:10.1101/2021.04.24.21256045. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wNC4yNC4yMTI1NjA0NXYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 228.228.Rottenstreich A, Zarbiv G, Kabiri D, Porat S, Sompolinsky Y, Reubinoff B, et al. Rapid antigen detection testing for universal screening for severe acute respiratory syndrome coronavirus 2 in women admitted for delivery. American Journal of Obstetrics and Gynecology, 2021; 224(5):539–540. DOI:10.1016/j.ajog.2021.01.002. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ajog.2021.01.002&link_type=DOI) 229.229.Salvagno GL, Gianfilippi G, Bragantini D, Henry BM, Lippi G. Clinical assessment of the Roche SARS-CoV-2 rapid antigen test. Diagnosis, 2021; Ahead of print. DOI:10.1515/dx-2020-0154. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1515/dx-2020-0154&link_type=DOI) 230.230.Sberna G, Lalle E, Capobianchi MR, Bordi L, Amendola A. Letter of concern re: "Immunochromatographic test for the detection of SARS-CoV-2 in saliva. J Infect Chemother. 2021 Feb;27(2):384-386. doi: 10.1016/j.jiac.2020.11.016.". Journal of Infection and Chemotherapy, 2021; Article in press. DOI:10.1016/j.jiac.2021.04.003. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jiac.2021.04.003&link_type=DOI) 231.231.Schuit E, Veldhuijzen IK, Venekamp RP, van den Bijllaardt W, Pas SD, Lodder EB, et al. Diagnostic accuracy of rapid antigen tests in pre-/asymptomatic close contacts of individuals with a confirmed SARS-CoV-2 infection. medRxiv [Preprint]; published March 23, 2021. DOI:10.1101/2021.03.18.21253874. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMy4xOC4yMTI1Mzg3NHYyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 232.232.Seitz T, Schindler S, Winkelmeyer P, Zach B, Wenisch C, Zoufaly A, et al. Evaluation of rapid antigen tests based on saliva for the detection of SARS-CoV-2. Journal of Medical Virology, 2021; Online ahead of print. DOI:10.1002/jmv.26983. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jmv.26983&link_type=DOI) 233.233.Shidlovskaya E, Kuznetsova N, Divisenko E, Nikiforova M, Siniavin A, Ogarkova D, et al. The Value of Rapid Antigen Tests to Identify Carriers of Viable SARS-CoV-2. medRxiv [Preprint]; published March 12, 2021. DOI:10.1101/2021.03.10.21252667. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMy4xMC4yMTI1MjY2N3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 234.234.Stohr JJM, Zwart VF, Goderski G, Meijer A, Nagel-Imming RS, Kluytmans-van den Bergh MFQ, et al. Self-testing for the detection of SARS-CoV-2 infection with rapid antigen tests. medRxiv [Preprint]; published February 23, 2021. DOI:10.1101/2021.02.21.21252153. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMi4yMS4yMTI1MjE1M3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 235.235.Stokes W, Berenger BM, Portnoy D, Scott B, Szelewicki J, Singh T, et al. Clinical performance of the Abbott Panbio with nasopharyngeal, throat, and saliva swabs among symptomatic individuals with COVID-19. European Journal of Clinical Microbiology & Infectious Diseases, 2021; Online ahead of print. DOI:10.1007/s10096-021-04202-9. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10096-021-04202-9&link_type=DOI) 236.236.Strömer A, Rose R, Schäfer M, Schön F, Vollersen A, Lorentz T, et al. Performance of a Point-of-Care Test for the Rapid Detection of SARS-CoV-2 Antigen. Microorganisms, 2020; 9(1). DOI:10.3390/microorganisms9010058. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/microorganisms9010058&link_type=DOI) 237.237.Takeuchi Y, Akashi Y, Kato D, Kuwahara M, Muramatsu S, Ueda A, et al. The evaluation of a newly developed antigen test (QuickNavi™-COVID19 Ag) for SARS-CoV-2: A prospective observational study in Japan. Journal of Infection and Chemotherapy, 2021; 27(6):890–894. DOI:10.1016/j.jiac.2021.02.029. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jiac.2021.02.029&link_type=DOI) 238.238.Takeuchi Y, Akashi Y, Kato D, Kuwahara M, Muramatsu S, Ueda A, et al. Diagnostic Performance and Characteristics of Anterior Nasal Collection for the SARS-CoV-2 Antigen Test: A Prospective Study in Japan. medRxiv [Preprint]; published March 05, 2021. DOI:10.1038/s41598-021-90026-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41598-021-90026-8&link_type=DOI) 239.239.Thakur P, Saxena S, Manchanda V, Rana N, Goel R, Arora R. Utility of Antigen-Based Rapid Diagnostic Test for Detection of SARS-CoV-2 Virus in Routine Hospital Settings. Lab Med, 2021; Online ahead of print. DOI:10.1093/labmed/lmab033. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/labmed/lmab033&link_type=DOI) 240.240.Thell R, Kallab V, Weinhappel W, Mueckstein W, Heschl L, Heschl M, et al. Evaluation of a novel, rapid antigen detection test for the diagnosis of SARS-CoV-2. medRxiv [Preprint]; published April 22, 2021. DOI:10.1101/2021.04.22.21255637. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wNC4yMi4yMTI1NTYzN3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 241.241.Torres I, Poujois S, Albert E, Álvarez G, Colomina J, Navarro D. Point-of-care evaluation of a rapid antigen test (CLINITEST(Ⓡ) Rapid COVID-19 Antigen Test) for diagnosis of SARS-CoV-2 infection in symptomatic and asymptomatic individuals. Journal of Infection, 2021; 82(5):e11–e12. DOI:10.1016/j.jinf.2021.02.010. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jinf.2021.02.010&link_type=DOI) 242.242.Turcato G, Zaboli A, Pfeifer N, Ciccariello L, Sibilio S, Tezza G, et al. Clinical application of a rapid antigen test for the detection of SARS-CoV-2 infection in symptomatic and asymptomatic patients evaluated in the emergency department: a preliminary report. Journal of Infection, 2020; 82:E14–E16. DOI:10.1016/j.jinf.2020.12.012. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jinf.2020.12.012&link_type=DOI) 243.243.Villaverde S, Domínguez-Rodríguez S, Sabrido G, Pérez-Jorge C, Plata M, Romero MP, et al. Diagnostic Accuracy of the Panbio SARS-CoV-2 Antigen Rapid Test Compared with Rt-Pcr Testing of Nasopharyngeal Samples in the Pediatric Population. The Journal of Pediatrics, 2021; 232:P287–289.E4. DOI:10.1016/j.jpeds.2021.01.027. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jpeds.2021.01.027&link_type=DOI) 244.244.Wagenhäuser I, Knies K, Rauschenberger V, Eisenmann M, McDonogh M, Petri N, et al. Clinical performance evaluation of SARS-CoV-2 rapid antigen testing in point of care usage in comparison to RT-qPCR. medRxiv [Preprint]; published March 29, 2021. DOI:10.1101/2021.03.27.21253966. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMy4yNy4yMTI1Mzk2NnYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 245.245.Yin N, Debuysschere C, Decroly M, Bouazza FZ, Collot V, Martin C, et al. SARS-CoV-2 Diagnostic Tests: Algorithm and Field Evaluation From the Near Patient Testing to the Automated Diagnostic Platform. Frontiers in Medicine, 2021; 8:380. DOI:10.3389/fmed.2021.650581. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fmed.2021.650581&link_type=DOI) 246.246.Young BC, Eyre DW, Jeffery K. Use of lateral flow devices allows rapid triage of patients with SARS-CoV-2 on admission to hospital. Journal of Infection, 2021; 82:276–316. DOI:10.1016/j.jinf.2021.02.025. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jinf.2021.02.025&link_type=DOI) 247.247.Abdulrahman A, Mustafa F, AlAwadhi AI, Alansari Q, AlAlawi B, AlQahtani M. Comparison of SARS-COV-2 nasal antigen test to nasopharyngeal RT-PCR in mildly symptomatic patients. medRxiv [Preprint]; published December 08, 2020. DOI:10.1101/2020.11.10.20228973. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMS4xMC4yMDIyODk3M3YyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 248.248.Agulló V, Fernández-González M, Ortiz de la Tabla V, Gonzalo-Jiménez N, García JA, Masiá M, et al. Evaluation of the rapid antigen test Panbio COVID-19 in saliva and nasal swabs: A population-based point-of-care study. Journal of Infection, 2020; published online ahead of issue. DOI:10.1016/j.jinf.2020.12.007. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jinf.2020.12.007&link_type=DOI) 249.249.Albert E, Torres I, Bueno F, Huntley D, Molla E, Fernandez-Fuentes MA, et al. Field evaluation of a rapid antigen test (Panbio™ COVID-19 Ag Rapid Test Device) for COVID-19 diagnosis in primary healthcare centres. Clinical Microbiology and Infection, 2020; 27(3):472.e7–472.e10. DOI:10.1016/j.cmi.2020.11.004. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cmi.2020.11.004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33189872&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) 250.250.Alemany A, Baro B, Ouchi D, Ubals M, Corbacho-Monné M, Vergara-Alert J, et al. Analytical and Clinical Performance of the Panbio COVID-19 Antigen-Detecting Rapid Diagnostic Test. Journal of Infection, 2020; 82(5):186–230. DOI:10.1016/j.jinf.2020.12.033. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jinf.2020.12.033&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33421447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) 251.251.Beck ET, Paar W, Fojut L, Serwe J, Jahnke RR. Comparison of Quidel Sofia SARS FIA Test to Hologic Aptima SARS-CoV-2 TMA Test for Diagnosis of COVID-19 in Symptomatic Outpatients. Journal of Clinical Microbiology, 2020; 59(2):e02727–20. DOI:10.1128/jcm.02727-20. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1128/jcm.02727-20&link_type=DOI) 252.252.Berger A, Ngo Nsoga M-T, Perez Rodriguez FJ, Abi Aad Y, Sattonnet P, Gayet-Ageron A, et al. Diagnostic accuracy of two commercial SARS-CoV-2 Antigen-detecting rapid tests at the point of care in community-based testing centers. PLoS One, 2020; 16(3):e0248921. DOI:10.1371/journal.pone.0248921. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0248921&link_type=DOI) 253.253.Bulilete O, Lorente P, Leiva A, Carandell E, Oliver A, Rojo E, et al. Evaluation of the Panbio™ rapid antigen test for SARS-CoV-2 in primary health care centers and test sites. medRxiv [Preprint]; published November 16, 2020. DOI:10.1101/2020.11.13.20231316. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMS4xMy4yMDIzMTMxNnYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 254.254.Cerutti F, Burdino E, Milia MG, Allice T, Gregori G, Bruzzone B, et al. Urgent need of rapid tests for SARS CoV-2 antigen detection: Evaluation of the SD-Biosensor antigen test for SARS-CoV-2. Journal of Clinical Virology, 2020; 132:104654. DOI:10.1016/j.jcv.2020.104654. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jcv.2020.104654&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33053494&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) 255.255.Chaimayo C, Kaewnaphan B, Tanlieng N, Athipanyasilp N, Sirijatuphat R, Chayakulkeeree M, et al. Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand. Virology Journal, 2020; 17(1):177. DOI:10.1186/s12985-020-01452-5. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12985-020-01452-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33187528&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) 256.256.Corman V, Haage V, Bleicker T, Schmidt ML, Muehlemann B, Zuchowski M, et al. Comparison of seven commercial SARS-CoV-2 rapid Point-of-Care Antigen tests. The Lancet Microbe, 2020; Online First. DOI:10.1016/S2666-5247(21)00056-2. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S2666-5247(21)00056-2&link_type=DOI) 257.257.Drevinek P, Hurych J, Kepka Z, Briksi A, Kulich M, Zajac M, et al. The sensitivity of SARS-CoV-2 antigen tests in the view of large-scale testing. medRxiv [Preprint]; published November 24, 2020. DOI:10.1101/2020.11.23.20237198. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMS4yMy4yMDIzNzE5OHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 258.258.Fenollar F, Bouam A, Ballouche M, Fuster L, Prudent E, Colson P, et al. Evaluation of the Panbio Covid-19 rapid antigen detection test device for the screening of patients with Covid-19. Journal of Clinical Microbiology, 2020; 59:e02589–20. DOI:10.1128/JCM.02589-20. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNtIjtzOjU6InJlc2lkIjtzOjE0OiI1OS8yL2UwMjU4OS0yMCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA2LzE5LzIwMjEuMDIuMjYuMjEyNTI1NDYuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 259.259.Foundation for Innovative New Diagnostics. FIND Evaluation of Bionote, Inc. NowCheck COVID-19 Ag Test. External Report Version 15, 20 April 2021, 2020. 260.260.Foundation for Innovative New Diagnostics. FIND Evaluation of RapiGEN Inc. BIOCREDIT COVID-19 Ag. External Report Version 21, 10 December, 2020. 261.261.Foundation for Innovative New Diagnostics. FIND Evaluation of SD Biosensor, Inc. STANDARD™ F COVID-19 Ag FIA. External Report Version 21, 10 December, 2020. 262.262.Foundation for Innovative New Diagnostics. FIND Evaluation of SD Biosensor, Inc. STANDARD Q COVID-19 Ag Test. External Report Version 21, 10 December, 2020. 263.263.Gremmels H, Winkela BMF, Schuurmana R, Rosinghb A, Rigterc NAM, Rodriguezd O, et al. Real-life validation of the Panbio COVID-19 Antigen Rapid Test (Abbott) in community-dwelling subjects with symptoms of potential SARS-CoV-2 infection. EClinicalMedicine, 2020; 31:100677. DOI:10.1016/j.eclinm.2020.100677. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.eclinm.2020.100677&link_type=DOI) 264.264.Gupta A, Khurana S, Das R, Srigyan D, Singh A, Mittal A, et al. Rapid chromatographic immunoassay-based evaluation of COVID-19: A cross-sectional, diagnostic test accuracy study & its implications for COVID-19 management in India. Indian Journal of Medical Research, 2020; 153(1):126. DOI:10.4103/ijmr.IJMR\_3305\_20. [CrossRef](http://medrxiv.org/lookup/external-ref?access\_num=10.4103/ijmr.IJMR_3305_20&link_type=DOI) 265.265.Herrera V, Hsu V, Adewale A, Hendrix T, Johnson L, Kuhlman J, et al. Testing of Healthcare Workers Exposed to COVID19 with Rapid Antigen Detection. medRxiv [Preprint]; published August 18, 2020. DOI:10.1101/2020.08.12.20172726. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4wOC4xMi4yMDE3MjcyNnYyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 266.266.Igl⍰i Z, Velzing J, van Beek J, van de Vijver D, Aron G, Ensing R, et al. Clinical evaluation of the Roche/SD Biosensor rapid antigen test with symptomatic, non-hospitalized patients in a municipal health service drive-through testing site. Emerging Infectious Diseases, 2020; 27(5):1323–1329. DOI:10.3201/eid2705.204688. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3201/eid2705.204688&link_type=DOI) 267.267.Krüger LJ, Gaeddert M, Tobian F, Lainati F, Gottschalk C, Klein JAF, et al. Evaluation of the accuracy and ease-of-use of Abbott PanBio - A WHO emergency use listed, rapid, antigen-detecting point-of-care diagnostic test for SARS-CoV-2. medRxiv [Preprint]; published December 07, 2020. DOI:10.1101/2020.11.27.20239699. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMS4yNy4yMDIzOTY5OXYyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 268.268.Krüttgen A, Cornelissen CG, Dreher M, Hornef MW, Imöhl M, Kleinesa M. Comparison of the SARS-CoV-2 Rapid antigen test to the real star Sars-CoV-2 RT PCR kit. Journal of Virological Methods, 2020; 288:114024. DOI:10.1016/j.jviromet.2020.114024. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jviromet.2020.114024&link_type=DOI) 269.269.Lambert-Niclot S, Cuffel A, Le Pape S, Vauloup-Fellous C, Morand-Joubert L, Roque-Afonso AM, et al. Evaluation of a Rapid Diagnostic Assay for Detection of SARS-CoV-2 Antigen in Nasopharyngeal Swabs. Journal of Clinical Microbiology, 2020; 58(8):e00977–20. DOI:10.1128/jcm.00977-20. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1128/jcm.00977-20&link_type=DOI) 270.270.Linares M, Pérez-Tanoira R, Carrero A, Romanyk J, Pérez-García F, Gómez-Herruz P, et al. Panbio antigen rapid test is reliable to diagnose SARS-CoV-2 infection in the first 7 days after the onset of symptoms. Journal of Clinical Virology, 2020; 133:104659. DOI:10.1016/j.jcv.2020.104659. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jcv.2020.104659&link_type=DOI) 271.271.Lindner A, Nikolai O, Rohardt C, Burock S, Hülso C, Bölke A, et al. Head-to-head comparison of SARS-CoV-2 antigen-detecting rapid test with professional-collected nasal versus nasopharyngeal swab. European Respiratory Journal, 2020; in press. DOI:10.1183/13993003.04430-2020. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiZXJqIjtzOjU6InJlc2lkIjtzOjEyOiI1Ny81LzIwMDQ0MzAiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMS8wNi8xOS8yMDIxLjAyLjI2LjIxMjUyNTQ2LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 272.272.Lindner AK, Nikolai O, Kausch F, Wintel M, Hommes F, Gertler M, et al. Head-to-head comparison of SARS-CoV-2 antigen-detecting rapid test with self-collected nasal swab versus professional-collected nasopharyngeal swab. European Respiratory Journal, 2021; 57(4). DOI:10.1183/13993003.03961-2020. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiZXJqIjtzOjU6InJlc2lkIjtzOjEyOiI1Ny80LzIwMDM5NjEiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMS8wNi8xOS8yMDIxLjAyLjI2LjIxMjUyNTQ2LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 273.273.Liotti FM, Menchinelli G, Lalle E, Palucci I, Marchetti S, Colavita F, et al. Performance of a novel diagnostic assay for rapid SARS-CoV-2 antigen detection in nasopharynx samples. Clinical Microbiology and Infection, 2020; 27:487–488. DOI:10.1016/j.cmi.2020.09.030. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cmi.2020.09.030&link_type=DOI) 274.274.Mak GC, Lau SS, Wong KK, Chow NL, Lau CS, Lam ET, et al. Analytical sensitivity and clinical sensitivity of the three rapid antigen detection kits for detection of SARS-CoV-2 virus. Journal of Clinical Virology, 2020; 133:104684. DOI:10.1016/j.jcv.2020.104684. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jcv.2020.104684&link_type=DOI) 275.275.Mak GCK, Cheng PKC, Lau SSY, Wong KKY, Lau CS, Lam ETK, et al. Evaluation of rapid antigen test for detection of SARS-CoV-2 virus. Journal of Clinical Virology, 2020; 129:104500. DOI:10.1016/j.jcv.2020.104500. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jcv.2020.104500&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) 276.276.Merino-Amador P, Guinea J, Muñoz-Gallego I, González-Donapetry P, Galán J-C, Antona N, et al. Multicenter evaluation of the Panbio™ COVID-19 Rapid Antigen-Detection Test for the diagnosis of SARS-CoV-2 infection. Clinical Microbiology and Infection, 2020; 27(5):758–761. DOI:10.1016/j.cmi.2021.02.001. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cmi.2021.02.001&link_type=DOI) 277.277.Mertens P, De Vos N, Martiny D, Jassoy C, Mirazimi A, Cuypers L, et al. Development and Potential Usefulness of the COVID-19 Ag Respi-Strip Diagnostic Assay in a Pandemic Context. Frontiers in Medicine, 2020; 7:225. DOI:10.3389/fmed.2020.00225. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fmed.2020.00225&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) 278.278.Nalumansi A, Lutalo T, Kayiwa J, Watera C, Balinandi S, Kiconco J, et al. Field Evaluation of the Performance of a SARS-CoV-2 Antigen Rapid Diagnostic Test in Uganda using Nasopharyngeal Samples. International Journal of Infectious Diseases, 2020; article in press. DOI:10.1016/j.ijid.2020.10.073. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2020.10.073&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33130198&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) 279.279.Olearo F, Nörz D, Heinrich F, Sutter JP, Rödel K, Schultze A, et al. Handling and accuracy of four rapid antigen tests for the diagnosis of SARS-CoV-2 compared to RT-qPCR. Journal of Clinical Virology, 2020; 137:104782. DOI:10.1016/j.jcv.2021.104782. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jcv.2021.104782&link_type=DOI) 280.280.Parada-Ricart E, Gomez-Bertomeu F, Picó-Plana E, Olona-Cabases M. Usefulness of the antigen for diagnosing SARS-CoV-2 infection in patients with and without symptoms. Enfermedades Infecciosas y Microbiología Clínica, 2020; S2529–993X. DOI:10.1016/j.eimc.2020.09.009. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.eimc.2020.09.009&link_type=DOI) 281.281.Pekosz A, Cooper C, Parvu V, Li M, Andrews J, Manabe YCC, et al. Antigen-based testing but not real-time PCR correlates with SARS-CoV-2 virus culture. Clinical Infectious Diseases, 2020; ciaa1706. DOI:10.1093/cid/ciaa1706. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cid/ciaa1706&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33479756&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) 282.282.Perchetti GA, Huang ML, Mills MG, Jerome KR, Greninger AL. Analytical Sensitivity of the Abbott BinaxNOW COVID-19 Ag CARD. Journal of Clinical Microbiology, 2020; accepted manuscript posted online. DOI:10.1128/jcm.02880-20. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1128/jcm.02880-20&link_type=DOI) 283.283.Pilarowski G, Lebel P, Sunshine S, Liu J, Crawford E, Marquez C, et al. Performance characteristics of a rapid SARS-CoV-2 antigen detection assay at a public plaza testing site in San Francisco. The Journal of Infectious Diseases, 2020; 223(7):1139–1144. DOI:10.1101/2020.11.02.20223891. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1101/2020.11.02.20223891&link_type=DOI) 284.284.Porte L, Legarraga P, Iruretagoyena M, Vollrath V, Pizarro G, Munita J, et al. Rapid SARS-CoV-2 antigen detection by immunofluorescence – a new tool to detect infectivity. medRxiv [Preprint]; published October 06, 2020. DOI:10.1101/2020.10.04.20206466. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMC4wNC4yMDIwNjQ2NnYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 285.285.Porte L, Legarraga P, Vollrath V, Aguilera X, Munita JM, Araos R, et al. Evaluation of a novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples. International Journal of Infectious Diseases, 2020; 99:328–333. DOI:10.1016/j.ijid.2020.05.098. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2020.05.098&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32497809&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) 286.286.Schildgen V, Demuth S, Lüsebrink J, Schildgen O. Limits and opportunities of SARS-CoV-2 antigen rapid tests – an experience based perspective. Pathogens, 2020; 10(38). DOI:10.3390/pathogens10010038. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/pathogens10010038&link_type=DOI) 287.287.Schwob J-M, Miauton A, Petrovic D, Perdrix J, Senn N, Jaton K, et al. Antigen rapid tests, nasopharyngeal PCR and saliva PCR to detect SARS-CoV-2: a prospective comparative clinical trial. medRxiv [Preprint]; published November 24, 2020. DOI:10.1101/2020.11.23.20237057. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMS4yMy4yMDIzNzA1N3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 288.288.Scohy A, Anantharajah A, Bodeus M, Kabamba-Mukadi B, Verroken A, Rodriguez-Villalobos H. Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis. Journal of Clinical Virology, 2020; 129:104455. DOI:10.1016/j.jcv.2020.104455. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jcv.2020.104455&link_type=DOI) 289.289.Shrestha B, Neupane A, Pant S, Shrestha A, Bastola A, Rajbhandari B, et al. Sensitivity and specificity of lateral flow antigen test kits for covid-19 in asymptomatic population of quarantine centre of province 3. Kathmandu University Medical Journal, 2020; 18(2):36–39. 290.290.Takeda Y, Mori M, Omi K. SARS-CoV-2 qRT-PCR Ct value distribution in Japan and possible utility of rapid antigen testing kit. medRxiv [Preprint]; published June 19, 2020. DOI:10.1101/2020.06.16.20131243. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4wNi4xNi4yMDEzMTI0M3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 291.291.Toptan T, Eckermann L, Pfeiffer A, Hoehl S, Ciesek S, Drosten C, et al. Evaluation of a SARS-CoV-2 rapid antigen test: potential to help reduce community spread? Journal of Clinical Virology, 2020; 135:104713. DOI:10.1016/j.jcv.2020.104713. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jcv.2020.104713&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33352470&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F19%2F2021.02.26.21252546.atom) 292.292.Torres I, Poujois S, Albert E, Colomina J, Navarro D. Real-life evaluation of a rapid antigen test (Panbio COVID-19 Ag Rapid Test Device) for SARS-CoV-2 detection in asymptomatic close contacts of COVID-19 patients. Clinical Microbiology and Infection, 2020; 27(4):636.E1–636.E4. DOI:10.1016/j.cmi.2020.12.022. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cmi.2020.12.022&link_type=DOI) 293.293.Van der Moeren N, Zwart V, Lodder E, Van den Bijllaardt W, Van Esch H, Stohr J, et al. Performance evaluation of a SARS-CoV-2 rapid antigentest: test performance in the community in the Netherlands. medRxiv [Preprint]; published October 21, 2020. DOI:10.1101/2020.10.19.20215202. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMC4xOS4yMDIxNTIwMnYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 294.294.Veyrenche N, Bollore K, Pisoni A, Bedin AS, Mondain AM, Ducos J, et al. Diagnosis value of SARS-CoV-2 antigen/antibody combined testing using rapid diagnostic tests at hospital admission. Journal of Medical Virology, 2020; 39(5):3069–3076. DOI:10.1002/jmv.26855. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jmv.26855&link_type=DOI) 295.295.Weitzel T, Legarraga P, Iruretagoyena M, Pizarro G, Vollrath V, Araos R, et al. Comparative evaluation of four rapid SARS-CoV-2 antigen detection tests using universal transport medium. Travel Medicine and Infectious Disease, 2020; 39:101942. DOI:10.1016/j.tmaid.2020.101942. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.tmaid.2020.101942&link_type=DOI) 296.296.Young S, Taylor SN, Cammarata CL, Varnado KG, Roger-Dalbert C, Montano A, et al. Clinical evaluation of BD Veritor SARS-CoV-2 point-of-care test performance compared to PCR-based testing and versus the Sofia 2 SARS Antigen point-of-care test. Journal of Clinical Microbiology, 2020; 59(1). DOI:10.1128/jcm.02338-20. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1128/jcm.02338-20&link_type=DOI) 297.297.Kissler SM, Fauver JR, Mack C, Olesen SW, Tai C, Shiue KY, et al. SARS-CoV-2 viral dynamics in acute infections. medRxiv [Preprint]; published December 02, 2020. DOI:10.1101/2020.10.21.20217042. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4xMC4yMS4yMDIxNzA0MnYzIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 298.298.Lee S, Kim T, Lee E, Lee C, Kim H, Rhee H, et al. Clinical Course and Molecular Viral Shedding Among Asymptomatic and Symptomatic Patients With SARS-CoV-2 Infection in a Community Treatment Center in the Republic of Korea. JAMA Internal Medicine, 2020; 180(11):1447–1452. DOI:10.1001/jamainternmed.2020.3862. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamainternmed.2020.3862&link_type=DOI) 299.299.Kociolek LK, Muller WJ, Yee R, Dien Bard J, Brown CA, Revell PA, et al. Comparison of Upper Respiratory Viral Load Distributions in Asymptomatic and Symptomatic Children Diagnosed with SARS-CoV-2 Infection in Pediatric Hospital Testing Programs. Journal of Clinical Microbiology, 2020; 59(1). DOI:10.1128/JCM.02593-20. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNtIjtzOjU6InJlc2lkIjtzOjE0OiI1OS8xL2UwMjU5My0yMCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA2LzE5LzIwMjEuMDIuMjYuMjEyNTI1NDYuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 300.300.Turner F, Vandenberg A, Slepnev VI, Car S, Starritt RE, Seger MV, et al. Post-Disease Divergence in SARS-CoV-2 RNA Detection between Nasopharyngeal, Anterior Nares and Saliva/Oral Fluid Specimens - Significant Implications for Policy & Public Health. medRxiv [Preprint]; published January 26, 2021. DOI:10.1101/2021.01.26.21250523. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMS4wMS4yNi4yMTI1MDUyM3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDYvMTkvMjAyMS4wMi4yNi4yMTI1MjU0Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 301.301.Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. British Medical Journal, 2015; 351:h5527. DOI:10.1136/bmj.h5527. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE3OiIzNTEvb2N0MjhfMS9oNTUyNyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA2LzE5LzIwMjEuMDIuMjYuMjEyNTI1NDYuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 302.302.Paul-Ehrlich-Institute. Comparative evaluation of the sensitivities of SARSCoV-2 antigen rapid tests Langen: Federal Institute for Vaccines and Biomedicines; 2020.