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Societal responses crucially shape the course of a pandemics but are difficult to predict. Mit-

igation dynamics is introduced here as an integral part of an epidemiological model, which is6

applied to the ongoing SARS-CoV-2 pandemic. Unperturbed simulations accurately repro-

duce diverse epidemic and social response trajectories from 2020 to 2021 reported from 118

European countries, Iran, and 8 US states. High regional variability in the severity and du-

ration of the spring lockdown and in peak mortality rates of the first SARS-CoV-2 wave can10

be explained by differences in mitigation readiness H which is here mathematically defined

as the value of human lives in relation to business-as-usual contact rates. H entails a suite of12

political, social, and psychological aspects of decision making. The simulations also suggest

that a subsequent decrease in H much intensified the second wave and slowed down its decay.14

With less effective lockdowns, vaccination became the primary mitigation strategy in 2021.

Retardation of vaccination relative to a 3-month scheme is projected to provoke an average16

toll of 1.5 deaths per million and delayed day. This toll particularly rises in regions with high

numbers of old and still susceptible people, which is relevant for revising current policies of18

vaccine distribution.

Societies struck by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pan-20

demics in early 2020, mostly in Western industrialized countries, managed to reduce infection

rates through non-pharmaceutical mitigation such as social distancing [1, 2]. After these societies22

started to lift lockdowns in May 2020 [3, 4], some reached very low case numbers, while others

faced continuously high mortality caused by the coronavirus disease 2019 (COVID-19). Later in24

autumn and winter 2020/21, all these regions were hit by a second wave. Despite the experiences
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gained during the first lockdown [5], finding appropriate mitigation measures remained a difficult26

task [6,3]. The situation was further complicated in early 2021 by SARS-CoV-2 spike mutations [7]

and by the arrival of vaccines with uncertain distribution scheduling and public acceptance [8].28

The lack of reliable mid-term future scenarios guiding the defense against SARS-CoV-2

[9, 10] stimulated the development of predictive tools. However, societal mitigation as a ma-30

jor control of the spreading dynamics was largely absent in classical epidemiological models.

Simulation studies hence increasingly incorporated human agency [11, 12, 13, 14], with diverse32

modeling approaches comprising rule-based, fitted, extrapolated, or pre-defined scenario settings

[15, 10, 16, 17, 18, 19, 20]. Yet, no model could reproduce the observed re-adjustments in social34

distancing measures [21, 13] across different countries in a forecast mode. Here, I seek to explain

regional variability in viral spread dynamics and in societal responses by introducing an integrated36

societal epidemiological model. Numerical experiments covering the period 2020 to 2021 seek

to provide insights and scenarios for supporting the ongoing battle against the pandemic and the38

attempts to reduce its devastating impacts on human lives and livelihood.

The mechanistic approach is built on a susceptible-infected-recovered (SIR) model, which40

resolves seven age groups, and is the first model that features (age-specific) contact rates as prog-

nostic and adaptive variables. Adaptive changes in social mixing underlying the SARS-CoV-242

transmission are here proposed to be driven by three pressures describing the benefits and costs

of social distancing: (i) individual avoidance of own infection and mortality, (ii) social coherence44

in reducing overall infection levels, and (iii) costs of social distancing (see derivation in Meth-

ods). Changes in contact rates are then determined by the balance between the associated shift in46
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COVID-19 mortality M – or the benefit of less mixing– and in the multifaceted socio-economic

consequences C – or the costs of less mixing. Induced transmission shifts minimize integral social48

and mortality costs (M + C): during a pandemic, optimal contact rates are much reduced com-

pared to business-as-usual (BAU) social mixing but still remain non-zero (Fig. 1a). For integrating50

M and C in the same metric, this work introduces the social trait H that quantifies the relevance

of avoiding deaths versus keeping BAU contact rates (thus denoting a ”human value”). This trait52

describes a full suite of aspects and dimensions in societal decision-making: the priority of govern-

ments to safeguard the economy, their facilitation of partisan polarization [22], capacity of elites54

and people to extrapolate in time (see Sec. S3), presence of misinformation and scepticism vs. ef-

fective science communication [23,14], group (in-)coherence and (non-)conformity to norms [23],56

individualistic vs. community oriented norms [23], psychological resilience vs. fatigue [23, 24],

or other individual attitudes such as patience, altruism, trust in institutions [25, 23, 14]. These as-58

pects can in addition be mutually dependent such as norm adherence of individuals being linked

to socio-economic inequalities [24]. In total, the aspects determine the mitigation readiness of a60

society during a pandemics. Societies characterized by a low mitigation readiness H tolerate a

higher death toll before restricting mixing and mobility compared to those with a higher H . At62

low H , elevated social costs C curtail social distancing to small deviations from the BAU baseline

(Fig. 1b). The mitigation readiness H is the only adjustable parameter of the model to address64

regional differences in the response to SARS-CoV-2 throughout the entire simulation period. It

is treated differently within two model variants: either H is kept constant at a base value H0, or66

steadily declines after the first lockdown from H0 at the degradation rate rH .

In addition, fixed regional traits here describe differences in seasonality, BAU mixing pat-68

3

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.10.21251523doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.10.21251523


terns, and in age structure. Age affects epidemiological characteristics such as attack rates [15,26,

10] and infection fatality ratio (IFR) which both are elevated in older age classes (Sec. S2). As a70

result, higher death tolls in aged populations will favor stronger social distancing (Fig. 1c).

At a given level of contact, viral transmission is assumed to decrease due to individual be-72

havior and environmental factors. For example, moving everyday life outdoors or the wearing of

face masks can effectively reduce exposure to viral infection (see Methods).74

This study considers the COVID-19 associated mortality rate not only as part of the utility

function but also as a major variable used for validation. Mortality data make a more reliable76

indicator for the infection state than the number of confirmed cases [10, 27, 28]. Selected by

their high mortality rates in spring 2020, 20 regions were examined in this study, comprising 1178

European countries, Iran, and 8 US states (see Tab. S1 and Methods).

Model skill80

Across the 20 regions, simulated COVID-19 associated death counts were consistent with the

existing data (Fig. 2). Until Sep 2020, simulated mortality and data accurately match, and also82

the subsequent wave was reproduced by the model with only moderate deviations and time lags,

including the occurrence of third waves for Louisiana, Georgia, and Iran. Fitting of the second84

and third waves can be further improved by calibrating three instead of one parameter (Fig. S1).

The overall agreement is remarkable because mortality trajectories differed greatly among regions86

[10,27] and model runs represent true hindcasts: apart from a superimposed synchronous initiation

of the first lockdown (see Methods) simulations were not corrected or tuned. This indicates a high88
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predictive capability even in the mid to long term.

Lockdown severity and mitigation readiness90

The ratio between the reported intensity of social distancing and mortality during the first wave

constrains regional values of the base mitigation readiness H0 (see Eq.(5) in Methods). High H092

were calibrated for many European countries that had faced a strong and enduring spring lock-

down (Fig. 3) independent of their peak mortality rate (Fig. 2). To the contrary, inverse modeling94

attributed a relatively lowH0 for most US states with their often milder lockdowns despite elevated

mortality (Fig. 2, S2, Tab. S1). Values for US states, apart for Washington, lay in a narrow range96

(1.3–4.2 104), which may point to a small variability of this aggregate social trait within coun-

tries. In regions with small H0 and lacking intense first lockdowns, mortality either decayed much98

slower compared to the average of all regions such as in Sweden, or a second wave built up already

in summer 2020 such as in Louisiana (Fig. 2). The simulations well captured not only regional100

differences in lockdown severity, comprising a lockdown mobility above 50% of pre-pandemic

levels (e.g., in Sweden or Georgia) or below 20% (e.g., UK or Italy), but also the different rates of102

recovery in mobility such as a fast return to BAU mobility in New Jersey versus a slower one in

Washington (Fig. 3). The single calibration parameter H0 hence appeared to infer a realistic mu-104

tual interdependency of mobility and mortality patterns across regions so that mobility trajectories

were overall in high quantitative agreement with the data.106
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Decreasing readiness promoted the second wave

Contrary to first waves, second or third waves do not reach the actual death tolls if mitigation108

readiness stays constant in the model. Hindcasted peak mortality rates raising in autumn 2020

were on average by roughly a factor three lower than the reported ones. Only the model variant110

including a catchup mechanism generated by a steady post-lockdown decline in H (degradation

rate rH > 0, Fig. S2) enables a quantitative reproduction of peak death tolls, albeit in part with a112

temporal shift of up to 10 weeks such as for Ireland where data of late January (not shown) agree

with the forecasted peak height (Fig. 2). Only for France and the Netherlands, the second wave114

seems to be better fitted by the first model variant, however at the cost of overestimating mobility

in winter 2020/21 (Fig. 3). When extending the regional calibration to more parameters, COVID-116

19 mortality rates also of these countries were best reconstructed using non-zero degradation rates

(Fig. S1). The model variant with rH > 0 (H < H0) in general reproduces the strong social118

mixing during late 2020 in the data more accurately than the variant with H=H0 (Fig. 3). Better

performance of the variant with rH > 0 is also found for the third waves in Louisiana and Georgia120

(Fig. 2). These cases are particularly interesting to compare with an extensive US-wide study by

the IHME forecasting team [20], which used a pre-defined scenario of mitigation measures. Peak122

mortalities of US states were either well predicted, or underestimated such as for Michigan, Indi-

ana, and Massachusetts – or the two US states with a third wave (i.e. Louisiana and Georgia). For124

example, peak January mortality for Georgia reached 7 10−6d−1 in their reference run, in contrast

to the approximately 20 10−6d−1 actually reported. The model presented here predicted 4 10−6d−1126

when H=H0, but 14 or 20 10−6d−1 for H < H0 using the base or extended calibration, respec-

tively (Fig. 2, S1). In the latter calibration, a late onset date (mid Nov) was used. This together128
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with the initialization of the free IHME simulations at autumn 2020 point to a rather delayed and

late decline of mitigation readiness in some regions (see also time lags for, e.g, Ireland, New York,130

or Sweden). The simple scheme proposed here (Fig. S2) thus requires refinements, which should

also include mechanistic reasoning. Nonetheless, the overall enhanced model accuracy using a de-132

clining H can be interpreted as an indication for an actual relaxation to BAU normality, facilitated

by the political, socio-economic, and psychological processes outlined above.134

Alternative pathways for industrialized countries

The moderate autumn/winter death toll in the model variant with constant H=H0 raises the ques-136

tion as to whether different mitigation strategies in the study regions could have led to practical ex-

tinction of the pathogen as realized by few Asian countries such as China [29]. The post-lockdown138

H was therefore shifted upwards in consecutive numerical experiments (and then kept constant).

Increasing the mitigation readiness lowered the total post-lockdown death count; after raising H140

by about one order of magnitude, viral infection was eradicated across regions (Fig. S3, S4).

It can be doubted that Western societies would have tolerated deeper and longer cuts into142

individual rights of privacy and movement or into economic operations at nearly invisible infection

density in summer-autumn 2020. However, magnitudes of the upwards shifts in H required for144

a full termination of the epidemics well correspond to the magnitudes of (dynamic) downward

shifts reconstructed for the same period (Fig. S2). Hence, the necessary changes towards elevated146

mitigation readiness would not have been more radical per se, but directed towards the opposite

direction compared to the actual decline in readiness.148
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Limited ability to fully prevent subsequent epidemic waves is implicitly hardwired in the

model through the optimality assumption Eq.(7) targeting the least costly adjustment to the threat.150

While this approach is capable of ”flattening the curve”, there may be more sustainable strategies

aiming at total eradication of the pathogen [29]. A thorough ”zero Covid” mitigation strategy is152

here induced by a huge value of every single case (H > 106, Fig. S4), not necessarily because of

the appreciation of the individual life (morality) but because of the exponentially growing number154

of –avoided– cases (see ”expectation capacity” above).

Along these lines, in an otherwise non-preventive strategy also a full travel ban cannot much156

improve the situation. To the contrary, without imported cases, γ=0 in Eq.(1), simulated peak

mortality rates of the second wave even increased in regions with low number of cases during158

summer (Fig. S5). This surprising phenomenon follows from the threat inherent to very low but

non-zero case numbers at γ=0: When viral infection strikes from those very low levels, spreading160

rates can develop faster compared to the reference scenario (γ > 0). Yet, faster spreading rates are

harder to defend against, which evokes higher peak mortality rates.162

Role of young people

Social distancing in the simulations similarly affected all age groups such that age distributions of164

cases were rather flat (Fig. S6), in qualitative agreement with first seroprevalence studies [30, 31].

The decline of BAU contact rates from the younger to the elderly seems to be well compensated166

by the model setting of lower attack rates of the younger. As a result, young and medium aged

cohorts can maintain finite contact rates during the lockdown, especially in low H regions such as168
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the US (Fig. S7 and Fig. S6). Contagion within younger adults during summer 2020 fueled the

epidemic rebound in all study regions (Fig. S8). The low IFR of young adults also explains why170

the ubiquitously higher case numbers of the second wave (Fig. S8) coincided with lower mortality

in most of the regions [32].172

The shift toward younger ages during summer is confirmed by US and German monitoring

data [33, 34], albeit there the cohort from age 15 to 30 (yr) appears most prominent whereas sim-174

ulated infection levels were highest among adults older than 30 (Fig. S6). This discrepancy may

indicate a lower conformity with mitigation measures within young cohorts than assumed by the176

optimal transmission regulation of the model, which is corroborated by studies revealing stronger

non-conform attitudes among adolescents and young adults during the pandemics [35, 36, 37, 38].178

Higher behavioral exposure (eb) of young people together with their increasing dominance

of the case distribution can induce a net shift in averaged eb toward less protective behavior, even180

if the willingness to cooperate (e.g., by wearing face masks) stays invariant for each cohort as

suggested by polls [39], redrawn in Fig. S9. This net exposure change was captured by the simu-182

lated relaxation of eb (Fig. S9), although there is no explicit connection between age structure and

behavioral changes in the model.184

Changes in the frequency distribution inducing less defensive social traits (here represented

by eb andH) run contrary to selection for disease resistance as common in non-human populations.186

There, increasing dominance of more defended organisms reflects a correlation between infection

and fitness. This correlation may be weak or absent in the case of the SARS-CoV-2 pandemics188

affecting human populations, also because selective mortality of the elderly coincides with larger

9
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absence of multigenerational households, at least in Western countries (Sec. S7). Infected individ-190

uals younger than 50 not only experience a low risk of severe symptoms or fatality, but also exert

little direct harm on their kin. Consequently, individuals with non-conform attitudes promoting192

exposure and susceptibility [22] lack the incentive to change these attitudes even after having been

infected themselves – which actually is more likely than for conformists. This decoupling of vari-194

ations in attitudes and their remote impacts may in part explain the reconstructed shift towards less

defensive social traits in Western countries.196

Behavior and seasonality matter

During the course of the spring lockdowns, decreasing behavioral exposure eb significantly helped198

to combat the first wave in the simulations (see also Fig. S10), a finding that underlines the rel-

evance of using face masks [40, 41]. The reduction of eb occurred at different intensity among200

regions ranging from rather inert behavior (e.g., Iran, Georgia, or Sweden) to shifts by more than

50% (e.g., Ireland, Spain, or New York; Fig. S9). Readiness to improve behavioral protection202

appeared to increase under high peak mortality and/or high H value since both conditions cause

intense (model) lockdowns that are here linked to behavioral shifts.204

Even in regions displaying relatively inert behavioral adaptation, effective exposure e (=

eb · eE) markedly decreased in late spring 2020, which in the model follows from the transition206

to spread-reducing environmental conditions (eE). The decreases in eE condense multiple bio-

physical and behavioral processes driven by higher temperature and intensity of solar radiation208

such as effects on viral viability, or on placing activities from indoor to outdoor. Conversely, as

10
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also anticipated by virologists [42, 43], returning autumn/winter conditions much contributed to210

the arrival of the second wave (Fig. S10), also visible from the synchronized dynamics of e and I

(Fig. S9 and S8). Seasonality effects are, against expectation, most evident for regions at relatively212

low latitude such as Louisiana and Iran, where the increase in eE already started during summer

(Fig. S9) due to supra-optimal temperatures and was furthermore accompanied by high values of214

behavioral exposure eb as mentioned above (see also Fig. S10).

Inequality of vaccination and mortality rates216

Higher behavioral as well as environmental exposure together with softer social distancing in win-

ter 2020/21 considerably slowed down the decay of the second wave in comparison to the first218

wave (Fig. 2). In this situation, Western societies turned to vaccination to become the primary

mitigation strategy as vaccines were approved and available from Dec 2020 onwards. However,220

vaccine rollout in 2021 will likely be hindered by, e.g., limited vaccine production, inefficient

logistics, purchasing conditions, and low acceptance among the public [8, 44]. All these factors222

differ between the study regions, not to speak of the announced completion targets of 3 months

for USA and UK vs. 9 months for member states of the European Community. This motivated a224

set of scenario runs where the length of the vaccination period and the acceptance ratio was varied

(see Methods). As expected, simulated death toll in 2021 increases with extending the vaccination226

period, and also with decreasing acceptance ratio (Fig. 4). A delay by 6 months in average costs

nearly four times more lives, which is equivalent to 1.5 deaths per million and delayed day. For an228

aging country such as Germany this number amounts to 2.1 corresponding to an extra absolute loss

of 178 deaths per delayed day, with a maximal mortality difference in March 2021 (Fig. S1). For230
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comparison, a 30% drop in acceptance/efficacy within a 9-month scheme in average exacerbates

the death toll by 17%, from 403 to 470 per million. Regional differences in death tolls projected for232

2021 were found to cover a factor of about 8 from the lowest (Iran, Belgium) to the highest values

(Portugal) at a 3 month period and a factor of 4-8 (Spain or Iran vs. Portugal) at a 9 month period.234

These stark differences mainly correlate with the product of (1) the mortality rate at vaccination

start and (2) the fraction of susceptible and old individuals (Fig. S1). The large inequalities in vac-236

cination effects question the prevailing vaccine partition among countries or regions as it neglects

the current infection state of the population or abundance of the elderly that are still susceptible to238

SARS-CoV-2.

Short forecast horizon of state-of-the-art models240

In all simulations, infection waves were halted by transmission reduction – or by vaccination – and

not by depletion of susceptibles as forecasted by many state-of-the-art models. SIR models cannot242

seamlessly produce flat infection curves due to their mathematical structure combined with the

lack of human agency, which in part explains why SIR models (alike statistical models) typically244

have a forecast horizon of only few weeks [9, 45].

First attempts to extend epidemiological dynamics by macroeconomic factors [46,26,47,25]246

use a utility function similar to the approach presented here, and also distinguish between different

types of agents such as ”private individuals” (cf. here the selfish pressure) or the ”social plan-248

ner” (community pressure). However, economic models rely on equilibrium assumptions and on

strictly quantifiable (monetary) units and, thus neglect potentially important non-economic aspects250
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of societal decision-making such as learning under uncertainty, psychological fatigue, or political

partisanism [14,23,22]. The negligence of sensible and dynamic control processes may be respon-252

sible for why the regular outcome of economic approaches remained within the herd immunization

scenario of SIR models. In the presented model, the value of human lives (H) is defined in rela-254

tion to an essential mitigation quantity during a pandemics which is social distancing, and not a

monetary unit; furthermore, the results shown here suggest a high relevance for models to resolve256

societal responses dynamically.

Rather than social dynamics other recent approaches emphasize social actions: they are258

based on semi-heuristic rules of social distancing such as piecewise re-fitting of transmission

[48, 19], imposing pre-defined or rule-based shifts [17, 18, 20], relaxing transmission [27], and260

by relaxation cycles [15, 10]. These approaches may be very supportive tools for short-term deci-

sion problems, but need to become more mechanistic with respect to their mitigation module, and262

also need to be validated at a monthly or longer time scale. More validation effort is also required

for the model presented here, for example through applications to a broader range of societies,264

particularly those of non–Western countries, for testing model generality and suitability for sup-

porting strategic planning. As for any model used for decision making, also this model has to be266

taken with caveats, which are briefly summarized in Sec. S10.

Blueprint for adaptation problems268

This study highlights social response and individual behavior and their possible deterioration as

critical controls of the SARS-CoV-2 pandemics. The unprecedented model skill over nearly one270
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year across many regions may indicate (1) that the model captured governing principles of viral

and social dynamics during a pandemic and (2) that societal responses display a high adaptive272

significance insofar minimizing both social costs and death tolls.

However, adaptive capacity is also an attribute of viruses. Mutations in SARS-CoV-2 started274

to impact spread trajectories [49, 50, 51, 7]. These mutational drifts in parameters of SARS-CoV-2

virulence and incubation behavior can be resolved very analogue to the adaptive dynamics imple-276

mented in the social model (Eq.(7) in Methods). This extended framework would facilitate mod-

eling studies on the evolutionary arm races between human societies and SARS-CoV-2 or other278

viruses. The framework can further be used as a blueprint for related problems, such as Climate

Change assessments, which share, e.g., the balancing of environmental pressures with costly adap-280

tation and mitigation efforts, or the need for extrapolating aspects of the utility function into the

future. During pandemics and Climate Change, human agency is not an external boundary setting282

but an integral part of the system dynamics.
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a
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Figure 1: COVID-19 associated losses depending on contact rate. (a) Social costs C (red line) including, e.g.,

economic downturn, cultural loss, political instability, and psychological pressure, are inversely related to the value

of social contacts vs. human lives (H). C is assumed to have a minimum at ”business-as-usual” (BAU) contact

rates and to increase non-linearly with growing distance from those BAU contact rates; mortality M (violet line)

linearly increases with contact rate. The minimum of the sum loss M + C (brown line) is in the model approached

by an adaptive adjustment in social mixing. (b) Younger societies will often feature a lower H due to lacking buffer

mechanisms and lower fraction of people at risk compared to older societies. The resulting high social costs of social

distancing keep the contact rate close to the BAU value. (c) In contrast, aged societies will have on average a higher

infection fatality ratio and, concomitantly, mortality rate, which motivates stricter lockdowns.
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Figure 2: Daily mortality rate simulated either in a variant with constant H=H0 (olive line, rH=0 in Eq.(4)) or one

with decreasing H (rH >0) after the first lockdown (red line). Uncertainty in model trajectories (shaded areas) arises

from simulations with close-to-optimal H0 values as well as a range in external input (γ). From the reported and

corrected mortality data (see Methods, blue line) only the first 180 entries were used for calibration of H0 (dark blue

line), while the second half of the time-series is shown for comparison (light blue line). Note the different scaling of the

y-axis as also visualized by the grey line at M=10−5d−1, which roughly corresponds to the mortality rate at starting

capacity limitation of ICU hospitalization. European countries are labelled in blue, US states in red. The ordering of

regions from left to right reflects increasing base H0 (defined in Eq.(5); grey numbers to the right top, relative to 104),

and from top to bottom the decreasing product of the initial spread rate β′0 (Eq.(S6)) and the awareness ∆t (Eq.(S3)).
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Figure 3: Mobility in 2020-2021 measured based on routing requests from mobile Apple devices (blue line), com-

pared with the summed contact rate (Eq.(S8) in Sec. S7) in the reference simulation with constant H=H0 (olive line)

and the simulation with decreasing H (red line, see Fig. 2). Severity of the spring lockdown is displayed as blue area

below a mobility of 50% of the base level in Feb 2020.
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Figure 4: (a) Susceptible people in the oldest age group (S7, % of total population; brown line) and mortality rate

(M , black line), both simulated for the vaccination start on Dec 25, 2020 (see also Fig. S1). The rescaled product

of the two quantities (grey line) defines the ordering of regions from left to right. (b) Integrated projected death tolls

from February to end of 2021 for three vaccination schemes characterized by vaccination period ∆Tvacc and vaccine

efficacy: (1) ∆Tvacc=3 months (100% efficacy, red bars), (2) ∆Tvacc=9 months (100%, light blue), and (3) ∆Tvacc=9

months (70%, purple).
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Material and methods284

The societal-epidemiological model

The epidemiological section of the model resembles a SIR model as it distinguishes between sus-286

ceptible and recovered people and those infected by SARS-CoV-2. For seven age classes i = 1 . . . 7,

it resolves the fraction of infected individuals Ii of age group i relative to the total population size.288

Ii increases when susceptible people in that age class (Si) contract the virus and decreases at spe-

cific recovery rate r (Tab. S2):290

dIi
dt

= βi Si − r Ii + γi with βi = e
∑
j

βjiIj (1)

A global external input rate γ into a region (e.g., from travelers) is parametrized in Sec. S8. At

simulation start, the fraction of susceptible individuals Si equals the population fraction ϕi of the292

age cohort and thereafter declines due to infection and subsequent immunization or fatality, Si =

ϕi e−
∫
βidt. Group transmission rates βi comprise variations in the effective exposure e = eb · eE294

by behavioral changes eb and environmental factors eE (see below and Sec. S9) and changes in

contacts between age cohort i and all age groups. The specific transmission rate βji describes the296

probability per individual of potentially contagious encounter, and has to be distinguished from

the contact rate mij , which is the probability per age group of physical encounter,298

ϕiβij = αiαjmij (2)

with specific attack rates αi (Sec. S2). Infection described by Eq.(1) leads to a (lagged) mortality

rate M caused by COVID-19 given by300

M =
∑
i

ωi βi Si (3)
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with age-specific IFR ωi (Sec. S2).

Reductions in mixing and transmission by social distancing or other related restrictive mea-302

sures induce a multi-facetted ”social cost” (C) [52]. This quantity aggregates over various damages

of social distancing on economic and psychological well-being, political stability, or cultural di-304

versity [1,16,53,52,54]. Social cost C of mitigation is here assumed to rise with increasing social

distance (denoted as SD), which sums over all differences of contact rates mij to their values mij,0306

before the epidemic, weighed by mij,0 and sizes of interacting age classes.

C = H−1 · SD with SD =
∑
i

∑
j≤i

ϕi ϕjmij,0 ·
(

1− mij(βij)

mij,0

)2

(4)

The quadratic dependency on contact rate ratios (being linearly related to M ) resembles the rela-308

tion between GDP loss and mortality at variable social distancing found by economic models [26].

It encompasses tolerance against small deviations but strong effects of downturning contacts to310

their minimum. The inverse proportionality coefficient, the mitigation readiness H , determines

the height of mitigation costs perceived by a society in units of the mortality rate. Delayed and312

accumulating impacts on societal, economic, and psychological well-being [55,53,56,54] and con-

sequential shifts in prioritization are here captured by a steady decrease of H at the ”degradation”314

rate rH , activated on the day treset when net infection at low case numbers returns from a negative

to a positive rate after the first lockdown,316

H = H0 ·
1 + e−x

1 + cH + e−x
with x = rH (t− treset) (5)

with reduction factor cH . The functional form derives from inverting (cf. H−1 in Eq.(4)) the

logistic function that is a classical descriptor used in societal and economic theory [57]. A zero or318

non-zero degradation rate rH distinguishes the two model variants used in this study.
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H serves as a central linkage between the socio-economic part of the model and the epidemi-320

ological one or, more specifically, between the different meanings of the two loss functions C and

M . This enables to define the total loss L, which as the utility function of the integrated model322

guides societal responses during the pandemic:

L = C +M (6)

Avoidance of pathogenic transmission (by lowering βji) and, as a consequence, reduced COVID-324

19-associated death toll has to be traded off with associated social costs. Societal transmission

regulations are here suggested to be rational in terms of minimizing the combined loss L. The326

existence of the utility function L(βij) allows to describe social regulations as adaptive dynamics

of specific transmission rates βij . Following the adaptive trait dynamics approach [58], once even328

applied to societal dynamics [59], this is formulated as an evolution equation for βij entailing a

”responsiveness” δ times the marginal dependence of L on changes in βij .330

dβij
dt

= −δ · dL
dβij

= −δ ·
[
∂C

∂βij
+
∂M

∂βij
+

dM
dI

dI
dβij

]
(7)

In a physical analogue, responsiveness δ describes the conductivity of how fast emerging threats

induce new societal rules, and the bracketed derivative expression as a pressure acting on social332

traits, which is divided into three parts (see also Sec. S3): the first term in Eq.(7) can be directly

calculated from Eq.(4) to be proportional to βij,0 − βij and hence seeks to relax societal life to the334

pre-pandemic state. The second term in Eq.(7) quantifies the demand of life protection and simply

follows from the mortality dependence on infection rates in Eqs.(1)–(3). This term is proportional336

to the IFR ωj of the target age group, which strongly decreases in younger cohorts (Sec. S2).

As a consequence, only interactions with and among senior groups would experience high reduc-338

tion pressure; however, these contacts among or with the elderly cannot be shut down entirely (see
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Sec. S7), so that virulence among the young people can persistently contaminate the old ones. This340

side effect of isolated regulation in individual age-groups necessitates the extension of the adaptive

dynamic framework by the third, ”community-oriented” derivative term in Eq.(7) based on aver-342

aged target variables (I instead of Ii). This term represents the responsibility of governments and

the population as a whole, and requires sociality of young, non-risk groups (Sec. S3).344

In addition to the adaptive shifts in contact rates, the model includes variations in the behav-

ioral reduction of exposure eb. For example, wearing face masks or keeping sufficient interpersonal346

spatial distance up to self-isolation further lowers the infection risk at a given frequency of phys-

ical contact. The difficulty in formulating a reasonable cost function for behavior changes leads348

to a heuristic dynamics linked to social distancing (SD, defined in Eq.(4)): people are assumed to

be more prone to adopt new behavioral rules at higher reductions in mobility and livelihood. This350

is expressed by a relaxation where eb seeks to approach a target value e∗ that decreases from its

pre-pandemic value e∗=1 with increasing SD352

deb
dt

= rb · (e∗ − eb) with e∗ = 1− ε ·
√

SD (8)

with specific adoption rate rb and specific behavioral sensitivity ε. The square root dependency

reverts the squaring in Eq.(4) in order to create sensitivity already to small variations in SD.354

Data integration and region selection

Fatality data were downloaded on Jan, 16, 2021 from the Johns Hopkins CSSE COVID-19 Dataset356

[32] and smoothed by 7-day averaging. A regional correction factor was applied that averages

the temporal means of the CSSE data and of the estimated excess deaths for US states [60] and358
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for European countries [61]. Regions were selected if they had >700 death cases by April 25,

2020, and a relative mortality above the threshold Mcrit=7·10−7d−1 by Mar, 25, 2020. China was360

excluded owing to data irregularities and to its pioneering role in handling the epidemic. For

Ireland, old cases from retirement homes reported on April 24 were re-distributed to the preceding362

time series. Iranian mortality data were multiplied with a higher and initially dynamic correction

factor to comply with media reports [62]. Tab. S1 provides a full list of countries and states,364

correction factors, and demographic or regional characteristics.

For all study regions except for Iran, mobility has been reported from routing requests of366

Apple mobiles [63], which is taken as a measure for the intensity of social distancing [64,65]. For

7 of the selected European countries and USA at the country level, survey data on the willingness368

to wear face masks in the public [39] were used as a qualitative proxy to compare with simulated

changes in behavioral exposure.370

Numerical experiments

This study is based on a systematic model calibration and three numerical experiments:372

(A) For each region, the model was run over 400 days from 21 days before the date when

reported daily mortality matches Mcrit. Initial cases Ii(0) were set proportional to (i) the regional374

age distribution ϕi and (ii) the critical onset mortality Mcrit. Initial transmissions βij(0) = βij,0

were derived from reported age–contact data and corrected using the slope of the mortality curve376

at the start of simulation (Sec. S6). The social trait H and the awareness factor ∆t (Sec. S3)

were systematically varied in 800 simulations for each region. Epidemiological parameters were378
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estimated from literature sources (see Sec. S2). The calibration of ∆t assured a rather synchronous

lockdown timing of Western industrialized countries in mid-March [66]. The reported lockdown380

onset was anticipated by one week for Italy and Iran, and delayed by 5 days for all US states. Best

fitting H0s were retrieved according to minimal root-mean-squared (RMS) deviation to mortality382

and mobility data while only the first 180 days of data were used. H0 values revealing a RMS

error below 120% of the minimum were used to estimate uncertainty ranges. These close-to-384

optimal H0 were combined with a range in external input γ′ varied from 0 to 3 103 (thus two times

the reference value, see Tab. S2) to calculate the corresponding uncertainty in model trajectories.386

Reference settings for fC >0 were applied in all subsequent experiments apart of a single run

without decline in H (rH=0 in Eq.(4), thus H=H0).388

(B) The calibration in (A) was repeated with the the full data set; the RMS error for the late

Dec (2020) to mid Jan (2021) data was weighed ten times higher than for the preceding period390

in order to achieve a reconstruction at elevated accuracy of the second wave before vaccination

started. Also, three global settings of the reference run were systematically calibrated for each392

region: degradation rate rH , external input γ′, and degradation date treset. Using the extended

parametrization, series of 2-year simulations were conducted with different vaccination schedul-394

ing and vaccine effect. Vaccination period ∆Tvacc was set either to 3 or 9 months to encompass

the range of announced plans also accounting for a short immunization period. Vaccine effect de-396

scribes the acceptance ratio and the (uncertain) vaccine efficacy and was here set to either to 0.7

or 1. Vaccines were in particular assumed to prevent transmission despite lacking evidence so far.398

Their application followed a common protocol prioritizing the elderly: starting from i = 7, the

relative fraction of age group i was reduced by 1/∆Tvacc per day until being empty; then i was400
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counted down to start with the next cohort.

(C) A series of 1.5-year simulations was run across the 20 regions in whichH was systemati-402

cally increased from the regional reference value. Import rate γ′, vaccination rate, and degradation

rate rH were set zero.404

(D) Model sensitivity for two regions (Louisiana and Belgium) was assessed by varying 12

parameters 50% up and down from their reference value in Tab. S2.406
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