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Abstract

Control strategies that employ real time polymerase chain reaction (RT-PCR) tests for the diagno-
sis and surveillance of COVID-19 epidemic are inefficient in fighting the epidemic due to high cost,
delays in obtaining results, and the need of specialized personnel and equipment for laboratory pro-
cessing. Cheaper and faster alternatives, such as antigen and paper-strip tests, have been proposed.
They return results rapidly, but have lower sensitivity thresholds for detecting virus. To quantify
the effects of the tradeoffs between sensitivity, cost, testing frequency, and delay in test return on
the overall course of an outbreak, we built a multi-scale immuno-epidemiological model that con-
nects the virus profile of infected individuals with transmission and testing at the population level.
We investigated various randomized testing strategies and found that, for fixed testing capacity,
lower sensitivity tests with shorter return delays slightly flatten the daily incidence curve and de-
lay the time to the peak daily incidence. However, compared with RT-PCR testing, they do not
always reduce the cumulative case count at half a year into the outbreak. When testing frequency
is increased to account for the lower cost of less sensitive tests, we observe a large reduction in
cumulative case counts, from 57% to as low as 1.5% half a year into the outbreak and to 3.2% three
years into the outbreak. The improvement is preserved even when the testing budget is reduced
by one half or one third. Our results predict that surveillance testing that employs low-sensitivity
tests at high frequency is an effective tool for epidemic control.

1 Introduction

Following the emergence of the novel coronavirus-2 severe acute respiratory syndrome (SARS-CoV-
2) late in 2019 in Wuhan, China, the World Health Organization declared the COVID-19 pandemic
on March 11, 2020. As of February 12, 2021, this pandemic has resulted in over 107.4 million
confirmed infections and 2.3 million deaths worldwide [3].

Epidemiological data from nations such as South Korea, Iceland and Taiwan demonstrates that
widespread surveillance using real time polymerase chain reaction (RT-PCR) testing, combined
with contact tracing and quarantine measures, can be effective at limiting the spread of SARS-
CoV-2 [23]. However, in many other nations, notably the United States, the testing infrastructure
was insufficient to prevent viral spread.
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Testing strategies across the world vary based on location, resources, and political considerations.
While some countries test only symptomatic individuals, or those in need of hospitalization, others
employed randomized testing early for surveillance and isolation [15]. In the United States, calls
for frequent and widespread testing [34] have been associated with the reopening of the economy,
schools and college campuses, and with the protection of essential workers [31,32,41].

Diagnosis of SARS-CoV-2 infection is usually achieved by RT-PCR nasopharyngeal test, con-
sidered the gold standard for SARS-CoV-2 detection. It has high (close to 100%) sensitivity in
detecting active disease, but is expensive and can require up to 5 days of laboratory processing [37].
Moreover, it does not distinguish between transmissible and non transmissible infections. It has
been proposed (but not yet been universally authorised by the FDA) that reporting virus titers from
RT-PCR tests can help determine the stage of an individual’s disease [25]. For example, high viral
RNA titer in the sample (above levels above 106 virus RNA per ml) is considered a good proxy for
infectiousness [17–19]. By contrast, low viral RNA that is still detectable in respiratory tracts and
other specimens after disease resolution is believed to no longer be viable [24]. Quantifying virus
RNA requires the recording the cycle threshold (Ct) value in the PR-PCR tests [13], with Ct< 30
being considered a threshold for infectivity [21]. RT-PCR’s viral limit of detection is around 102

virus RNA per swab [10,14,38]. Detecting low virus RNA titers by the RT-PCR (corresponding to
high Ct numbers, > 35) may not be relevant from an epidemiological point of view, since they are
associated with fewer tissue-culture infective viral particles [13, 35] and, hence, low probability of
transmission [12]. Therefore less sensitive tests that are easier to use and give instantaneous results
may be a good substitute for RT-PCR [25].

Several fast detection antigen and molecular strategies have obtained emergency use autho-
rization (EUA) from FDA. They have the potential of more quickly detecting and isolating symp-
tomatic and asymptomatic infections compared to laboratory-based diagnostic methods [2]. Among
them are rapid antigen tests, such as the Abbott pharmaceuticals’ BinaxNOWTM [1,33], serological
tests [16], and hypothesized but not yet manufactured at-home paper-strip tests [22,25]. Such tests,
however, have lower overall sensitivities and only detect higher virus titers [21]. For example, the
BinaxNOWTM antigen rapid test has sensitivity levels of 85.7% for Ct< 25 (when the infection is
still transmissible), and 36.4% for Ct> 30 (when the infection may no longer be transmissible) [22],
making it an acceptable alternative to RT-PCR, especially since they are cheaper and produce
results quickly, in as little as 15 minutes [1, 16]. Frequent testing with cheap, low-sensitivity tests,
may therefore be beneficial for population surveillance and quarantining practices [22, 25].

An example of the tradeoff between a single RT-PCR test and multiple low-sensitivity alternate
tests is given in Figure 1. In one scenario, an RT-PCR test is administrated for diagnosis of
a symptomatic individual, who has been infectious (defined as virus above 106 virus RNA per
ml [17–19]) and transmitting the virus several days before test administration and 1-2 days before
symptoms onset [18] (see Figure 1, panel A, red circle). In a second scenario, a surveillance test is
administered to an asymptomatic individual, who may or may not be transmitting the virus at the
time of testing (see Figure 1, panel B, red circle). In a third scenario, a cheaper, less sensitive test
is administrated repeatedly in the same patient (see Figure 1, panel C, yellow circles). The test
fails to identify a positive case at the time of infectiousness due to sensitivity issues, but still has
the potential of discovering and reporting the infection earlier in the individual’s transmissibility
window, compared to the RT-PCR (see Figure 1, panel C, fourth yellow circle). Determining when
such a tradeoff occurs, and how frequent the low-sensitivity tests should be administrated in order
to outperform RT-PCR, is important for designing interventions.

In this study, we develop a multi-scale within-host between-host time-since-outbreak model
and investigate its dynamics under testing. The within-host model gives information on the time
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of infectiousness onset and the time interval when a test detects an infection by looking at the
virus dynamics inside an infected individual. The between-host model connects these events with
transmission at the population level. We investigate testing strategies with assays of different
sensitivities, frequencies, and delays in test returns. We will deem optimal a testing strategy that
flattens the infection curve best, under either the same testing frequency or the same monetary
cost.

2 Methods

2.1 Within-host model

To generate within-host virus profiles, we use the target cell limitation model of SARS-CoV-2
kinetics developed by Ke et al. [20], which was fitted to virus levels measured in pharyngeal swabs
and sputum samples of patients infected through contact with the same index case [10,39]. Briefly,
the model considers the interaction between uninfected epithelial cells, Tj; exposed epithelial cells,
Ej; infected epithelial cells, Ij; and virus, Vj in upper (URT) and lower (LRT) respiratory tracts
j ∈ {1, 2}, as in other acute infections [4–7, 9, 28, 29, 36]. Target cells in each tract are infected at
rates βj, exposed cells become infectious at rates kj, and infected cells produce new virions at rates
pj. Infected cells die at rates δj and virus particles are cleared at rate c, independent of the tract.
The two tracts are linked via the virus populations, with a proportion g12 of V1 migrating from
URT to LRT and a proportion g21 of V2 migrating from LRT to URT. The model describing these
interactions is given by

dTj
dt

= −βjTjVj,

dEj
dt

= βjTjVj − kjEj,

dIj
dt

= kjEj − δjIj,

dVj
dt

= pjIj − cVj − gjlVj + gljVj,

(1)

where j 6= l ∈ {1, 2}. Ke et al. [20] assumed that the pharyngeal swabs data VT and sputum
data VS in [10,39] are proportional to the predicted URT and LRT virus loads given by model (1),
VT = f1V1 and VS = f2V2. They assumed that parameters {kj, c, g21} are known and fitted the
remaining parameters {βjT , δj, πj,Γ} to the data, where βjT = βj/fj, πj = fjpj and Γ = f2g12/f2.
Here, we use the estimates from one case in Ke et al. (patient E) to generate the virus profiles
V = VT = f1V1 which we use in the multi-scale transmission model eqs. (5) and (3). A summary
of the parameters used in eq. (1) is given in Table 1.
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Fixed parameters Description Value Source
kj Eclipse phase duration 4/day [30]
c Viral clearance 10/day [4]
g21 Transport between tracts 0 [20]

Estimated parameters Description Value Source
β1T Infection rate in URT 5.1×10−7/swab× day [20]
β2T Infection rate in LRT 7× 10−7/ml× day [20]
π1 URT virus production 50/day [20]
π2 LRT virus production 0.34/day [20]
δ1 URT cell death 2/day [20]
δ2 LRT cell death 0.53/day [20]
Γ - 0.01 [20]

Initial conditions Description Value Source
T1(0) Epithelial cells in URT 4× 106/ml [20]
T2(0) Epithelial cells in LRT 4× 108/ml [4]
Ej(0) Exposed epithelial cells 0 [20]
I1(0) Infectious epithelial cells in URT 10 [20]
I2(0) Infectious epithelial cells in LRT 1 [20]
Vj(0) Virus 0 [20]

Table 1: Parameter values and initial conditions used in model (1)
.

2.2 Between-host model

We model the interaction between a susceptible class S(t), infected class of asymptomatic individu-
als, ia(τ, t), and infected class of symptomatic individuals, is(τ, t). The independent variables are τ ,
the age of infection in an individual, and t, the time-since-outbreak in the population. We assume the
individual infection status is given by its virus profile at time τ , V (τ), with V (τ) = VT (τ) = f1V1(τ)
being the solution of system eq. (1). We assume that β is the transmission rate, λj the force of
infection, b the birth rate, µ the death rate, mj the disease induced mortality rates, and j ∈ {a, s}.
In the absence of testing, the model is given by

dS

dt
= b− µS − βS(t)

∫ ∞
0

[λa(τ)ia(τ, t) + λs(τ)is(τ, t)] dτ,

∂ia
∂τ

+
∂ia
∂t

= −(µ+ma)ia(τ, t),

∂is
∂τ

+
∂is
∂t

= −(µ+ms)is(τ, t),

(2)

for 0 ≤ τ ≤ 14. For τ > 14, infections are considered to be resolved, and recovered individuals are
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not susceptible to reinfection. The boundary and initial conditions are

S(0) = S0,

ia(0, t) = (1− f)βS(t)

∫ ∞
0

[λa(τ)ia(τ, t) + λs(τ)is(τ, t)] dτ,

is(0, t) = fβS(t)

∫ ∞
0

[λa(τ)ia(τ, t) + λs(τ)is(τ, t)] dτ,

ia(τ, 0) = (1− f)I0δ(τ),

is(τ, 0) = fI0δ(τ),

(3)

where f is the fraction of infections that are symptomatic. Parameters {β, µ,ma,ms, f} are taken
from literature, and δ(τ) is the Dirac delta function. A summary of the parameters we used in eqs.
(2) and (3) is given in Table 2.

2.3 Daily testing rate

We determine a per capita random testing rate, ρrand, corresponding to an overall testing capacity
of C tests per day, as follows. If subjects are removed from a population P by testing at per capital
rate ρrand, then the remaining untested population is given by

dP

dt
= −ρrandP, P (0) = P0.

The total number of tests administered in a given day is P (0)−P (1) = P0−P0e
−ρrand . Setting this

equal to the testing capacity C, we find that the daily random testing rate corresponding to the
administration of C test is given by

ρrand = − ln(1− C/P0),

so long as C < P0. Thus, if N(t) is the population subject to random testing at time t, the
time-dependent continuous testing rate is

ρrand(t) = − ln(1− C/N(t)), (4)

for N(t) < C.

2.4 Between-host model with testing

Given virus profiles for infected individuals, we link test sensitivity to the ages of infection during
which virus load is above the sensitivity threshold. Similarly, we determine the ages of infection
during which the virus load is high enough to allow transmission. We define

τ j1 = age for onset of virus detectability by given test,

τ j2 = age for onset of infectiousness,

τ j3 = age for end of infectiousness,

τ j4 = age for end of virus detectability by given test,
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where j ∈ {a, s}. The force of infection functions λj are

λa(τ) =

{
γ, for τ ∈ [τa2 , τ

a
3 ]

0, otherwise
,

λs(τ) =

{
1, for τ ∈ [τ s2 , τ

s
3 ]

0, otherwise
,

where parameter 0 < γ < 1 represents the relative infectiousness of asymptomatic carriers, in
comparison with symptomatic carriers. The case detection rate functions rj(τ, t) become

rj(τ, t) =

{
ρrand(t), for t ≥ 0 and τ j1 ≤ τ ≤ τ j4
0, otherwise

,

where j ∈ {a, s}. We assume a test return delay of ` days, and that individuals who receive a positive
test result are isolated, and can no longer transmit the virus. Lastly, we ignore the possibility of
reinfection. The between-host model equations under testing become

dS

dt
= b− µS − βS(t)

∫ ∞
0

[λa(τ)ia(τ, t) + λs(τ)is(τ, t)] dτ,

∂ia
∂τ

+
∂ia
∂t

= −(µ+ma)ia(τ, t)− ra(τ`, t`)ia(τ`, t`)e−(µ+ma)`,

∂is
∂τ

+
∂is
∂t

= −(µ+ms)is(τ, t)− rs(τ`, t`)is(τ`, t`)e−(µ+ms)`,

(5)

where τ` = τ − ` and t` = t − `. The cumulative number of cases at time t, Σ(t), is given by the
equation

dΣ

dt
= βS(t)

∫ ∞
0

[λa(τ)ia(τ, t) + λs(τ)is(τ, t)] dτ,

Σ(0) = I0,

(6)

and the cumulative number of detections at time t, P (t), is given by the equation

dP

dt
=

∫ ∞
0

[
ra(τ`, t`)ia(τ`, t`)e

−(µ+ma)` + rs(τ`, t`)is(τ`, t`)e
−(µ+ms)`

]
dτ,

P (0) = 0.

(7)

The boundary and initial conditions (see eq. (3)) and parameters {b, β, µ,ma,ms, f} (see Table
2) are as before. The return delay ` and ages τ kj for j ∈ {a, s} and k ∈ {1, .., 4} vary among tests.
A summary of parameters and initial conditions are given in Table 2 and the integration method is
described in the Appendix.

3 Results

3.1 The relationship between test sensitivity and virus titers

We connect test sensitivities, defined as the threshold above which a test is able to correctly identify
a true positive COVID-19 case, to the times in an individual’s infection when the SARS-CoV-2
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titers are above this threshold. Temporal virus titers are determined using a previously published
mathematical model of within-host virus dynamics [20]. The model, given by eq. (1), assumes
interactions between target, exposed and infectious epithelial cells and SARS-CoV-2 in the upper
and lower respiratory tracts, which are connected by virus shedding (Methods). A fraction of the
upper respiratory tract virus, VT = f1V1 in model eq. (1), was fitted [20] to longitudinal SARS-CoV-
2 data in swab samples from mild infections [10, 39]. Here, we use the parameter estimates of one
infected individual (patient E in [20]) to determine a generic theoretical curve for the SARS-CoV-2
levels over time (see Figure 1, grey curves). The viral curve spans over several milestones in an
individual’s infection: infectiousness period (Figure 1, shaded region); symptoms onset (Figure 1,
green arrow) and the infectiousness status at the time of test return (Figure 1, blue arrow). Under
this viral motif, we find that a RT-PCR test that detects 102 virus RNA per swab will be able to
detect virus in a sample taken as early as 13 hours and as late as 10.9 days post-infection. This
interval is longer than the infectiousness period of eight days (2.5 to 10.5 days post-infection). By
contrast, a rapid test, such as the Abbott Pharmaceuticals’ BinaxNOWTM antigen rapid test [1]
which can detect 105 virus RNA per swab, will be able to detect virus in a sample taken as early as
2.7 days and as late as 7.4 days post-infection, an interval 3.3 days shorter than the infectiousness
period. Lastly, a low-sensitivity test that detects 106 virus RNA per swab, will be able to detect
virus in a sample taken as early as 3.5 days and as late as 6.2 days post-infection, an interval 5.1
days shorter than the infectiousness period. We are interested in determining when the decrease in
sensitivity can be compensated by increased testing frequency and/or reduced time in test return.

3.2 Mathematical model of testing during SARS-CoV-2 transmission

We develop a between-host SI model for a well-mixed population, given by a system of ordinary
and partial differential equations. It considers the interactions between susceptible individuals,
S(t), and two types of infected individuals: asymptomatic, ia(τ, t), and symptomatic, is(τ, t). The
independent variables are the age of infection in an individual, τ , and the time-since-outbreak in the
population, t (see model eqs. (2) and (3) in Methods). We set an individual’s incubation period to
the previously estimated value of 4 days (patient E in [39]); and assume that infectiousness occurs
1.5 days before the symptoms onset, τ2 = 2.5 days [18], and ends eight days later, τ3 = 10.5 days.

3.3 Quantifying the tradeoff between test sensitivity and return delay

To determine the effect on the total population, N(t) = S(t) +
∫∞

0
[ia(τ, t) + is(τ, t)]dτ , of tests with

different sensitivities, frequencies, and return delays, we expand the SI model to include the age of
infection at which a test first gives a positive result, τ1; the age of infection past which a test can
no longer detect the virus, τ4; the return delay, `; and the daily testing capacity, C. Assuming that
surveillance testing occurs in a randomized manner, we calculate a continuous testing rate ρrand(t),
which is equal to − ln(1−C/N(t)). This connects the daily testing capacity C with the population
that is subject to random testing on a particular day, N(t) (see eq. (4) in Methods, for a derivation).
The resulting system of differential equations (see model eqs. (5) and (3) in Methods) was used
to predict epidemic outcomes under three testing regimes: an RT-PCR test, a rapid antigen test,
and a paper-strip test. We assume a fixed daily testing capacity of 10% of the initial population,
C = 0.1, which is administrated randomly among the groups, and an initial 1% of the population
being infected. A portion f = 0.7 of the initial infected population is in the symptomatic class, and
the remaining 1− f = 0.3 is in the asymptomatic class.

Under the RT-PCR test with fixed C = 0.1 daily testing capacity rate, detection interval
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(τ1, τ4) = (0.55, 10.95) days, and delay in test results of ` = 5 days, model eq. (5) predicts a
peak infection 42 days after the start of the outbreak, when 8.4% and 3.6% of the population have
symptomatic and asymptomatic infections, respectively (see Figure 2, panel A, red and blue curves).
When we ignore reinfection of recovered individuals, the infection dies out 75 days after the start of
the outbreak, when less than 0.1% of the population is infected. A total of 57% of the population
had the disease half a year into the outbreak, and the test successfully detected 96.4% of these (see
Figure 2, panel A, magenta versus green curves). The highest daily incidence of 1.27% occurs 39
days after the start of the outbreak (see Figure 2, panel A, yellow bars). The daily detection rates
lagged due to test return delays, peaking 49 days after the start of the outbreak (see Figure 2, panel
A, blue bars).

Under a rapid antigen test with fixed C = 0.1 daily testing capacity rate, detection interval
(τ1, τ4) = (2.77, 7.37) days, and delay in test results of ` = 0.5 days, model (5) predicts a peak
infection at 45 days after the start of the outbreak, three days later than in the RT-PCR case.
At that time, 5.5% and 2.4% of the population have symptomatic and asymptomatic infections,
respectively, lower than in the RT-PCR testing scenario (see Figure 2, panel B, red and blue curves).
While the infection does not decay to less than 0.1% daily case until day 90 after the start of the
outbreak, the total population infected half a year after the start of the outbreak is 47%, lower than
in the RT-PCR case where 57% individuals had the infection. This occurs in spite of only 42.6% of
infections being detected (see Figure 2, panel B, magenta versus green curves). The highest daily
incidence of 0.78% occurs 40 days after the start of the outbreak (see Figure 2, panel B, yellow
bars) and daily detection rates peak 8 days later, at day 48 (see Figure 2, panel B, blue bars).

Lastly, under an even faster yet lower sensitivity paper-strip (or antigen) test with fixed C = 0.1
daily testing capacity rate, detection interval (τ1, τ4) = (3.48, 6.14) days, and delay in test results of
` = 0.1 days, model eq. (5) predicts a peak infection 47 days after the start of the outbreak, when
9% and 3.8% of the population have symptomatic and asymptomatic infections, respectively (see
Figure 2, panel C, red and blue curves). While the peak of infection is delayed, the daily infections
are higher than both those in the RT-PCR and antigen testing approaches. At half a year after the
start of the outbreak 59% of population has been infected. Of those, 27.1% have been detected (see
Figure 2, panel C, magenta versus green curves). The highest daily incidence of 1.15% occurs 41
days after the start of the outbreak (see Figure 2, panel C, yellow bars), lower than in the RT-PCR
but higher than in the antigen testing approach. The daily detection rates peak 46 days after the
start of the outbreak (see Figure 2, panel C, blue bars).

These results show that, with fixed testing capacity, tests that return results quickly, slightly
flatten the daily incidence curve. The sensitivity is important, however, with low-sensitivity (corre-
sponding to rapid antigen tests) resulting in a slight reduction in the total infections half a year into
the outbreak, and super-low-sensitivity (corresponding to paper-strip tests) resulting in increased
total infections. To more closely determine the relationship between the total cases half a year after
the start of the outbreak, the return delays, and the test sensitivities, we derive a heat map for
smaller sensitivity and delay increments (see Figure 3, panel A). We find that the RT-PCR holds
better results than a test that detects 103, 104 and 105 RNA per swab in half a day, only when the
return is shorter than 2, 2.8 and 4.2 days, respectively. This means that, under the same daily test
capacity, low-sensitivity tests can be a preferable surveillance resource in areas where there are long
delays in RT-PCR returns.
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3.4 Quantifying the tradeoff between test sensitivity and test frequency

We next investigate the effect that increased testing frequency has on the outcomes. While, under
the Families First Coronavirus Response Act, testing in the United States is free of cost for an
individual, the overall public health (or institutional) budget associated with test administration and
processing may limit the overall number of tests available for administration each day. Conversely,
reduction in test cost allows for increased testing capacity and frequency. We use model eq. (5) to
quantify the overall infection, half a year after the start of the outbreak, when we provide as many
tests as possible under a fixed daily budget.

Early and current studies show varied cost ranges for molecular and/or antigenic tests [26]. We
assume the following costs for a single RT-PCR [26], Yale saliva [40], and Abott BinaxNow [1] tests:
50 USD, 10 USD and 5 USD, respectively. When we administer RT-PCR tests costing 50 USD,
the daily testing capacity is equal to 10% of the population, C = 0.1, as in the previous sections.
When we administer a saliva test costing 10 USD, the daily testing capacity is equal to 50% of
the population, C = 0.5. Lastly, when we administer an Abott BinaxNow test costing 5 USD, the
daily testing capacity is equal to 100% of the population, C = 1. Under these assumptions, the
daily budget is the same regardless of the testing strategy. Moreover, we extrapolate these values
to obtain intermediary cost functions (see Figure 3, panel B). We next derive a heatmap for the
total cases, half a year after the start of the outbreak, for equal budget, varied testing sensitivities,
and varied test return delays (see Figure 3, panel C).

We determine that tests of low-sensitivity (105 virus load per swab detection and half a day
return delay) that are administrated daily vastly outperform high-sensitivity tests. In particular,
half a year after the start of the outbreak, the total number of cases is reduced from 19.4% for
a RT-PCR that is returned in 24 hours (25.9% for a 48 hours return) to less than 1.2% when
the low-sensitivity rapid test is given to everyone every day (see Figure 3, panel C). This is not a
transient result, with overall infection reaching a maximum of 3.2% three years after the start of
the outbreak. If the same low-sensitivity test is administered every other day, the overall infection
is reduced to 3.8% half a year after the start of the outbreak; and if everyone is tested once every
three days, the overall infection is reduced to 5.4% (not shown). If, however, everyone is tested with
low-sensitivity tests once a week, than the overall infection is 30% half a year after the start of the
outbreak (not shown), as high or higher than for the RT-PCR tests that are returned in less than
2.5 days. There is, therefore, a clear tradeoff between frequency, test sensitivity, and test return
delays, which should be optimized to the needs of each community.

3.5 Transmission according to infection status

We investigate how testing regimes differentially affect the proportion of transmission associated
with each disease status (symptomatic, presymptomatic and asymptomatic). We define presymp-
tomatic, as infections that occur before day τpresym = 4 days [18]. As seen in the previous sections,
under fixed C = 0.1 daily testing, the peak daily incidence is reduced by 38.2% and 9.0%, re-
spectively, when the antigen or paper-strip testing regimes replaced the standard RT-PCR tests.
We further split the peak daily incidence into infections that occur due to symptomatic, presymp-
tomatic and asymptomatic transmission (see Figure 4, orange vs red vs blue bars). Using the
antigen test, peak daily incidence due to symptomatic transmission is reduced by 39.9% compared
with RT-PCR, presymptomatic transmission is reduced by 33.2% and asymptomatic transmission
is reduced by 38.2%. Using the paper-strip test, peak daily incidence due to symptomatic trans-
mission is reduced by 8.9% compared with RT-PCR, presymptomatic transmission is reduced by
9.2% and asymptomatic transmission is reduced by 9.0% (see Figure 4, orange vs red vs blue bars).
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This suggest that low-sensitivity tests are better than RT-PCR at reducing peak incidence in all
types of transmissions, but the lower sensitivity paper-strip test shows limited improvement over
the RT-PCR. Since the testing capacity is fixed, these results reflect the tradeoff between sensitivity
and test return delays.

To account for the lower costs associated with antigen and paper-strip tests, we also calculate
the reduction in peak daily incidence when these tests are administered at higher frequency than
RT-PCR. As before, we assume that RT-PCR is administered at a fixed daily capacity of C = 0.1.
When antigen tests are administered at daily capacity C = 0.3, C = 0.6 and C = 1 the total peak
daily incidence is reduced by 70.4%, 76.2% and 79.0%, respectively. When paper-strip tests are
administered at these capacities, the total peak daily incidence is reduced by 68.3%, 73.1% and
77.4%, respectively. We see limited variability in the reduction of infection due to symptomatic,
presymptomatic and asymptomatic transmission (see Table 3).

When antigen and paper-strip tests are administered with the same capacity as RT-PCR, C =
0.1, the antigen test significantly outperforms the paper-strip test in reducing peak daily incidence
(38.2% vs. 9.0% reduction). However, as the capacity is increased, this difference in performance
vanishes, and both tests approach a limiting peak incidence reduction of approximately 80% (see
Table 3). This indicates that there is a critical capacity required to achieve significant incidence
reductions with less sensitive tests.

4 Discussion

While RT-PCR is the gold-standard for diagnosis of SARS-CoV-2 cases, there are significant chal-
lenges in implementing effective epidemic surveillance and mitigation regimes on the basis of these
tests, due to the need for specially trained lab personnel, limited lab capacity, high costs per test
and delays in returning test results. Alternative tests such Abbott BinaxNOWTM can produce re-
sults rapidly, at lower cost and without the need for specialized lab personnel, but are less sensitive
to lower virus concentrations. We investigated the tradeoffs between test sensitivity, return delay
and test frequency using a deterministic mathematical model of virus transmission.

Our model shows that for fixed testing capacity, lower sensitivity tests with shorter return
delays slightly flatten the daily incidence curve and delay the time to the peak daily incidence. The
cumulative number of infections, however, shows a more complicated interaction between the loss
of sensitivity and the benefits of faster test returns. We find that low-sensitivity tests with a return
delay of one half day, such as antigen tests, reduce the cumulative case count at half a year into
the outbreak. Despite the higher sensitivity of RT-PCR, in order to outperform the antigen test,
its return delay would need to be reduced below 3 days. On the other hand, super-low-sensitivity
tests with a return delay of 2− 3 hours, such as paper-strip tests, result in a cumulative case count
slightly higher than RT-PCR.

The predicted mild improvement in cumulative case counts when low sensitivity tests replace
to RT-PCR testing can be accentuated by increasing the total number of tests administered daily.
Since antigen and other lower sensitivity tests are cheaper to produce and conduct, they can be
delivered at higher frequency. We first varied testing capacity to account for the differing costs of
tests, while keeping the testing budget fixed. This allows for daily testing of the entire population
when antigen tests (which cost $5) are administered, but only 10% of the population when RT-PCR
tests (which cost $50) are administrated. We found a large reduction in cumulative case counts, to as
low as 1.5%, half a year into the outbreak and 3.2% three years into the outbreak. We next checked
whether the magnitude of the improvement was preserved for lower daily antigen testing capacities.
When antigen tests are administered to only 50% or 33% of the population daily, corresponding
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to testing the entire population every two or three days, respectively, we find that the decrease in
the cumulative case counts persists. Thus, replacing RT-PCR testing with more frequent testing
with less sensitive tests can lead to significantly improved outcomes, even if the testing budget is
reduced by one half or one third.

We also studied whether there is a differential impact of alternative testing strategies on the
proportion of viral transmission from sources at different stages of infection. When compared with
RT-PCR, antigen and paper-strip tests reduce the number of new infections due to symptomatic,
presymptomatic and asymptomatic sources by roughly equal amounts. This reduction is greater
for increased testing frequency, however, the improvement is capped at approximately 80%.

Our modeling approach includes several simplifying assumptions, some of which can be relaxed to
generalize our results in a variety of ways. First, we assume a well-mixed population and the model is
therefore most suitable to a tightly interconnected community such as a college campus. Our findings
support the conclusions of Paltiel, et al. [32], who found that frequent (every 2 days), low-sensitivity
testing might be necessary in order to allow for college reopening. Moreover, several modeling studies
have found that diagnostic testing of symptomatic patients alone is insufficient for outbreak control,
and must be supplemented by randomized surveillance testing of the asymptomatic population
[8,11,22,32]. Indeed, under randomized and uniformly distributed surveillance testing of the entire
non-isolated population, we find that frequent testing of the entire population can flatten the daily
incidence curve and significantly decrease the cumulative size of the outbreak. Further work is
needed to compare randomized testing to alternate strategies such as prioritizing the testing of
high-risk or symptomatic individuals or preemptively quarantining those with symptoms and testing
only asymptomatic individuals.

We have assumed a 100% detection rate when tests are administered to patients whose viral
load is above the sensitivity threshold. As mentioned before, the BinaxNOWTM antigen rapid test
has sensitivity levels of 85.7% for Ct< 25 (when the virus still infects), and 36.4% for Ct> 30
(when the virus may no longer be infectious) [22, 33]. We assume a step-function dependence of
detection on viral load, with 0% detection below the threshold and 100% detection above. Moreover,
we assume that all infected individuals have identical viral dynamics over the course of infection.
Once available, more complete information about patient viral profiles and the dependence of test
sensitivity on viral load can be incorporated to increase the accuracy of the model and to quantify
the incidence of false negatives.

In summary, our study shows that surveillance testing that employs low-sensitivity tests at
high frequency is an effective tool for epidemic control. Reduced cost per test is essential for the
success of this approach, as it allows for the increased testing frequency, which overcomes sensitivity
concerns. This more effective testing strategy would enhance the effectiveness of control measures
that are testing-dependent, such as contact tracing, isolation and quarantining, further increasing
our ability to overcome the COVID-19 epidemic.
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Fixed parameters Description Value Source
β Transmission rate 0.25/day
b Birth rate 7× 10−4/day [27]
µ Death rate 7× 10−4/day [27]
mj Disease induced mortality rate 10−3/day
f Fraction of symptomatic infections 0.7 [17]
γ Relative asymp. infectiousness 0.7
` Test return delay varied
τ 1
j Age of onset of virus detectability varied (days)
τ 2
j Age of onset of infectiousness 2.5 days [39]
τ 3
j Age of end of infectiousness 10.5 days [17,18]
τ 4
j Age of loss of virus detectability varied (days)

Initial conditions Description Value Source
S(0) Susceptible population 0.99
is(τ, 0) Infected symptomatic population 0.01fδ(τ)
ia(τ, 0) Infected asymptomatic population 0.01(1− f)δ(τ)

Table 2: Parameter values and initial conditions used in model eq. (5).

Test type Infectious subgroup C = 0.1 C = 0.3 C = 0.6 C = 1
Antigen Symptomatic 39.8% 70.5% 76.5% 76.8%

Presymptomatic 33.2% 70.2% 75.4% 85.7%
Asymptomatic 38.2% 70.4% 76.2% 79.0%

Total 38.2% 70.4% 76.2% 79.1%
Paper-strip Symptomatic 8.9% 68.4% 74.0% 76.8%

Presymptomatic 9.2% 68.2% 70.5% 79.3%
Asymptomatic 9.0% 68.3% 73.1% 77.4%

Total 9.0% 68.3% 73.1% 77.4%

Table 3: Percent reduction in daily incidence transmission for antigen and paper-strip tests at
various daily testing capacities compared to daily incidence transmission for a RT-PCR test admin-
istered at C = 0.1 testing capacity per day.
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Figure 1: RT-PCR versus rapid testing practices. log10 virus load per swab over time as
given by model (1) (grey curves) for values in [20]. Patients are assumed to be infectious from
t = 2.5 days (IS) till t = 10.5 days (IE) (shaded region) and symptomatic beginning on day t = 4
(SO). Panels A and B depict testing with a high-sensitivity RT-PCR test with detection threshold
log10(V ) = 2 per swab (red line) and test return delay of five days. In panel A, the test occurs
immediately following symptoms onset, and in panel B, the test occurs before symptoms onset (red
circles). Panel C depicts frequent testing (yellow circles) with a low-sensitivity test with detection
threshold log10(V ) = 5 per swab (yellow line) and test return delay of one half day. TR shows the
time of positive test result.
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Figure 2: Epidemic dynamics over time. Sample epidemic dynamics results from varying testing
regimes, as given by model eq. (5) for fixed testing capacity. Panel A: RT-PCR, detection threshold
log10(V ) = 2, test return delay 5 days; Panel B: antigen test, detection threshold log10(V ) = 5, test
return delay 0.5 days; Panel C: paper-strip test, detection threshold log10(V ) = 6, test return delay
0.1 days. Upper left figures: asymptomatic (blue), symptomatic (red) populations over time. Upper
right figures: cumulative positive cases (magenta) and cumulative detected cases (green) over time.
Lower figures: daily new cases (yellow bars) and daily new case detections (blue bars).
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Figure 3: Cumulative cases at half a year. Heatmaps for the cumulative cases at half a year
after the outbreak (% of the total population) as given by model eq. (5) versus test sensitivity and
test return delay. Panel A: fixed testing capacity per day, C = 0.1. Panel B: relationship between
capacity and cost. Panel C: fixed testing budget per day. Parameters and initial conditions are
given in Tables 1 and 2.
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Figure 4: Asymptomatic, presymptomatic and symptomatic transmissions. (Upper fig-
ures): daily cases (yellow bars) and daily detections (blue bars); (Lower figures): daily cases due to
asymptomatic transmission (blue bars), presymptomatic transmission (red bars) and symptomatic
transmission (orange bars), as given by model eq. (5) for fixed testing capacity. Panel A: RT-PCR,
detection threshold log10(V ) = 2, test return delay 5 days; Panel B: antigen test, detection threshold
log10(V ) = 5, test return delay 0.5 days; Panel C: paper-strip test, detection threshold log10(V ) = 6,
test return delay 0.1 days.
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Appendix

Numerical scheme.

The domain of model (5) is
Ω = {(τ, t) : τ ≥ 0, t ≥ 0}.

To numerically integrate system (5), we fix the ending time T and select a maximum age G
greater than T . This allows us to find maximum values for τ ji , for i ∈ {1, .., 4} and j ∈ {a, s},
without losing any information. We construct a numerical scheme on the domain

D = {(τ, t) : 0 ≤ τ ≤ G, 0 ≤ t ≤ T}

as follows. We discretize by taking equally spaced steps along the individual age of infection and
the population time-since-outbreak, ∆τ = ∆t. Let K = bG/∆τc and Q = bT/∆tc. Then, the age
and time steps become τk = k∆t and tq = q∆t, for 1 ≤ k ≤ K and 1 ≤ q ≤ Q. The delay ` will
comprise L = b`/∆τc time steps.

Initialization

We initialize the system with S1 = S(0) and

ik,1a =

{
(1− f) i0

∆τ
, for k = 1

0, otherwise
, (8)

ik,1s =

{
f i0

∆τ
, for k = 1

0, otherwise
. (9)

The initial infected population is assumed to have infection age τ = 0 at time t = 0, split be-
tween symptomatic and asymptomatic classes according to the ratio f . The total initial infected
population is ∫ ∞

0

[ia(τ, 0) + is(τ, 0)] dτ ≈ ∆τ
K∑
k=1

(
ik,1a + ik,1s

)
= i0.

Discretized Functions

Discretized versions of the functions λa, λs, ra and rs are needed. The force of infection terms λa(τ)
and λs(τ) are independent of t and discretized versions are defined by

λka =

{
γ, for τa2 ≤ k∆τ ≤ τa3
0, otherwise

, (10)

λks =

{
1, for τ s2 ≤ k∆τ ≤ τ s3
0, otherwise

. (11)

The testing rate ρrand(t) depends on t, so at each time step q we calculate ρqrand = − ln(1−C/N q),
where N q is the total current testable population

N q = Sq +
K∑
k=1

(
ik,qa + ik,qs

)
.
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Let j ∈ {a, s} as appropriate. The discretized detection rates rj are

rk,qj =

{
ρqrand, for τ j1 ≤ k∆τ ≤ τ j4
0, otherwise

. (12)

Updating state variables

Given values for all state variables and all age classes at time step q, we update all state variables
to time step q+ 1. First, we calculate ia and is at time step q+ 1 for each age class except the first.

For k ≤ L or q + 1 ≤ L, no positive test can have been returned, so ij is governed by

∂ij
∂τ

+
∂ij
∂t

= −(µ+mj)ij(τ, t).

Using the method of characteristics, this equation can be solved precisely over the square [k∆t, (k+
1)∆t]× [q∆t, (q + 1)∆t] to give

ik+1,q+1
j = ik,qj e−(µ+mj)∆t.

For k > L and q + 1 > L, testing and removal affects the dynamics of the infected classes, so ij
are governed by

∂ij
∂τ

+
∂ij
∂t

= −(µ+mj)ij(τ, t)− rj(τ`, t`)ij(τ`, t`)e−(µ+mj)`.

If we assume that the second term on the right hand side is a constant over the domain [k∆t, (k +
1)∆t]× [q∆t, (q+1)∆t], we can again use the method of characteristics to integrate over this square.
This results in

ik+1,q+1
j = max

{
ik,qj e−(µ+mj)∆t − ωj

µ+mj

(
1− e−(µ+mj)∆t

)
, 0

}
,

where
ωj = rk−L,q−Lj ik−L,q+1−L

j e−(µ+mj)`.

Next, we calculate the integral representing the force of infection.

InfInt = ∆t
K+1∑
k=2

[
λa(k)ik,q+1

a + λs(k)ik,q+1
s

]
≈
∫ ∞

0

[λa(τ)ia(τ, t) + λs(τ)is(τ, t)] dτ.

Third, we calculate the updated value of S using the standard implicit method

Sq+1 =
Sq + µ∆t

1 + ∆t(µ+ βInfInt)
.

Finally, we fill in the age 0 infection level

i1,q+1 = βSq+1InfInt.

This completes the update of the scheme from time step q to time step q+1 for all state variables
and all age classes.

22

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.15.21251791doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.15.21251791
http://creativecommons.org/licenses/by-nc-nd/4.0/

