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Abstract 
Background: In 2020, COVID-19 has claimed more than 300,000 deaths in the US 
alone. While non-pharmaceutical interventions were implemented by federal and state 
governments in the USA, these efforts have failed to contain the virus. Following the 
FDA approval of two COVID-19 vaccines, however, the hope for the return to normalcy 
is renewed. This hope rests on an unprecedented nation-wide vaccine campaign, which 
faces many logistical challenges and is also contingent on several factors whose values 
are currently unknown. 
Objective: We study the effectiveness of a nation-wide vaccine campaign in response to 
different vaccine efficacies, the willingness of the population to be vaccinated, and the 
daily vaccine capacity under two different federal plans. To characterize the possible 
outcomes most accurately, we also account for the interactions between non-
pharmaceutical interventions and vaccines, through six scenarios that capture a range of 
possible impact from non-pharmaceutical interventions. 
Methods: We use large-scale cloud-based agent-based simulations by implementing the 
vaccination campaign using Covasim, an open-source ABM for COVID-19 that has been 
used in several peer-reviewed studies and accounts for individual heterogeneity as well as 
a multiplicity of contact networks. Several modifications to the parameters and 
simulation logic were made to better align the model with current evidence. We chose six 
non-pharmaceutical intervention scenarios and applied the vaccination intervention 
following both the plan proposed by Operation Warp Speed (former Trump 
administration) and the plan of one million vaccines per day, proposed by the Biden 
administration. We accounted for unknowns in vaccine efficacies and levels of 
population compliance by varying both parameters. For each experiment, the cumulative 
infection growth is fitted to a logistic growth model, and the carrying capacities and the 
growth rates are recorded. 
Results: For both vaccination plans and all non-pharmaceutical intervention scenarios, 
the presence of the vaccine intervention considerably lowers the total number of 
infections when life returns to normal, even when the population compliance to vaccines 
is as low at 20%. We noted an unintended consequence: given the vaccine availability 
estimates under both federal plans and the focus on vaccinating individuals by age 
categories, a significant reduction in non-pharmaceutical interventions results in a 
counterintuitive situation in which higher vaccine compliance then leads to more total 
infections.  
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Conclusions: Although potent, vaccines alone cannot effectively end the pandemic given 
the current availability estimates and the adopted vaccination strategy. Non-
pharmaceutical interventions need to continue and be enforced to ensure high 
compliance, so that the rate of immunity established by vaccination outpaces that induced 
by infections. 
 
Keywords: Agent-Based Model; Cloud-Based Simulations; COVID-19; Large-Scale 
Simulations; Vaccine. 

Introduction 
The Centers for Disease Control and Prevention (CDC) forecasted that 300,000 deaths 
would be attributable to COVID-19 by the end of the year. Reality defied expectations, as 
COVID-19 was directly responsible for approximately 350,000 deaths in the USA out of 
20 million reported cases (for forecasts and total case numbers, see [1]), which may only 
represent one out of seven actual cases based on CDC estimates for September [2]. 
Despite popular comparison with the flu, the ongoing COVID-19 epidemic has thus 
already claimed five times as many lives than the worst year for the flu, whose recent 
yearly death tolls range from a low of 16,000 to a high of 68,000 [3]. To contextualize the 
impact of COVID-19, we note that the U.S. life expectancy decreased by more than a 
year, which is ten times worst than the decline from the opioid epidemic [4]. In another 
comparison, 2020 is the largest single-year increase in mortality in the USA since 1918, 
which had both a flu pandemic and a war. This reflects both direct and indirect 
consequences on COVID-19, such as disrupting in-person treatments [5] and supply 
networks, with effects as far ranging as a jump in drug overdose [6]. To complement 
measures of short-term effects such as deaths or number of cases, we also note the long-
term impacts captured by the outpatient journey. Common symptoms often persist over 
month (e.g. fatigue, cough, headache, sore throat, loss of smell) [7–9] and less frequent 
ones can be severe since COVID-19 involves many organs. Effects can involve the 
cardiovascular system in up to 20-30% of hospitalized patients [10–11] (e.g., cardiac 
injury, vascular dysfunction, thrombosis), result in kidney injury [10] or pulmonary 
abnormalities [13], or lead to a deterioration in cognition due to cerebral micro-structural 
changes [14]. Based on similar infections, such effects can be long: for instance, 
inflammation of the heart caused by viral infections (i.e., myocarditis) can have a 
recovery period spanning months to years.  
 
Interventions in 2020 were strictly non-pharmaceutical, as vaccines were being 
developed and tested. Such intervention strategies have included preventative care (e.g., 
social distancing, hand washing, face masks), lockdowns (e.g., trasvel restrictions, school 
closures, remote work), and logistics associated with testing (e.g., contact tracing, 
quarantine) [15–16]. The range of non-pharmaceutical interventions adopted at various 
times across countries can be seen in further details through the CoronaNet project [17] 
or the collection of essays “mobilizing policy (in)capacity to fight COVID-19” published 
in mid-2020 [18]. In early 2021, two vaccines were deployed (Pfizer-BioNTech and 
Moderna) with plans for up to three additional vaccines (AstraZeneca, Janssen, Novavax) 
[19]. With the availability of vaccines comes the key question: when will life return to 
normal in the USA? The implicit expectation is to see a return to normalcy thanks to the 
vaccine, rather than due to a high number of cases with its accompanying death toll.  
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In a highly publicized interview, Dr. Anthony Fauci, director of the National Institute of 
Allergy and Infectious Diseases, estimated a return to normal by fall, if the vaccination 
campaign is successful [20]. Getting a precise estimate of when life will return to normal 
is a challenge as it depends on numerous interrelated factors: potential behavioral 
changes affecting non-pharmaceutical approaches (e.g., lesser compliance to mask 
wearing and social distancing), participation in the vaccination campaign, logistics 
associated with vaccination (i.e., who can get vaccinated and when), and mutations 
leading to new strains with different biological properties (e.g., higher infectivity) or 
unknown vaccine responses. In this paper, we use large-scale simulations to identify 
when there will be an inflection point in the dynamics of the disease, and the level of 
cases that will be obtained.  
 
Simulations have been used since the early days of the COVID-19 pandemic. Classic 
compartmental epidemiological models were first produced (e.g., many SEIR models 
[21–24]), with a focus on estimating broad trends and key epidemiological quantities 
such as the expected number of new cases generated by each infected individual (i.e., the 
basic reproduction number R0). Such compartmental models provide limited support to 
study the effect of interventions, for instance by lowering the contact rate to represent the 
impact of social distancing. A research shift in the second part of 2020 resulted in the 
growing use of Agent-Based Models (ABM) to support the analysis of interventions by 
explicitly modeling each individual as well as their interactions among each other or with 
the environment. This shift to individual-level models was underpinned by the evidence 
of heterogeneity in risk factors (e.g., older age, hypertension, respiratory disease, 
cardiovascular disease [25–26]) as well as behaviors (e.g., non-compliance with social 
distancing orders) based on personal beliefs and values [27–28]. There is also spatial 
variation in socio-ecological vulnerability to COVID-19 [29], with rural counties being at 
higher risk (due to e.g., older population with more underlying conditions, lower access 
to resources) [30–31] and hence experiencing higher mortality rates [32]. Finally, there is 
a documented heterogeneity in transmission based on contact tracing data [33], which 
stresses the need to use realistic networks when modeling the spread of COVID-19 [34]. 
Considering this growing evidence-base, our work relies on an ABM which accounts for 
individual heterogeneity (e.g., in age), explicitly embeds them in a network to model their 
contacts, and simultaneously considers different network types (e.g., community, work) 
to account for various settings.  
 
By adding vaccines to a previously validated ABM of COVID-19, we are able to assess 
how the number and timing of cases depends on key factors such as the population’s 
interest in vaccines and the efficacy of vaccines. Our specific contributions are twofold: 

- We extend the validated COVASIM model with a detailed process of vaccination, 
accounting for vaccine efficacy, interest in vaccination, and fluctuations in 
vaccination capacity. Our process models the need for two doses and the 
possibility of being infected until the second dose is administered. 

- We examine vaccination interventions under two hypotheses for the number of 
doses available and considering concurrent non-pharmaceutical interventions.  
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The remainder of this paper is structured as follows. In our methods, we briefly cover the 
rationale for choosing COVASIM and how we adapted the model to account for the latest 
epidemiological evidence. We then explain which non-pharmaceutical interventions are 
simulated, in line with our previous work [35]. Most importantly, we detail the novel 
extension of vaccines into COVASIM and our examination of the trends in cumulative 
infections using a logistic growth model. The following section presents and analyzes our 
results. Our final section discusses our main findings and provides an exhaustive list of 
limitations due to the ongoing nature of the pandemic and challenges in vaccination. 

Methods 

Overview 
COVASIM was developed under leadership of the Institute for Disease Modeling and 
released in May 2020 by Kerr and colleagues [36]. It is one of several open-source 
Agent-Based Models, together with OpenABM-Covid19 [37] or COMOKIT [38]. The 
model captures the transition from susceptible to infected followed by a split between 
asymptomatic individuals and various degrees of symptoms, resulting either in recovery 
or death (Figure 1). The model was created to support interventions offered at the time, 
which did not include vaccination. We thus modified the model to account for our current 
understanding of viral dynamics as well as the use of vaccines over two doses (Figure 1). 
When instantiating the model to the U.S. population, we use a resolution of 1:500 (i.e., 
each simulated agent accounts for 500 U.S. inhabitants). Given our resolution and target 
population size, our application exceeds half a million agents and can thus be described 
as a “large-scale COVID-19 simulation” [39]. Our simulations start on January 1st using 
CDC data for the number of infected, recovered, and immunized individuals to date (see 
subsection “Initializing the model”). We then simulate for 6 months, that is, 180 time 
ticks based on a temporal resolution of one day per simulation step (i.e., ‘tick’). To cope 
with the computational challenges created by a large-scale stochastic model, a 
philanthropic grant supports us in performing cloud-based simulations via the Microsoft 
Azure platform. 

The COVASIM model: rationale for selection and evidence-based updates 
Apart from being open source, there are two reasons for which we selected COVASIM. 
First, it captures heterogeneity within individuals (e.g., assigns an age and uses age-
specific disease outcomes) as well as transmission patterns, by placing agents within 
synthetic networks corresponding to a multiplicity of contexts: work (based on 
employment rates), school (based on enrollment), home (based on household size), and 
the general community. However, these high-resolution age-specific contact patterns are 
not unique to COVASIM. For example, the OpenABM-Covid19 [37] also embeds agents 
in age-stratified occupation networks (encompassing work and school), household 
networks, and a ‘general’ random network. COMOKIT [38] similarly uses the Gen* 
toolkit from the same team to redistribute populations from census units down to exact 
buildings such as the nearest school. Thus, the second rationale for choosing this platform 
is that it has been used in the most peer-reviewed modeling studies to date [40–41], hence 
providing an additional layer of scrutiny and confidence in the correctness of the model 
(i.e. validation) as well as its implementation (i.e. verification). As detailed in our recent 
work [35], changes in the evidence-base have required alteration in the model to keep it 
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valid. Consequently, we modified three COVASIM parameters to account for the current 
biological and epidemiological evidence on COVID-19 (Table 1). 
 
Figure 1. Overview of our modified COVASIM model containing the state diagram and 
specification of all transitions, including key procedures for vaccination and infection. 

 
 
Table 1. Adjusted parameters based on reports in the U.S. 
COVASIM 
Construct 

Initial value Modified value Rationale for 
modification 

    
Incubation: delay 
from infection to 
viral shedding 

Lognormal(4.6, 4.8) Lognormal(4.1, 4.8) The combined 
distribution of 
incubation period 
did not match latest 
evidence. The 
adjustment aligns it 
with the evidence. 

Incubation: delay 
from viral shedding 
to onset of 
symptoms 

Lognormal(1,1) Lognormal(1, 1.8) 

Proportion of 
symptomatic cases 

0.7 0.6 Although reports 
vary, Dr Fauci 
stated that 40% of 
the US cases were 
asymptomatic.  
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Selection and representation of concurrent non-pharmaceutical interventions 
In addition to support for heterogeneity, COVASIM implements several non-
pharmaceutical interventions. Although our focus is on vaccines, such interventions may 
be continuing in parallel with the vaccination campaign hence we have to take them into 
account when forecasting case counts. Interventions can be organized into three broad 
categories: preventative care (e.g., social distancing and face masks), lockdown (e.g., 
stay-at-home orders such as remote work and/or school closures), or testing-related (e.g., 
testing itself, then quarantining and contact tracing) [42–43, 15]. In line with our 
previous work on non-pharmaceutical interventions, we considered all six specific 
interventions. Although all six are natively supported by the COVASIM platform, we 
changed testing delays from their default value (constant) to a distribution (based on a 
survey across all 50 U.S. states) [44], thus accounting for the variability observed in 
practice. 
 
Since our focus is on vaccines, our search space is primarily devoted to quantifying the 
effect of vaccine-related variables (i.e., efficacy, compliance, capacity). As every non-
pharmaceutical intervention could lead to a several variables (e.g., compliance with face 
masks, efficacy of face masks), considering all variables for every such intervention in 
addition to vaccine-related variables would lead to an impractical search space. We thus 
leveraged the systematic assessment of our previous study [35], which simulated all 
combinations of non-pharmaceutical interventions at two different levels of strength (i.e., 
a binary factorial design of experiments). We analyzed results from this broad search to 
select five scenarios (Table 2) that result in five different levels of infection count after 
six months, in the absence of any vaccine (Figure 2). In other words, to circumvent the 
unwieldy notion of simulating all aspects of vaccines and non-pharmaceutical 
interventions, we selected five scenarios that produce linear to logistic growths in 
cumulative infections, thereby conducted a parameter sweep across possible growth 
behaviors. We supplemented these five scenarios with an extreme “no intervention” 
scenario, which provides an upper bound on the number of cases. 
 
Table 2. Scenarios depicting concurrent non-pharmaceutical interventions, chosen for 
their ability to create five markedly different outcomes together with a no-intervention 
case. 
Scenario → 
Features ↓ 

1 2 3 4 5 6 (do 
nothing) 

       
Networks 
impacted 

Work, school 
 

Community 
 

All 

Percentage of 
contact in work 
and school (as 
a function of 
default) 

70% 95% N/A 100% 

Percentage of 
contact in 
community (as 

N/A 
 

70% 70% 90% 100% 
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a function of 
default) 
Daily tests 1.11M 600K 600K 1.11M 600K No 

testing A positive test 
leads to 
quarantine. Is a 
2nd test 
required to end 
quarantine?  

No Yes No Yes Yes 

Test sensitivity 1 1 1 0.55 0.55 
% of contacts 
that can be 
traced 

0.2 1 1 0.2 0.2 No 
tracing 

After how 
many days will 
contact tracing 
results arrive? 
(i.e. contact 
tracing delay)  

0 7 7 7 7 

Starting contact 
tracing if one 
has just been 
tested and 
exposed (one 
infected peer) 

Yes No No Yes No 

 
Figure 2. Five scenarios (each based on a combination of interventions), selected for their 
ability to represent different trends in the number of cases over time, without a vaccine. 

 
Given that we made minor changes to the biology (incubation and proportion of 
symptomatic cases) and consider several ongoing intervention scenarios, it is necessary to 
confirm the validity of the model established using earlier data in previously published 
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studies. Consequently, we ran the modified COVASIM model based on data observed 
until 9/3/2020 and compared the simulated results with observations until the end of year. 
Similar trends and orders of magnitude were observed (Figure 3), thus providing 
qualitative validation. Note that the five scenarios chosen (Table 2) bound the growth of 
COVID-19 in the US, such that we are comprehensively examining possible trends going 
forward instead of limiting ourselves to the single trend that fit best on previous data.  
 
Figure 3. Comparison of changes in cumulative infections between a Covasim simulation 
and reality from 9/3/2020 to the end of 2020. The simulation included a reduction on 
work and school contacts (set to 95% of their capacity), 1.11M daily and highly sensitive 
tests, quarantining upon testing, immediate contact tracing with a level of 0.2, and a 
presumptive approach. 

 

Extending COVASIM with pharmaceutical interventions: a two-steps vaccination 
As detailed in our discussion, there is significant uncertainty and frequent changes 
regarding the number of vaccines that may be administered monthly. We thus consider 
two vaccine availability scenarios, both proposed by federal governments. The first 
scenario from the former Trump administration, named Operation Warp Speed, stated 
that vaccines will be available in tiered amounts (20 million in December, 30 million in 
January, and 50 million every month thereafter). The second scenario from the Biden 
administration, known as the ‘100-day goal’, proposes that there will be 1 million 
vaccines every day [45], thus covering 50 million Americans. Although there are other 
scenarios, they vary from state to state (e.g., the governor of New Jersey aspires to 
vaccinate 70% of the adult population within 6 months [46]) and are also subject to 
frequent revisions. Given the country-wide nature of our simulation, we rely on federal 
plans while detailing challenges (c.f. discussion). 
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In setting the monthly capacity, we noticed the necessity to adjust the schedule of the 
Operation Warp Speed plan, since the initial aim of 20 million people immunized by the 
end of December only resulted in 3 million doses administered. In other words, it would 
be incorrect to model the monthly capacity of Operation Warp Speed as announced since 
there is evidence that its initial objective was unmet, due to a variety of logistical 
challenges [47]. Consequently, we shifted the expectations of the Operation Warp Speed 
plan by one month, such that the capacity for January now corresponds to the initial 
expectations for December (20 million) and so forth. 
 
At the same time as either vaccination schedule is active, we also have the six scenarios 
listed in the previous sections. As these scenarios include a no-intervention case, we are 
able to study the interaction between non-pharmaceutical interventions and vaccines. In 
total, this gives 12 distinct situations. In addition, we also vary two essential parameters 
regarding vaccines: the percentage of the population that seeks vaccination (which we 
refer to as ‘vaccine compliance’ from hereon) and the efficacy of the vaccine. Varying 
these two parameters across 12 situations in a large-scale ABM results in significant 
computing needs. These are challenging to parallelize as the runtime of each experiment 
is not the same. Therefore, we took advantage of the massive parallelism enabled by the 
cloud computing platform Azure to accelerate computation. Using this platform, we 
varied vaccine compliance and vaccine efficacy between the bounds listed in Table 3. 
 
Table 3. Vaccine parameters used in the study. Intermediate values in the interval 
bounded by the low and high values are automatically explored. 
 Low Value High Value 
   
Vaccine Compliance 20% 60% 
Vaccine Efficacy 88% 99% 
 
Regarding our approach to vaccine efficacy, we note that individuals can be infected after 
their first dose, as has been documented on thousands of cases [48]. We thus only apply 
the probability of vaccine efficacy only after the 2nd dose. Although we do not track 
which of the two approved mRNA COVID-19 vaccine (Pfizer-BioNTech or Moderna) is 
administered, we vary vaccine efficacy to account for a margin of uncertainty regarding 
their respective performances. Since the vaccine capacity is either planned to increase 
(Operation Warp Speed) or at a high constant rate, a simulated agent given one dose will 
always be able to come back to get the second dose on time. Should an agent be 
contaminated or die before the second dose, it is then released for administration to 
another agent.  
 
We also vary the percentage of the population who seeks vaccination. As noted in a 
recent study, this percentage has varied among studies: 10.8% did not intend to be 
vaccinated when asked in April 2020, but this number jumped to 31.1% by May, and an 
August poll found that only a minority would want to be vaccinated [49]. In addition to 
changes in the sociopolitical climate and public discourse surrounding vaccination, there 
will also be changes since “many receptive participants preferred to wait until others have 
taken the vaccine” [50]. Seeing positive vaccination outcomes in others may in part 
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address the fear of serious side effects, which is a recurring concern for individuals who 
may not intend to participate in vaccination [51]. Given past variations and changes in the 
future, we handled uncertainty through a parameter sweep in vaccine compliance. 

Initializing the model 
A simulation model is composed of an initialization (setting characteristics of agents for 
t=0) and rules governing its update, thereby producing data for analysis. The previous 
subsections covered the rationale for inclusion of agents’ characteristics and the design of 
the rules, while the next subsection focuses on the analysis. The present subsection thus 
briefly covers our approach to initialization such that our results can be independently 
replicated by other modeling teams. 
 
Our initial time tick t=0 corresponds to January 1st 2020. We thus need to set the number 
of agents who have been infected, recovered, or immunized (due to the rollout of 
vaccines in December) by that time. A COVID-19 case remains infectious within a time 
window of two weeks, after which there is either recovery or complications. From 
December 18th to 31st, there was a total of 3,311,345 active cases. To appropriately 
initialize our simulation, we need to further track when an individual was infected. 
Incorrectly setting them to be all infected on December 18th would result in nobody being 
infected when the simulation starts on January 1st. At the other extreme, assuming that 
they were all infected on December 31st would lead to an overestimate of disease spread 
into 2021. We thus seeded the timing of each infection by using the daily distribution 
from CDC data between December 18th and 31st (Table 4). All numbers were divided by 
500 since our agent resolution is 1 agent for 500 real-world U.S. inhabitants (1:500). The 
number of individuals who acquired immunity via recovery was set to the total case count 
observed by December 17th. Individuals who died from COVID-19 are grouped together 
with recovered ones (i.e., we do not subtract them from the count) since our simulations 
track the number of new infections: dead individuals do not alter these results as they can 
neither be infected nor infect others. The total number of individuals immunized from 
vaccination was set to 2 million (i.e. 4,000 agents). 
 
Table 4. Timing of the infection in the two weeks preceding the start of our simulation, 
such that our agents can be initialized at the appropriate state of their infection. 
Specific day of the infection Individuals infected 
  
December 18th 2020 236,063 
December 19th 2020 202,050 
December 20th 2020 198,129 
December 21st 2020 184,632 
December 22nd 2020 196,516 
December 23rd 2020 229,746 
December 24th 2020 193,277 
December 25th 2020 139,152 
December 26th 2020 179,707 
December 27th 2020 146,593 
December 28th 2020 177,814 
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December 29th 2020 201,428 
December 30th 2020 230,982 
December 31st 2020 229,634 
 

Analyzing the progression of cumulative infections through a logistic growth model 
 
To quantify the spread of the disease, we fitted the progression of cumulative infection to 
a logistic growth model, which is a simple yet effective model describing resource-
limited growths in natural processes and has been used on several occasions for COVID-
19 [52–54]. Let the cumulative infection be � � ����, then the logistic model stipulates 
that � is the solution of the differential equation 

��
� � � �1 
 �

�� , #�1�  

where ��  is the time derivative of �, � is the growth rate (proportional to the maximum 
value attained by �� ), and � is the carrying capacity. As our simulations produce the 
complete time series for �, we can estimate ��  using finite differences, thereby extracting 
parameters � and � through a linear regression as equation (1) suggests. In the regression, 
the independent and dependent variables are � and �� /�, respectively. In addition, we 
measure the goodness of fit as that of the linear regression. Since the simulation is 
stochastic, multiple replications are needed for each configuration to obtain an average 
behavior. We used the confidence interval method [55, pp. 184-196] to perform enough 
replications so that for every time step �, the 95% CI of � at time � falls within 5% of the 
average. Therefore, we perform the fitting for each individual run, and compute the 
average � and � across all runs. 
 
Although we report � and � in our supplementary material, the interpretation of these 
variables can be difficult for a broader audience. The growth rate � is proportional to the 
maximum fraction of the carrying capacity � that is infected on the worst day. In other 
words, it is an indication of how fast the disease spreads as its peak, based on another 
variable. For ease of interpretation, we focus on the adjusted growth rate whose unit is 
directly in number of individuals. This adjusted growth rate is obtained as 

�������� � �
4�, #�2�  

For instance, an adjusted value of 200,000 means that at most 200,000 individuals will be 
infected on the worst day.  
 
As the early steps of the simulation witness a shift from a vaccine-naïve population to 
one that gradually builds vaccine-based immunity, early trends differ from the longer 
ones that are the focus of this study. This is a typical situation in modeling, whereby 
estimating the long run performance measures requires to first run the model for a certain 
amount of time (known as ‘warm-up period’) [56]. We empirically determined that a 
warm-up period of 20 days was sufficient to start the curve fitting, that is, we create the 
time series for � starting from � � 20. As evidenced by Figure 4, this warm-up period 
results in very good fit for the logistic model under both federal plans. This approach also 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 3, 2021. ; https://doi.org/10.1101/2021.01.31.21250872doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.31.21250872
http://creativecommons.org/licenses/by-nc-nd/4.0/


generalizes better, since the reported  and  can accurately characterize the spread of 
the disease for most time periods instead of being skewed by the first few days.  
 

Figure 4. Distributions of the average goodness of fit  for each vaccination plan, 
demonstrating the validity of fitting logistic growth models from .

 
 

An essential aspect of a return to normalcy is about the conditions under which that is 
achieved. If the disease is left uncontrolled, and simplifying the matter of variants, we 
would still return to ‘normalcy’ within six months because a very large share of the 
population would already have been infected and either recovered or died (Figure 5). The 
goal is thus not only to eventually achieve stability in the number of cases but to achieve 
it at a minimal level (Figure 5; bottom blue curve). 
 

Figure 5. Increase in cumulative infection under Operation Warp Speed with vaccine 
compliance of 0.6, vaccine efficacy of 0.99, scenario 1 for non-pharmaceutical 
interventions (“controlled” case – blue) and scenario 6 consisting of no interventions 
(“uncontrolled” case – orange). 
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Results 
 
The carrying capacities and growth rates as functions of vaccine compliance and 
efficacies for each vaccination plan are provided as supplementary online material S1 – 
S4. In this paper, we focus on the adjusted growth rate in Figures 5-6 for the two federal 
plans, six scenarios (including 5 non-pharmaceutical interventions), and by varying 
vaccine efficacy as well as compliance. This allows to examine the synergistic effects of 
non-pharmaceutical interventions with vaccines while comprehensively accounting for 
key unknowns. 
 
In comparing the two federal plans, the Biden plan showed more potency at controlling 
the infection across all intervention scenarios than the plan created under the previous 
administration. We note that even if a small fraction of the population seeks vaccines, and 
even if vaccines are less effective than announced, the vaccination campaign can reduce 
the total number of infections. Note that increasing the efficacies of vaccines results in 
lower infections for all scenarios and vaccine plans. This agrees with expectation since in 
our simulations, agents are not re-vaccinated upon having no immune response. 
Therefore, while holding all else equal, increasing the vaccine efficacy accelerates the 
growth of the immune population, thereby reaching herd immunity more quickly. In 
contrast, the dependence on compliance is much less intuitive and even leads to 
unintended consequences. 
 
Typically, we assume that higher vaccine compliance will lead to lower overall 
infections, since the proportion of the immune population is upper bounded by the 
compliance. However, in both vaccination plans, only scenarios 1 and 2 yielded such 
results. For the rest of the scenarios (3 to 6), the dependence on vaccine compliance is 
apparently reversed, with some hinting towards a non-monotonic relationship (scenario 4 
of the Biden plan and scenario 5 of the federal plan, for example). The reason behind this 
puzzling behavior is a combination of three factors: (i) vaccines are strictly administered 
in decreasing order of age, (ii) the elderly are going neither to work nor to school, hence 
they have fewer social ties than other age groups, which reduces their impact on 
preventing the spread of infections once immunized, and (iii) relative to the growth of 
infections in the scenarios in which the anomaly happen, the vaccine availabilities are too 
low. 
 
As the vaccine compliance increases uniformly in the population, it means that a larger 
number of elderly in particular will seek vaccines. Given the vaccination strategy that 
focuses on older individuals, it will therefore take more time before anyone from the 
more connected/younger age groups can be vaccinated. During this time, the virus can 
continue to spread among the younger population, particularly because (i) the scenarios 
with counter-intuitive results (3 to 6) are among the least restrictive in terms of non-
pharmaceutical interventions and (ii) elderly have a lower contribution to the spread of 
infections due to their more limited social ties. Therefore, while the elderly population 
will be better protected, the longer delay for the rest of the population means that by the 
times they are eligible for vaccinations, the infection has already spread, leading to 
overall higher infections.  
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Figure 6. Adjusted growth rate (number of infected individuals on the worst day) as 
functions of vaccine compliance and efficacy under the Biden vaccination plan. 
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Figure 7. Adjusted growth rate (number of infected individuals on the worst day) as 
functions of vaccine compliance and efficacy under the Trump vaccination plan.
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This argument is most vividly illustrated by our animations in supplementary material S5 
and S6, in which the distributions of the infected and immune population are plotted at 
each time step. These animations use showcase the no-intervention scenario (scenario 6) 
and Operation Warp Speed for the monthly vaccination capacity. Apart from the 
compliance, every other parameter including the random seed is fixed to be the same. 
Particular attention should be paid to the spread of infection among the elderly agents 
(i.e., over 65), as it most directly corroborates the reasoning above.  
 

Discussion 

Principal Results 
The incoming CDC director predicted half a million death by mid-February [57], thus 
stressing the urgency of vaccination. However, vaccination is an unprecedented and 
complex endeavor whose success depends on many other variables such as vaccine 
compliance, vaccine efficacy, and the ongoing presence of non-pharmaceutical 
interventions. In line with expectations, our large-scale agent-based simulations show that 
vaccination can reduce the total number of infections across all possible scenarios. The 
capacity pledged under the new Biden plan (one million doses a day) would have a 
greater impact than the plan of the previous administration (“Operation Warp Speed”) 
when accounting for its initial delays.  
 
Two key findings of our study are as follows. First, we demonstrate the necessity to 
maintain non-pharmaceutical interventions over the next six months. As interventions are 
relaxed (from scenario 1 offering the most control to scenario 6 offering no control), 
there is an increase in case count such that a return to normalcy is not achieved through 
vaccination but rather through a very high number of infected individuals. Second,  
there is an unexpected interplay between vaccination strategies, non-pharmaceutical 
interventions, and vaccination availabilities. As non-pharmaceutical interventions lose 
momentum (scenarios 3 and above), an increase in vaccine compliance leads to an 
unexpected increase in infections due in part on the low availability of vaccines and the 
priority on vaccinating elderly. More so than the observation that tighter non-
pharmaceutical interventions result in the slower spread of infections, this result further 
delineates the necessity of preparing the population to continuing non-pharmaceutical 
interventions even as the vaccination progresses. 
 

Limitations 
There are two main limitations to our current understanding of the COVID-19 pandemic 
and the vaccination campaign, which affect how our simulations account for (i) the 
number of vaccines that can be administered each month, and (ii) biological aspects. 
 
First, an unprecedented vaccine campaign comes with logistical challenges and 
uncertainty given the complex array of factors involved. As a result, fewer than the 
expected number of doses may be administered: federal officials aimed at giving the first 
dose to 20 million people during December 2020, but various delays resulted in fewer 
than 3 million people receiving a first dose [58]. It was recently reported that “federal 
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officials say they do not fully understand the cause of the delays” [58] and that the 
administration “pledged to immediately distribute millions of COVID-19 vaccine doses 
from a stockpile that the U.S. health secretary has since acknowledged does not exist” 
[59]. This situation has resulted in views that “much of the narrative earlier this year 
regarding Warp Speed’s preparation appears to be a sham” [60], reinforced by reports 
that the Biden administration found no vaccine distribution plan upon taking over from 
their predecessors [61]. Some of the factors causing a delay are known: there can be 
shipping delays or delays in administering doses due to a lack of hospital staff members 
as they are already caring for individuals infected with COVID-19. Other factors may be 
more surprising, such as the intentional destruction of vaccine doses by hospital staff 
[62]. As any simulation model is necessarily a simplification, we did not include factors 
whose value would be entirely unknown (e.g., what will be the shipment delay?) or 
whose existence is anecdotal given the total number of doses (e.g., intentional destruction 
or storage errors). We were limited in our ability to use real-world numbers on how many 
individuals received the vaccine as this data is captured at the state level and several 
states’ reporting systems have experienced errors [63]. Although there are efforts at 
centralizing data (e.g., national news outlets aggregate data across states [64]), the level 
and nature of errors differ across states, which is a challenge to estimate overall model 
uncertainty.  
 
We have thus followed the federal plan for the number of individuals who can get 
vaccinated each month. Out of all the doses that are planned, fewer may be distributed 
and an even lower number may ultimately be administered. Our simulations are thus 
likely representing an upper bound on the number of vaccines administered, leading to 
more optimistic results than in reality. The gap is particularly pronounced in December 
and may remain significant in January, but early logistical issues and delays should be 
gradually addressed, such that the gap between federal expectations and actual 
implementation narrows over time.  
 
Second, all biological aspects of the virus are based on the strains that dominated 
throughout 2020. Epidemiological studies from these strains have informed parameters 
such as transmissibility, incubation period, the proportion of asymptomatic carriers, the 
severity of symptoms and hence the course of the disease, as well as the efficacy of 
treatments or vaccines. The existence of different strains is well-established, as 
phylogenies have shown seven distinct lineages [refs 65, 66], but here has not yet been a 
documented need to ascribe different parameter values (i.e., different viral ‘behaviors’) to 
each strain. There are two possible reasons. First, there are relatively few mutations and 
thus a limited ‘chance’ of a drastically different outcome naturally occurring: the virus is 
“considered a slowly-evolving virus as it possesses an inherent proofreading mechanism 
to repair the mismatches during its replication” [ref 66]. Second, there has been little 
selective pressure on the virus, as it was spreading through a population that had never 
been exposed to an antigen (i.e., immunologically naïve). Both arguments are now 
changing. 
 
A new strain from the lineage B.1.1.7, named Variant of Concern 202012/01 (denoted 
VOC-202012/01), emerged with an unusually large number of 23 changes in its genomes 
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(including mutations and deletions) [ref 67]. Some of the biological changes make it 
easier for the virus to attach to its targets and enter cells, which is captured through 
epidemiological indicators as increased transmissibility [68 – 69]. This is relevant for our 
study, as this more contagious COVID-19 strain has been spreading in the USA and may 
dominate by March [70]. To date, there is no peer-reviewed evidence of an impact on 
disease severity or vaccine efficacy over a large population sample, but the function for 
some of the mutated parts remains unknown (hence the possibility of an impact on 
severity) and early studies over 20 volunteers suggests that antibodies from vaccines are 
only one-third as effective on some variants [71]. In addition, vaccination means that the 
virus is no longer spreading through an immunologically naïve population, thus creating 
selective pressure for functional mutations which can help the virus adapt. Our simulation 
results are thus optimistic as they use a lower transmissibility than provided by the new 
strain and as we did not worsen any of the other parameters to account for possible 
selective pressure.  
 
Finally, we note that our model is built very specifically for the USA. It would not be 
accurate when transposed to another country with minimal changes (e.g., only reducing 
the population size). For example, stark differences in vaccine rollout strategies exist 
between the UK and the USA, which would affect our simulations. In the USA, two 
doses of the same vaccine are normally administered, as the CDC stated that “mRNA 
COVID-19 vaccines are not interchangeable with each other or with other COVID-19 
vaccine products” [72]. However, new guidance from the UK allows a mix-and-match 
vaccine regimen in which the second dose may be from a different vaccine in exceptional 
circumstances (e.g., if the vaccine from the first dose is not available upon the patient’s 
return), even though clinical trials for mixed regimens are only due to be conducted at a 
later, unspecified time [73]. Another difference is that the UK frontloads the vaccine by 
delivering as many first doses as possible, which thus (i) no longer guarantees that a 
patient can receive the corresponding second dose upon return (hence raising the need for 
a mix-and-match) and (ii) potentially delays the delay before a second dose up to 12 
weeks [73]. In contrast, the USA is against delaying the second dose [74], thus our model 
operates on the assumption that a patient can complete treatment on time. 
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ABM: An Agent-Based Model is a computational model that simulates how individuals 
(i.e., ‘agents’) change through interactions with others and their environment. 
CDC: The Centers for Disease Control and Prevention is a national public health institute 
in the United States. 
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COVID-19: Disease caused in humans by a new strain of the severe acute respiratory 
syndrome coronavirus 2, SARS-CoV-2 (initially named 2019-nCoV). 
VOC-202012/01: Variant of Concern 2020/12/01 is a new strain, first identified in the 
UK and currently spreading in the USA, whose unusually large number of changes in 
genomes result in higher transmissibility.  
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