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Abstract	

Key	to	curtailing	the	COVID-19	pandemic	are	wide-scale	testing	strategies1,2.	An	ideal	test	is	

one	that	would	not	rely	on	transporting,	distributing,	and	collecting	physical	specimens.	Given	

the	 olfactory	 impairment	 associated	with	 COVID-193-7,	 we	 developed	 a	 novel	measure	 of	

olfactory	perception	that	relies	on	smelling	household	odorants	and	rating	them	online.	We	

tested	the	performance	of	this	real-time	tool	in	12,020	participants	from	134	countries	who	

provided	171,500	perceptual	ratings	of	60	different	household	odorants.	We	observed	that	

olfactory	ratings	were	indicative	of	COVID-19	status	in	a	country,	significantly	correlating	with	

national	 infection	 rates	 over	 time.	More	 importantly,	 we	 observed	 remarkable	 indicative	

power	at	the	individual	level	(90%	sensitivity	and	80%	specificity).	Critically,	olfactory	testing	

remained	 highly	 effective	 in	 participants	 with	 COVID-19	 but	 without	 symptoms,	 and	 in	

participants	 with	 symptoms	 but	 without	 COVID-19.	 In	 this,	 the	 current	 odorant-based	

olfactory	test	stands	apart	from	symptom-checkers	(including	olfactory	symptom-checkers)3,	

and	even	from	antigen	tests8,	to	potentially	provide	a	first	line	of	screening	that	can	help	halt	

disease	progression	at	the	population	level.		
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RESULTS	

Olfactory	perception	indicates	on	levels	of	COVID-19	infection	at	the	population	level	

We	 built	 an	 online	 tool	 (www.smelltracker.org)	 where	 each	 participant	 selected	 5	 of	 71	

possible	household	odorants	(Extended	Data	Table	1),	and	then	smelled	and	rated	each	using	

visual-analogue	 scales	 for	 perceived	 intensity	 and	 pleasantness,	 namely	 the	 primary	

dimensions	of	olfactory	perception9.	Participants	also	completed	a	common	symptom-check	

(reporting	on	fever,	cough,	subjective	loss	of	taste	and	smell,	etc),	and	reported	on	any	formal	

COVID-19	testing	they	had	undergone.	Participants	could	generate	a	user-name	to	track	their	

own	performance	over	time,	but	the	tool	was	otherwise	completely	anonymous	to	protect	

user	privacy10.		

	

Between	 the	dates	of	March	25th	2020	and	September	23rd	2020,	we	collected	data	 from	

12,020	individuals	(7,189	Women,	mean	age	=	44.32	±	14.28,	4,831	Men,	mean	age	=	45.23	±	

15.29)	(Extended	Data	Figure	1A),	residing	in	134	countries	(Extended	Data	Figure	1B,	1C).	Of	

these,	 348	 participants	 reported	 positive	 COVID-19	 test	 results	 (C19+),	 400	 participants	

reported	 negative	 test	 results	 (C19-),	 and	 the	 COVID-19	 status	 of	 the	 remaining	 11,272	

participants	was	unknown	(C19-UD)	(Extended	Data	Figure	1D).	The	presence	of	at	least	one	

disease	symptom	was	reported	by	91.1%	of	C19+	participants,	55.3%	of	C19-	participants,	and	

55%	of	C19-UD	participants	(Extended	Data	Figure	1E).	Participants	could	use	the	online	tool	

repeatedly,	yet	10,103	participants	(84%)	used	it	only	once,	1,130	participants	(9.4%)	used	it	

twice,	and	the	remaining	6.6%	of	participants	used	it	various	number	of	times	(Extended	Data	

Figure	1F).	In	total,	the	12,020	participants	provided	171,500	ratings	applied	to	60	different	

odorants	 (i.e.,	 11	 odorants	 were	 never	 rated)	 (The	 entire	 raw	 data	 file	 is	 available	 in	

Supplementary	Data	File	1).		

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.18.21251422doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.18.21251422


Snitz	et	al	

	 4	

	
Extended	Data	Figure	1.	Characterization	of	12,020	participants		

A.	Age	and	gender	distribution	of	participants.	B.	Number	of	participants	and	their	COVID-19	

status	 from	 the	10	highest-participation	 countries	 (see	 comment	on	 India	 in	Methods).	C.	
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Geographical	 distribution	 of	 respondents,	 each	 dot	 is	 a	 participant,	 overlapping	 dots	 not	

shown	to	maintain	clarity.	D.	The	distribution	of	C19+,	C19-,	and	C19-UD	in	the	sample.	E.	

Distribution	 of	 number	 of	 somatic	 symptoms	 reported	 by	 participants.	 F.	 Distribution	 of	

number	of	submissions	per	participant.	

	

To	probe	for	any	gross	differences	in	olfactory	perception	between	C19+,	C19-,	and	C19-UD,	

we	plotted	their	overall	odorant	intensity	and	pleasantness	estimations	(Figure	1A,	1B,	1C).	

Consistent	 with	 previous	 reports3-7,	 these	 gross	 plots	 revealed	 pronounced	 differences	

between	 groups	 in	 intensity	 (two-sided	 Kolmogorov-Smirnov,	 D	 =	 0.45,	 p	 =	 3.96e-233,	

corrected)	 and	 pleasantness	 (D	 =	 0.31,	 p	 =	 2.36e-114,	 corrected)	 (Figure	 1A,	 1B,	 1C).	 To	

provide	a	finer-grain	view	of	this,	we	examined	individual	odorants,	restricting	our	analysis	to	

odorants	 that	 were	 rated	 by	 at	 least	 25	 C19+,	 thus	 retaining	 23	 odorants.	 Because	 a	

Kolmogorov-Smirnov	 normality	 of	 distribution	 test	 revealed	 that	 data	 for	 some	 of	 the	

odorants	was	not	normally	distributed,	we	proceeded	with	a	non-parametric	approach.	A	Chi	

Squared	test	comparing	C19+	and	C19-	ratings	was	significant	for	each	of	the	23	odorants	(all	

Chi	Square	>	7.6,	all	p	<	0.0058,	all	Eta	squared	effect	size	>	0.08)	(Figure	1D),	and	the	same	

test	on	pleasantness	ratings	was	significant	for	17	of	the	23	odorants	(all	Chi	Square	>	8.69,	

all	p	<	0.0188,	all	Eta	squared	effect	 size	>	0.02)	 (Figure	1E)	 (we	note	 that	 replicating	 this	

analysis	using	a	parametric	analysis	of	variance	yielded	nearly	identical	results).		
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Figure	1.	Olfactory	perception	indicates	on	levels	of	COVID-19	infection	at	the	population	

level	

For	A-C,	each	dot	is	an	odorant	rating,	aligned	for	its	pleasantness	and	intensity	estimates:	A.	

All	ratings	from	C19+	participants	(n	=	2670	ratings).	B.	All	ratings	from	C19-	participants	(n	=	

2580	 ratings).	 C.	 All	 ratings	 from	 C19-UD	 participants	 (n	 =	 80,500	 ratings).	 D.	 Intensity	

estimates	for	the	23	odorants	that	were	each	rated	by	at	least	25	C19+	participants,	ordered	

by	effect-size	from	low	(left)	to	high	(right).	E.	Pleasantness	estimates	for	the	23	odorants	that	
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were	each	rated	by	at	least	25	C19+	participants,	ordered	by	effect-size	from	low	(left)	to	high	

(right).	C19+	in	red,	C19-	in	blue,	and	C19-UD	in	black.	Error	bars	are	SEM.		

	

Having	observed	that,	consistent	with	previous	reports3-7,	these	gross	measures	of	perception	

implied	altered	olfaction	in	COVID-19,	we	asked	whether	they	were	related	to	the	COVID-19	

status	over	time	in	the	different	countries	where	we	collected	data.	Consistent	with	an	initial	

analysis11,	we	concentrated	on	odorant	intensity	estimates	in	this	global	analysis,	and	limited	

this	to	countries	with	at	least	250	respondents	of	which	at	least	10	were	formally	diagnosed.	

This	limited	us	to	8	countries,	where	country-specific	rates	of	COVID-19	infection	over	time	

were	 obtained	 from	 The	 Johns	 Hopkins	 University	 Coronavirus	 Resource	 Center12.	 We	

observed	a	significant	relationship	between	overall	group-level	odorant	intensity	ratings	and	

daily	rates	of	COVID-19.	More	specifically,	mean	intensity	ratings	and	COVID-19	prevalence	

were	 significantly	 correlated	 in	 7	 out	 of	 8	 countries	 (Sorted	 by	 Pearson	 correlation	 FDR	

corrected:	 Israel:	n	=	2734,	 r	=	0.68,	p	<	0.0001	 ;	Sweden:	n	=	6133,	 r	=	0.55,	p	<	0.0001;	

Portugal:	n	=	685,	r	=	0.47,	p	<	0.0001;	Brazil:	n	=	764,	r	=	0.39,	p	<	0.0001;	UK:	n	=	290,	r	=	

0.26,	p	=	0.0011;	Japan	n	=	290,	r	=	0.25,	p	=	0.0011;	USA:	n	=	2276,	r	=	0.25,	p	=	0.0011;	

France:	n	=	655,	r	=	-0.14,	p	=	0.09)	(Figure	2).	Although	the	country-specific	sample	sizes	are	

not	overwhelming	in	this	sub-analysis,	these	results	imply	that	olfactory	testing	can	augment	

symptom-tracking13	to	aid	country-level	rapid	policy	decisions	related	to	the	spread	of	COVID-

19.	
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Figure	 2.	Odorant	 intensity	 estimates	 correlated	with	 national	 COVID-19	 infection	 rates	

over	time	

Each	panel	depicts	the	correlation	between	intensity	estimates	and	national	levels	of	COVID-

19	for	the	given	country	noted	at	the	top	of	the	panel.	Blue	line:	mean	daily	additive	inverse	

intensity	ratings.	Dashed	blue	line:	shifted	additive	inverse	intensity	time-series,	after	finding	
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the	peak	 lag	using	 cross	 correlation	 (see	Methods).	Black	 line:	number	of	daily	 confirmed	

cases	in	each	country.	Note	that	when	the	lag	is	close	to	zero,	then	the	dashed	and	solid	blue	

lines	align	and	overlap.		

	

Olfactory	perception	indicates	on	COVID-19	at	the	individual	level	

Having	observed	that	olfaction	provides	for	an	indication	on	levels	of	COVID-19	infection	at	

the	 country	 level,	we	next	 asked	whether	 it	 can	provide	 an	 indication	on	COVID-19	 in	 an	

individual.	 Given	 the	 primacy	 of	 intensity	 estimates	 at	 the	 populational	 level,	 we	 initially	

concentrated	on	those.	We	continued	with	the	23	odorants	that	were	rated	by	at	 least	25	

C19+	participants.	These	ranged	in	usage	from	the	odorant	‘black	pepper	ground’	that	had	

the	smallest	number	of	positively	diagnosed	raters	at	only	26	C19+	and	43	C19-	participants,	

to	 the	 odorant	 ‘your	 toothpaste’	 that	 was	 rated	 by	 as	 much	 as	 336	 C19+	 and	 330	 C19-	

participants.	 We	 then	 plotted	 receiver	 operator	 curves	 (ROCs)	 to	 gauge	 the	 potential	

classification	 power	 of	 intensity	 estimates	 associated	 with	 each	 of	 these	 odorants.	 We	

observed	 remarkable	 classification	 potential,	 with	 7	 odorants	 generating	 ROCs	 with	 area	

under	the	curve	(AUC)	greater	than	0.8	(Figure	3a,	3b).	Most	remarkable	was	the	odorant	

Basil,	 with	 an	 AUC	 of	 0.91.	 ROC	 classification	 success	 can	 be	 estimated	 at	 different	 true	

positive	(sensitivity)	rates	selected	by	the	observer.	For	context	on	sensitivity,	we	consider	

antigen	tests,	as	these	are	promoted	as	a	cheaper	and	more	available	alternative	to	RT-PCR,	

and	have	been	directly	 compared	 to	 the	 latter.	 Antigen	 tests	 have	obtained	 sensitivity	 of	

30.2%	in	direct	comparison	to	RT-PCR8	(although	better	results	have	been	reported14,	they	

have	also	been	questioned15).	In	the	case	of	the	above	Basil-derived	ROC,	at	a	true	positive	

rate	of	62%	(namely	double	that	of	antigen	tests,	and	on	par	with	lower-bound	estimates	for	

RT-PCR	 itself16),	 we	 retain	 a	 remarkably	 low	 5%	 false	 positive	 rate,	 translating	 to	 62%	

sensitivity	and	95%	specificity	(95%	confidence	on	sensitivity:	43%-80%,	95%	confidence	on	

specificity:	 75%-100%,	 p	 =	 0.03	 corrected,	 PPV	 =	 0.94,	NPV	 =	 0.65,	Matthews	 Correlation	

Coefficient	=	0.58)	in	detecting	COVID-19	using	intensity	estimates	of	the	odorant	Basil	alone.	

In	 turn,	 at	 a	more	 conservative	 true	 positive	 rate	 of	 79%,	we	 retain	 a	modest	 13%	 false	

positive	rate,	translating	to	79%	sensitivity	and	87%	specificity	(95%	confidence	on	sensitivity:	

63%-92%,	95%	confidence	on	specificity:	67%-97%,	p	=	0.0043	corrected,	PPV	=	0.88,	NPV	=	

0.76,	 Matthews	 Correlation	 Coefficient	 =	 0.65).	 In	 other	 words,	 using	 this	 approach	 we	

correctly	 classify	42	of	51	COVID-tested	 individuals	who	smelled	Basil.	One	may	note	 that	
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selecting	a	79%	true	positive	rate	still	implies	a	21%	false	negative	rate,	and	this	is	potentially	

costly.	This	balance	reflects	a	question	of	policy,	and	favoring	a	low	false	negative	rate	may	

be	preferred	in	this	pandemic17.	With	that	in	mind,	we	observe	that	if	we	select	a	97%	true	

positive	rate,	we	incur	a	27%	false	positive	rate,	reflecting	97%	sensitivity	and	73%	specificity	

(95%	 confidence	 on	 sensitivity:	 79%-100%,	 95%	 confidence	 on	 specificity:	 50%-89%,	 p	 <	

0.00001	corrected,	PPV	=	0.63,	NPV	=	0.85,	Matthews	Correlation	Coefficient	=	0.342).	This	

reflects	a	remarkable	3%	false	negative	rate,	well	within	the	optimal	goal	of	testing17.		

	

	
Figure	3.	Single	odorant	intensity	estimates	indicate	on	COVID-19	at	the	individual	level		

A.	ROCs	based	on	intensity	estimates	of	23	odorants	obtained	from	C19+	vs	C19-	participants.	

B.	The	AUC	for	each	odorant,	with	the	number	of	C19+/C19-	participants	above	each	bar.	C.	

ROCs	based	on	intensity	estimates	of	23	odorants	obtained	from	C19+	vs	C19-	and	C19-UD	

combined	participants.	D.	The	AUC	for	each	odorant,	with	the	number	of	C19+/C19-	and	C19-

UD	participants	above	each	bar.	
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A	limitation	of	the	above	result	is	that	it	relies	on	a	significantly	restricted	subset	of	our	data,	

namely	tested	individuals	who	also	smelled	Basil.	To	overcome	this,	we	recalculated	ROCs,	

now	comparing	between	C19+	and	all	other	participants	 (C19-	combined	with	C19-UD).	 In	

other	words,	we	assumed	that	untested	individuals	are	not	sick	with	COVID-19.	Although	this	

comparison	may	be	weakened	by	unidentified	C19+	individuals	within	the	C19-UD	cohort	(i.e.,	

this	works	against	us),	it	allows	for	significantly	greater	sample	sizes	per	odorant.	Once	again,	

we	observe	remarkable	ROCs,	with	4	odorants	generating	ROCs	with	AUCs	greater	than	0.79	

(Figure	3c,	3d).	The	strongest,	namely	Cumin,	had	an	AUC	of	0.83.	This	implies	that	we	could	

use	 intensity	 estimates	 of	 the	 odorant	 Cumin	 alone	 to	 identify	 COVID-19,	 and	 at	 a	 true	

positive	rate	of	77%,	we	retain	a	16%	false	positive	rate,	translating	to	77%	sensitivity	and	

84%	specificity	(95%	confidence	on	sensitivity:	62%-88%,	95%	confidence	on	specificity:	50%-

89%,	 p	 <	 0.00001	 corrected,	 PPV	 =	 0.11,	 NPV	 =	 0.99,	Matthews	 Correlation	 Coefficient	 =	

0.256).	Although	Cumin	had	the	largest	AUC	in	this	analysis,	it	was	rated	by	1,424	participants	

overall,	and	of	these	only	40	participants	were	C19+.	Similar	numbers	were	evident	 in	the	

second-best	AUC,	namely	Apple	Vinegar.	However,	the	third	best	AUC,	namely	Olive	Oil,	was	

rated	by	5,167	participants,	of	which	120	were	C19+.	This	significant	number	of	raters	merits	

concentrating	on	Olive	Oil	as	a	model	odorant	for	what	this	single-odorant	approach	might	

achieve.	We	observe	that	Olive	Oil	had	an	AUC	of	0.79,	and	if	we	use	intensity	estimates	of	

Olive	Oil	alone	 to	 identify	COVID-19,	at	a	 true	positive	 rate	of	77%,	we	retain	a	28%	false	

positive	rate,	translating	to	77%	sensitivity	and	72%	specificity	(95%	confidence	on	sensitivity:	

68%-84%,	95%	confidence	on	specificity:	70%-73%,	p	<	0.00001	corrected,	PPV	=	0.06,	NPV	=	

0.99,	Matthews	Correlation	Coefficient	=	0.16).	

	

These	 results	 raise	 the	 tantalizing	 possibility	 of	 rapidly	 detecting	 COVID-19	 by	 rating	 the	

perceived	intensity	of	one	odorant,	such	as	Basil	or	Olive	Oil,	alone.	Moreover,	we	observe	

that	if	we	generate	ROCs	for	the	same	5,167	participants	that	smelled	Olive	Oil,	but	base	them	

on	their	subjective	reported	symptoms	(fever,	cough,	etc.,	including	subjective	loss	in	sense	

of	smell	and	taste)3	rather	than	on	their	objective	sense	of	smell,	we	obtain	a	ROC	AUC	of	

0.77	(Figure	4a).	Using	this	symptom-based	ROC	AUC	of	0.77,	at	a	true	positive	rate	of	79%,	

we	retain	a	32%	false	positive	rate,	translating	to	79%	sensitivity	and	68%	specificity	(95%	

confidence	on	 sensitivity:	 71%-85%,	95%	confidence	on	 specificity:	 67%-70%,	p	<	0.00001	
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corrected,	PPV	=	0.05,	NPV	=	0.99,	Matthews	Correlation	Coefficient	=	0.15).	Although	this	

result	is	weaker	than	the	olfaction-based	ROC	AUC	of	0.79	obtained	in	the	same	individuals,	

this	difference	is	not	significant	(StAR	analysis	for	comparing	ROCs18,	AUC	difference	=	0.02,	p	

=	0.29).	

	
Figure	4.	Olfactory	testing	is	more	effective	than	symptom	checking	

A.	 ROCs	 for	all	 participants	who	 smelled	Olive	Oil	 (n	=	5,167	participants),	based	on	odor	

intensity	(blue)	or	reported	symptoms	(red).	B.	ROCs	for	all	participants	who	smelled	Olive	Oil	

and	 had	 symptoms	 (n	 =	 2,627	 participants),	 based	 on	 odor	 intensity	 (blue)	 or	 reported	

symptoms	(red).	C.	ROCs	for	all	participants	who	had	no	symptoms	(n	=	7,740	participants),	

based	on	odor	intensity	(blue)	or	reported	symptoms	(red).	D.	ROCs	based	on	the	olfactory	

perceptual	fingerprint	(blue)	or	symptom	reports	(red)	(test-set	n	=	60	participants).	E.	ROCs	

based	 on	 the	 olfactory	 perceptual	 fingerprint	 (blue)	 or	 symptom	 reports	 (red),	 when	 all	

participants	 are	 symptomatic	 (test-set	 n	 =	 60	 participants).	 Error	 bars	 on	 the	 ROCs:	 95%	

pointwise	confidence	interval.	Error	bars	for	the	AUC:	Confidence	interval	derived	standard	

deviation.	
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Does	this	minimal	difference	(Figure	4A)	 imply	that	single-odorant	olfactory	testing	has	no	

advantage	over	symptom	checking?	Although	some	symptom	checkers	have	reported	even	

stronger	results	than	those	we	obtain	here19,	there	are	two	critical	points	where	symptom-

checking	alone	largely	fails.	One	such	point	is	with	individuals	who	all	have	somatic	symptoms	

such	 as	 fever,	 etc.,	 but	 don’t	 have	 COVID-19.	 Here	 symptom-checkers	 cannot	 avoid	 false	

positives.	To	address	this	specific	point,	we	restricted	our	analysis	to	only	participants	that	

reported	symptoms.	This	retained	115	C19+	symptomatic	participants	and	2,512	other,	yet	

also	symptomatic	participants	who	smelled	Olive	Oil.	Here	symptoms	alone	gave	rise	to	a	ROC	

AUC	of	0.59.	In	turn,	we	observe	that	the	Olive	Oil	derived	ROC	in	these	same	participants	has	

an	AUC	of	0.70,	which	is	significantly	better	(StAR	analysis	for	comparing	ROCs,	AUC	difference	

=	 0.11,	 p	 =	 0.00022)	 (Figure	 4b).	 Thus,	 if	we	use	 intensity	 estimates	 of	Olive	Oil	 alone	 to	

identify	COVID-19	in	uniformly	symptomatic	populations,	at	a	true	positive	rate	of	75%,	we	

retain	 a	 40%	 false	 positive	 rate,	 translating	 to	 75%	 sensitivity	 and	 60%	 specificity	 (95%	

confidence	on	 sensitivity:	 66%-82%,	95%	confidence	on	 specificity:	 58%-62%,	p	<	0.00001	

corrected,	PPV	=	0.08,	NPV	=	0.98,	Matthews	Correlation	Coefficient	=	0.14).		

	

A	 second	 point	 where	 symptom-checkers	 fail	 is	 at	 individuals	 who	 have	 COVID-19,	 but	

absolutely	no	somatic	symptoms.	Here	symptom-checkers	cannot	avoid	false	negatives.	 In	

addressing	this	specific	point,	we	are	restricted	by	power.	This	is	because	we	have	only	one	

participant	who	was	C19+,	smelled	olive	oil,	and	was	completely	asymptomatic.	To	overcome	

this,	we	use	a	method	that	allows	us	to	compare	subjects	across	odorants,	thus	retaining	all	

33	C19+	completely	asymptomatic	and	7707	other	completely	asymptomatic	participants	in	

our	study.	 In	brief,	here	we	first	create	a	combined	 intensity-probability	measure	for	each	

participant.	This	measure	is	generated	by	first	converting	the	intensity	ratings	of	each	odorant	

into	probability	 scores	based	on	 the	number	of	 participants	who	 rated	 the	 same	odorant	

lower	than	the	given	value.	The	result	of	this	step	is	that	each	participant’s	5	intensity	ratings	

can	be	measured	on	a	probability	scale.	Next,	each	participant’s	5	probability	intensity	scores	

were	multiplied	to	produce	a	combined	intensity	probability	score	for	each	participant.	This	

last	number	reflects	the	likelihood	of	the	participant	to	rate	his/her	selected	odorants	lower	

than	 other	 participants.	 We	 then	 generated	 a	 ROC	 based	 on	 the	 participant's	 combined	

intensity	 probability	 score.	 The	 symptoms-based	 ROC	 AUC	 in	 these	 participants	 is,	 by	

definition,	0.5,	as	they	reported	no	symptoms.	In	turn,	the	odorant	intensity	derived	ROC	AUC	
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was	0.74,	a	significantly	better	classifier	(StAR	analysis	for	comparing	ROCs,	AUC	difference	=	

0.24,	p	<	0.0001)	 (Figure	4C).	Thus,	using	odorant	 intensity	 in	 these	participants,	at	a	 true	

positive	rate	of	67%,	we	retain	a	30%	false	positive	rate,	translating	to	67%	sensitivity	and	

70%	specificity	(95%	confidence	on	sensitivity:	48%-82%;	95%	confidence	on	specificity:	69%-

71%;	p	<	0.00001	corrected,	PPV	=	0.01	NPV	=	0.99	Matthews	Correlation	Coefficient	=	0.05).	

These	 results	 are	 not	 as	 strong	 as	 the	 previous	 results	 in	 this	 manuscript,	 but	 they	

nevertheless	reflect	the	only	remote	online	method	we	are	aware	of	that	can	discriminate	

between	 completely	 asymptomatic	 C19+	 and	 other	 asymptomatic	 individuals.	 In	 this,	

combined	with	the	strong	discrimination	between	symptomatic	C19+	and	other	symptomatic	

individuals,	 olfactory	 testing	with	 household	 odorants	may	 be	 the	most	 effective	method	

currently	available	for	remote	self-testing	of	COVID-19.	

	

Olfactory	Perceptual	Fingerprints	Outperform	Symptom	Checkers		

Despite	 the	 undeniable	 attractiveness	 of	 the	 above	 simple	 measure,	 namely	 rating	 the	

intensity	of	a	single	odorant,	we	appreciate	its	real-world	limitations.	First	are	its	susceptibility	

to	top-down	pressures	and	the	influence	of	experience.	Most	people	who	would	use	a	tool	

made	of	a	single-odorant	intensity	estimation	would	understand	full-well	that	if	they	report	

a	lower	intensity,	they	are	more	likely	to	be	determined	as	C19+.	This	knowledge	can	influence	

performance	in	line	with	the	results	the	user	“wants”,	whether	knowingly	or	unknowingly.	

Furthermore,	even	without	this	pressure,	 if	a	person	is	self-testing	regularly,	they	will	very	

soon	 “know”	 the	 intensity	 of	 the	 odorant,	 and	will	 therefore	 be	 hesitant	 to	 change	 their	

learned	 response.	 Second,	 several	 lines	 of	 evidence	 imply	 not	 only	 reduced	 olfactory	

sensitivity	in	COVID-19,	but	also	altered	or	shifted	olfactory	perception20.	Such	shifts	may	not	

always	be	reflected	in	a	simple	intensity	measure,	but	are	reflected	in	a	recently	developed	

measure	termed	the	olfactory	perceptual	fingerprint	(OPF)21,22.	OPFs	reflect	the	perceptual	

distances	between	odorants	within	a	multi-dimensional	perceptual	space.	In	other	words,	the	

measure	 does	 not	 ask	 how	 olive	 oil	 smells	 independently,	 or	 how	 Cumin	 smells	

independently,	 but	 rather	 how	 does	Olive	Oil	 compare	 to	 Cumin,	 and	 so	 on	 for	 as	many	

odorants	 used	 to	 derive	 the	measure.	 Thus,	 an	 OPF	 reflects	 how	 the	world	 smells	 to	 an	

individual21,22.	In	contrast	to	an	intensity	estimate,	users	don’t	have	an	intuitive	sense	of	what	

goes	 into	 generating	 this	 perceptual	 measure,	 yet	 it	 remains	 highly	 informative21,22.	 In	

calculating	OPFs	for	the	current	data	we	face	the	following	tradeoff:	OPFs	are	more	powerful	
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when	they	are	based	on	a	greater	number	of	odorants.	In	turn,	the	odorants	must	be	common	

across	participants,	so	if	we	choose	to	rely	on	a	large	number	of	odorants,	we	will	be	left	with	

a	 small	 number	 of	 participants.	 Given	 that	 a	 4-odorant	 OPF	 was	 sufficient	 to	 categorize	

individuals	in	a	manner	that	was	related	to	genetic	traits21,	we	stuck	to	this	number.	The	4	

odorants	with	most	participants	in	the	current	data	were	‘Your	toothpaste',	'Vanilla	extract',	

'Garlic,	freshly	chopped'	and	'Peanutbutter',	which	were	rated	by	90	C19+	participants	and	36	

C19-	participants.	A	given	OPF	was	made	of	all	pairwise	distances	between	these	4	odorants	

within	 the	 pleasantness-intensity	 space.	We	 then	 applied	 an	 SVM	 classifier	 to	 the	 OPFs,	

training	the	classifier	on	one	set,	and	testing	on	another.	We	repeated	this	process	500	times	

for	different	selections	of	training	and	testing	sets	(we	assured	that	the	testing	set	was	made	

of	raters	who	participated	only	once,	so	as	to	prevent	any	double-dipping).	The	symptoms-

based	ROC	AUC	in	these	same	participants	was	0.69.	In	turn,	the	OPF-derived	ROC	AUC	was	

0.86,	 a	 significantly	 better,	 and	 impressively	 strong	 classifier	 (StAR	 analysis	 for	 comparing	

ROCs,	 AUC	 difference	 =	 0.17,	 p	 <	 0.00001)	 (Figure	 4D).	 In	 other	 words,	 unlike	 the	 single	

odorant	 (Figure	 4A),	 the	 OPF	 provides	 a	meaningful	 advantage	 above	 symptom-checking	

overall.	Here,	at	a	true	positive	rate	of	90%,	we	retain	a	20%	false	positive	rate,	translating	to	

90%	sensitivity	and	80%	specificity	(95%	confidence	on	sensitivity:	80%-99%,	95%	confidence	

on	specificity:	62%-98%;	p	<	0.00001	corrected,	PPV	=	0.9,	NPV	=	0.8,	Matthews	Correlation	

Coefficient	=	0.7).	Thus,	we	correctly	classify	52	of	60	participants	in	the	testing	set	using	this	

method.		

	

Next,	to	further	gauge	the	potential	advantage	of	the	OPF,	we	again	restrict	our	analysis	to	

participants	with	symptoms	only.	Given	the	double	restriction	of	participants	who	all	smelled	

the	same	four	odorants,	and	all	had	symptoms,	this	analysis	retained	only	95	participants.	

Nevertheless,	the	symptoms-based	ROC	AUC	in	these	participants	was	0.55.	In	turn,	the	OPF-

derived	ROC	AUC	was	0.89,	again	a	significantly	better	classifier	(StAR	analysis	for	comparing	

ROCs,	AUC	difference	=	0.34,	p	<	0.00001)	(Figure	4E).	Here,	at	a	true	positive	rate	of	82%,	we	

retain	 a	 15%	 false	 positive	 rate,	 translating	 to	 82%	 sensitivity	 and	 85%	 specificity	 (95%	

confidence	 on	 sensitivity:	 71%-93%,	 95%	 confidence	 on	 specificity:	 65%-100%;	 p	 <	 0.001	

corrected,	PPV	=	0.91,	NPV	=	0.70,	Matthews	Correlation	Coefficient	=	0.64).	In	other	words,	

we	correctly	classify	50	of	60	participants	 in	 the	 testing	set	using	 this	method.	Finally,	we	

avoid	comparing	symptom-checking	to	OPF	in	an	all	non-symptomatic	cohort,	because	this	
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split	 of	 the	 data	 did	 not	 retain	 sufficient	 numbers	 for	 then	 running	 separate	 training	 and	

testing	groups.		

	

Given	that	OPFs	overcome	two	meaningful	 real-world	 limitations	associated	with	 intensity	

ratings	alone	(top-down	influence,	and	measuring	parosmia,	namely	shifted	perception),	and	

unlike	 single	 odorant	 intensity	 ratings,	 also	 significantly	 outperform	 symptom	 checking	

overall	(Figure	4A	vs.	4D),	we	think	this	should	remain	the	olfaction-based	measure	of	choice	

in	reducing	the	findings	of	this	study	to	a	helpful	practice.		

	

	

Discussion	

There	 is	 general	 agreement	 that	 improved	 testing	 schemes	 are	 critical	 towards	managing	

COVID-19	at	the	population	level.	However,	most	tests	require	transportation,	either	of	the	

person	to	the	test,	or	of	the	test	to	the	person.	Moreover,	most	testing	methods	then	require	

additional	 transportation	 of	 the	 testing	 material,	 typically	 to	 a	 lab	 for	 processing.	 Such	

transportation	is	a	complicating	factor	even	in	the	best	of	times,	yet	now	concurrent	with	an	

effort	 to	 transport	 vaccines,	 this	 poses	 even	 greater	 stress	 on	 national	 health	 systems.	

Moreover,	once	all	this	transportation	is	complete,	there	still	remains	the	processing	time	of	

the	test,	time	during	which	infected	individuals	may	continue	to	spread	the	disease.	Finally,	

beyond	all	this	there	is	the	matter	of	cost	and	limited	availability	for	molecular	tests.	All	this	

renders	the	notion	of	an	online	test	incredibly	appealing23.	This	need	has	been	partially	met	

with	online	symptom	checkers.	These	have	obtained	some	very	impressive	results3,19,	yet	as	

previously	noted,	they	inherently	all-out	fail	at	two	critical	points:	One	is	in	individuals	who	

are	ill,	but	not	with	COVID-19.	If	an	individual	has	a	cough,	fever,	and	a	headache,	symptom-

checkers	will	most	likely	estimate	them	to	have	COVID-19.	In	turn,	a	person	who	has	COVID-

19	but	absolutely	no	somatic	symptoms,	will	go	unnoticed	by	symptom-checkers.	The	latter	

type	error	is	of	course	far	more	dire	than	the	former	in	this	case,	as	these	people	will	continue	

to	spread	the	disease	unknowingly.	Here	we	observe	that	olfactory	testing,	and	particularly	

the	OPF,	remains	effective	at	both	these	end	points:	correctly	classifying	individuals	who	are	

ill	but	not	with	COVID-19,	and	individuals	who	have	COVID-19	but	aren’t	ill.	In	this	respect,	

olfactory	testing	makes	for	a	powerful	and	unique	remote	tool.						
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That	 olfaction	 serves	 as	 such	 a	 strong	 indicator	 of	 COVID-19	 suggests	 that	 the	 olfactory	

impairment	may	be	related	to	some	fundamental	aspect	of	this	disease.	Nevertheless,	the	

mechanism	by	which	the	SARS-CoV-2	virus	or	the	COVID-19	disease	impact	olfaction	remains	

unknown24.	 The	 effect	 may	 be	 peripheral,	 reflecting	 epithelial	 inflamation25,	 or	 central,	

reflecting	impact	on	the	olfactory	brain.	Evidence	for	the	latter	can	be	seen	in	cases	of	COVID-

19	 associated	 olfactory	 pathway	 neuropathey26,	 and	 COVID-19	 associated	 olfactory	 bulb	

edema27	and	atrophy28,29.	If	the	virus	reaches	the	brain	through	olfactory	pathways30,	this	is	

likely	 not	 via	 olfactory	 receptor	 neurons	 (ORNs),	 but	 rather	 through	 sustentacular	 non-

neuronal	supporting	cells31,32.	Like	ORNs,	these	provide	for	a	direct	path	from	the	intranasal	

periphery	into	the	brain,	and	may	underlie	neurological	aspects	of	the	disease33.	Moreover,	

given	the	 intimate	 link	between	olfaction	and	respiration	 in	the	brain34,	the	olfactory	path	

may	enable	the	virus	access	to	respiratory	centers,	thus	making	for	a	neural	component	in	

the	respiratory	failure	associated	with	the	disease35.	The	current	study	does	not	provide	for	

any	mechanistic	 insight	 in	 this	 respect,	although	the	apparent	difference	between	specific	

odorants	in	their	usefulness	for	classification	(e.g.,	the	unique	power	of	Basil)	may	reflect	an	

avenue	worthy	of	investigation	in	this	respect.				

	

This	study	has	several	limitations.	First,	although	our	overall	data	set	is	large,	several	of	our	

analyses	 relied	 on	 restricted	 subsets	 that	 reduce	 power.	 Second,	 participants	 were	 self-

selected,	and	 this	may	have	 introduced	bias.	That	 said,	we	 fail	 to	 identify	a	 selection	bias	

pattern	that	might	underlie	our	effects.	For	example,	we	observe	that	only	4,031	participants	

(33.5%)	reported	a	subjective	loss	of	smell,	so	it	wasn’t	the	case	that	just	individuals	who	felt	

they	 lost	 their	 sense	of	 smell	used	 this	 tool.	Third,	we	have	no	 formal	verification	 for	 the	

COVID-19	testing	reported	by	our	participants.	Here	too,	however,	any	misrepresentations	

could	 have	 only	weakened	 our	 results,	 as	 they	would	 have	 only	 introduced	 added	 noise.	

Relatedly,	we	note	that	even	if	we	had	formal	verification	of	RT-PCR	tests	of	our	participants,	

we	 nevertheless	 retain	 an	 upper	 bound	 on	measured	 performance,	 as	 RT-PCR	 itself	 isn't	

perfect.	In	other	words,	we	observe	that	what	we	are	predicting	in	this	study	is	RT-PCR	results,	

and	not	SARS-CoV-2	infection	itself.	Thus,	again,	our	true	performance	level	may	be	lower	or	

higher	than	we	appreciate.	Finally	on	this	front,	in	those	diagnosed	positive,	we	don’t	have	a	

time	point	for	the	diagnosis.	Given	that	the	clinical	sensitivity	of	RT-PCR	decreases	with	days	

post	 symptom	onset,	 all	 the	way	down	 to	 30%	at	Day	 2136,	 this	 information	 is	 important	
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towards	characterizing	 the	value	of	olfactory	 testing.	 In	 this	 respect,	we	also	observe	that	

given	 the	 long-term	 persistence	 of	 olfactory	 impairments	 in	 COVID-1937,	 our	 tool	 can	 be	

effective	at	detecting	initial	infection,	but	it	is	inappropriate	for	gauging	continued	infection	

risk	from	C19+	individuals.		

	

Despite	all	these	limitations,	using	a	single	odorant	and	a	simple	measure,	namely	intensity	

estimates,	provided	for	a	remarkably	powerful	tool.	Although	this	potential	speed	of	testing	

(less	than	30	seconds)	and	simplicity	of	analysis	are	both	attractive	features,	the	applicability	

of	 this	 approach	 will	 be	 restricted	 to	 limited	 settings.	 This	 is	 primarily	 because	 of	 the	

susceptibility	of	 this	approach	 to	 interference.	 If	a	cognizant	adult	 self-tests	using	a	single	

odorant,	they	will	easily	understand	the	test,	and	may	then	influence	it,	whether	knowingly	

or	unknowingly.	This	limitation	is	overcome	by	the	OPF.	Naïve	users	have	no	intuition	for	this	

measure	 and	 how	 it	 is	 calculated.	Moreover,	 the	 OPF	 is	 particularly	 sensitive	 to	 shifts	 in	

olfactory	perception	that	do	not	entail	a	universal	reduction	 in	 intensity	perception	alone,	

and	such	shifts	may	indeed	be	prevalent	in	COVID-1920.	Finally,	the	OPF	was	significantly	more	

effective	 than	 symptom	 checkers	 in	 the	 entire	 cohort.	 Therefore,	 despite	 this	 test	 taking	

longer	than	single-odorant	rating	(about	3	minutes	for	4	odorants),	 it	may	be	more	useful.	

Notably,	these	approaches	are	not	mutually	exclusive.	The	on-line	interaction	can	remain	the	

same,	and	the	analysis	for	a	one-time	user	can	favor	odorant	intensity,	yet	the	display	and	

analysis	of	repeated	users	can	rely	on	OPFs.	Such	repeated	tests	may	gain	added	power38,	and	

provide	the	basis	of	a	testing-regimen,	a	critical	aspect	of	population-level	curtailment1.	We	

think	this	is	a	rare	case	where	something	so	utterly	simple	may	prove	so	utterly	valuable.		
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METHODS	

	

Data	availability:	All	raw	data	are	available	for	download	in	Supplementary	Data	File	1	

	

Code	 availability:	 All	 code	 used	 in	 this	 manuscript	 will	 be	 available	 for	 download	 at	

https://gitlab.com/snitz/smelltracker_article	

	

Recruitment:	There	was	no	systematic	recruitment.	Each	participating	lab	tried	to	inform	the	

local	media	in	their	country	of	residence.	This	resulted	is	several	news	stories	published	in	

several	countries,	and	these	led	to	dissemination.		Participants	were	directed	to	the	web-tool	

at	www.smelltracker.org	where	 they	participated	 anonymously	 in	 an	 interaction	 that	was	

approved	by	the	Weizmann	Institute	of	Science	IRB	committee,	and	by	the	Wolfson	Hospital	

Helsinki	Committee.	We	note	that	during	the	reported	time	period	we	had	12800	participants,	

but	of	these	780	participants	reported	only	partial	data,	retaining	only	12,020	participants	for	

full	analysis.			

	

Web-tool:	The	tool	was	written	in	open-source	Drupal	8	(drupal.org).	On	it,	participants	first	

created	 a	 unique	 login	 to	 facilitate	 repeated	 testing.	 Next,	 participants	 provided	 details	

regarding	age,	sex	(Woman/Man),	and	country	of	residence	(here	we	made	a	mistake	in	that	

the	country	pull-down	menu	did	not	start	from	an	empty	space,	but	rather	from	“India”.	Thus,	

participants	who	failed	to	answer	this	question	were	registered	as	from	India	by	default.	For	

this	reason,	we	are	unable	to	faithfully	include	India	in	the	country-specific	analyses	(Figure	

2)).	Next,	participants	selected	five	odorants	to	rate.	We	opted	for	five	odorants,	rather	than	

a	larger	number,	to	strike	a	balance	between	increased	reliability,	where	more	assessments	

render	more	reliable	data39,	and	low	burden	of	participation.	Each	odorant	was	selected	from	

a	separate	category	with	a	fixed	list	of	common	household	odorants	(Supplementary	Table	

1).	 This	 list	 was	 generated	 in	 coordination	 with	 the	 participating	 labs	 in	 order	 to	 assure	

cultural	 diversity.	 Two	 odorant	 categories	 contained	 odorants	 with	 reduced	 trigeminal	

components	(e.g.,	vanilla	extract),	and	three	categories	had	increased	trigeminal	components	

(e.g.,	vinegar).	Participants	made	their	odorant	selections	upon	first	use	of	the	tool,	and	were	

then	automatically	prompted	to	use	the	same	odorants	on	subsequent	uses.	Participants	then	

proceeded	 to	 smell	 each	 odorant	 and	 rate	 its	 perceived	 intensity	 and	 pleasantness	 on	
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separate	visual	analog	scales,	one	for	intensity	ranging	from	very	weak	to	very	strong,	and	the	

other	 for	 pleasantness	 ranging	 from	 very	 pleasant	 to	 very	 unpleasant.	 These	 scales	were	

coded	in	the	system	as	ranging	from	0	to	100.	Participants	could	smell	the	odorant	as	often	

as	they	liked,	and	there	was	no	time	limit	applied.	Following	the	ratings,	participants	were	

asked	 whether	 they	 had	 been	 tested	 for	 COVID-19	 (No;	 Yes-Pending;	 Yes-Positive;	 Yes-

Negative),	 and	 whether	 they	 are	 currently	 experiencing	 any	 COVID-19	 symptoms	 (Fever;	

Cough;	Shortness	of	breath	or	difficulty	breathing;	Tiredness;	Aches;	Runny	nose;	Sore	throat;	

Loss	of	the	sense	of	smell;	Loss	of	taste;	No	symptoms).	Finally,	participants	were	presented	

with	 a	 graph	 depicting	 their	 olfactory	 perceptual	 fingerprint	 as	 it	 related	 to	 the	 average	

scoring,	and	if	they	participated	again,	the	graph	depicted	the	evolution	of	their	perception	

over	time.	In	addition	to	the	graph,	participants	were	presented	with	a	text	informing	them	

whether	their	perception	was	within	range	of	our	participants,	or	aberrant.	That	said,	at	this	

stage	the	text	did	not	explicitly	inform	participants	that	we	predict	them	to	be	C19+,	as	we	

did	not	yet	receive	regulatory	permission	to	make	such	a	statement.	

	

Statistical	analyses:	All	analyses	were	conducted	using	Matlab	software,	and	the	complete	

data	file	allowing	full	recreation	of	these	results	is	in	Supplementary	Data	File	1.		

	

For	initial	analysis	of	intensity	and	pleasantness,	we	restricted	our	analysis	to	23	odorants	that	

had	more	than	25	C19+	raters.	This	gave	rise	to	46	distributions	of	ratings,	of	which	only	18	

and	33	 for	 intensity	 and	pleasantness	 respectively,	were	normally	distributed.	Given	non-

normal	distributions,	we	applied	a	two-sided	Kolmogorov-Smirnov	test	to	all	C19+	and	C19-	

intensity	and	pleasantness	comparisons.	In	the	individual	odorant	follow-up	comparisons	we	

estimated	effect	size	using	the	Eta	squared	effect	size	measure40.	

	

Country-specific	correlations	between	odorant	ratings	and	rates	of	COVID-19	were	calculated	

as	follows:	To	produces	rates	of	COVID-19	time-series,	we	conducted	2	steps:	1.	The	number	

of	daily	cases	 in	each	country	was	obtained	from	the	Johns	Hopkins	Coronavirus	Resource	

Center12.	2.	We	calculated	a	7-day	moving	average	for	the	dates	between	March	15,	2020	and	

September	 30,	 2020.	 For	 national	 intensity	 ratings	 time-series,	 we	 conducted	 3	 steps:	 1.	

Average	intensity	ratings	of	the	5	odorants	were	calculated	for	each	entry.	2.	Mean	intensity	

ratings	were	inverted	by	subtracting	them	from	100.	This	was	done	so	that	higher	values	imply	
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greater	smell	loss.	3.	A	5-day	moving	average	was	calculated	by	averaging	all	ratings	in	the	

span	of	7	days.	We	used	this	moving	average	to	match	the	cases	span.	After	obtaining	these	

two	 values,	 a	 cross-correlation	 between	 the	 daily	 ratings	 and	 inverse	 intensity	 was	 then	

calculated	(using	the	xcorr	 function	 in	Matlab).	The	cross-correlation	analysis	resulted	 in	a	

correlation	between	the	two	signals	 for	different	 lags	 (between	14-days	earlier	to	14-days	

later	response)	in	the	inverse	intensity	signal.	The	lag	that	produced	the	maximal	correlation	

between	the	two	signals	was	chosen	for	the	analysis.		The	Pearson	correlation	between	daily	

cases	and	lagged	inverse	intensity	was	calculated.	Daily	cases	time-series,	 inverse	intensity	

signal	and	lagged	inverse	intensity	signal	are	shown	in	figure	2.	

	

ROCs	 were	 calculated	 using	 standard	 technique41.	 We	 used	 a	 moving	 cutoff	 point	 on	 a	

continuous	scale	and	at	each	point	measured	the	true	positive	(TPR)	and	false	positive	(FPR)	

ratios	 which	 result	 from	 selecting	 that	 cutoff.	 All	 confidence	 intervals	 in	 ROC	 plots	 were	

calculated	using	a	1000	iteration	bootstrapping	of	the	scores.	To	compare	between	ROCs,	we	

used	a	non-parametric	test	based	on	the	AUC	of	the	curves18.	

	

Olfactory	Perceptual	 Fingerprints	were	 calculated	as	previously	described	 in	detail21,22.	 In	

brief,	we	selected	the	4	odorants	which	were	rated	most	often.	Those	were	‘Your	toothpaste',	

'Vanilla	 extract',	 'Garlic,	 freshly	 chopped'	 and	 'Vinegar	 white'.	 This	 choice	 restricted	 our	

analysis	 to	 3274	 participants.	 We	 then	 calculated	 an	 individual	 olfactory	 fingerprint	 by	

computing	all	the	pairwise	distances	(i.e.	derived	similarity)	between	these	4	odorants.	For	a	

measure	of	distance	between	odorant	k	and	odorant	m	we	used	the	following	equation:	

	 	 	

Where	 	is	the	perceptual	rating	of	odorant	k	using	descriptor	i.	and	 	is	the	perceptual	

rating	of	odorant	m	using	descriptor	i.	In	words:	the	distance	between	odorant	k	and	odorant	

m	 is	 the	 square	 root	 of	 the	mean	of	 the	 squared	difference	between	 the	 two	perceptual	

ratings	(intensity	and	pleasantness)	for	those	two	odorants.	Once	all	the	pairwise	distances	

are	computed	we	can	notate	an	olfactory	fingerprint	in	the	following	form:	

	 																	 	

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘,𝑚 = -∑ /𝑃𝑖𝑘 − 𝑃𝑖𝑚2
2𝑛

𝑖=1
𝑛

	

𝑃𝑖𝑘 	 𝑃𝑖𝑚 	

𝐹𝑃𝑘+𝑚−1 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘,𝑚 	
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Where	k	=	1…N	and	m	=	k+1…N.	In	words;	each	element	of	the	olfactory	fingerprint	 is	the	

distance	between	pairs	of	odorants,	where	each	pairwise	distance	 is	 calculated	only	once	

(since	distancek,m	=	distancem,k)	and	the	distance	between	an	odorant	to	itself	is	omitted	(since	

distancek,k	=	0).	Consequently,	if	we	here	use	4	odorants	to	construct	an	olfactory	fingerprint	

the	resulting	olfactory	fingerprint	will	have	 	,	or	in	other	words	6,	elements.	
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Legends	

	

Extended	Data	Table	1	

The	list	of	odorants	participants	could	select	from.	Participants	were	instructed	to	select	one	

odorant	 from	each	of	 the	5	 categories,	 summing	at	5	odorants	 for	 rating	of	 intensity	and	

pleasantness.			

	

Supplementary	Data	File	1	

This	file	contains	all	the	manuscript	raw	data	
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