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Abstract 24 

We hypothesised that host-response biomarkers of viral infections may contribute to early identification of SARS-25 

CoV-2 infected individuals, critical to breaking chains of transmission. We identified 20 candidate blood 26 

transcriptomic signatures of viral infection by systematic review and evaluated their ability to detect SARS-CoV-2 27 

infection, compared to the gold-standard of virus PCR tests, among a prospective cohort of 400 hospital staff 28 

subjected to weekly testing when fit to attend work. The transcriptional signatures had limited overlap, but were 29 

mostly co-correlated as components of type 1 interferon responses. We reconstructed each signature score in 30 

blood RNA sequencing data from 41 individuals over sequential weeks spanning a first positive SARS-CoV-2 31 

PCR, and after 6-month convalescence. A single blood transcript for IFI27 provided the highest accuracy for 32 

discriminating individuals at the time of their first positive viral PCR result from uninfected controls, with area under 33 

the receiver operating characteristic curve (AUROC) of 0.95 (95% confidence interval 0.91–0.99), sensitivity 0.84 34 

(0.7–0.93) and specificity 0.95 (0.85–0.98) at a predefined test threshold. The test performed equally well in 35 

individuals with and without symptoms, correlated with viral load, and identified incident infections one week before 36 

the first positive viral PCR with sensitivity 0.4 (0.17–0.69) and specificity 0.95 (0.85–0.98). Our findings strongly 37 

support further urgent evaluation and development of blood IFI27 transcripts as a biomarker for early phase SARS-38 

CoV-2 infection, for screening individuals such as contacts of index cases, in order to facilitate early case isolation 39 

and early antiviral treatments as they emerge. 40 
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Introduction 41 

Rapid and accurate testing is central to effective public health responses to COVID-19. Infectivity, measured by 42 

upper respiratory tract SARS-CoV-2 titres, peaks during the first week of illness (1). Early case detection followed 43 

by rapid isolation of index cases, alongside contact tracing and quarantine, are therefore key interventions to 44 

interrupt onward transmission. As a proportion of individuals with SARS-CoV-2 shed virus while asymptomatic or 45 

pauci-symptomatic (2, 3), there is also global interest in screening tests for at-risk individuals who do not fulfil case 46 

definition criteria and in mass testing for early case detection among the general population (4). 47 

Effective screening tests must be accurate and reliable (5). However, current tools such as lateral flow assays 48 

(LFAs) for SARS-CoV-2 antigens appear to have inadequate sensitivity to effectively rule out active infection and 49 

may have limited value for contact and general population screening (6). Reverse-transcriptase PCR (RT-PCR) 50 

tests, which identify viral RNA, are the current gold standard for diagnosis of SARS-CoV-2 infection but pose 51 

different challenges including test speed and the requirement of a skilled laboratory operator (7). LAMP (loop-52 

mediated isothermal amplification) assays improve on RT-PCR timings but with an associated reduction in 53 

sensitivity (8). All current viral detection tests rely on swabbing of nasopharyngeal and/or oropharyngeal mucosa, 54 

the effectiveness of which is operator-dependent and prone to sampling variability. While positive SARS-CoV-2 55 

test results are useful in clinical management and infection control settings, all available tests have false negative 56 

rates which impact on interpretation, particularly in the context of high pre-test probability in high transmission 57 

settings (9). 58 

There is therefore a clear need to expand the portfolio of tests available for identification of SARS-CoV-2 infection, 59 

for both screening and diagnostic purposes. Measurement of the host response, as opposed to viral targets, is 60 

one potential diagnostic strategy. Numerous studies have demonstrated whole-blood transcriptional perturbation 61 

during other acute viral infections (10–13). A range of blood transcriptomic signatures have therefore been 62 

proposed as candidate diagnostic biomarkers for purposes including discrimination of viral from bacterial infection 63 

or no infection (10–21), diagnosis of pre-symptomatic viral infection in known contacts (22), diagnosis of specific 64 

viral infections (23, 24), or prognostication of severity (25). These signatures have not yet been evaluated for early 65 

diagnosis of pre-symptomatic or mild SARS-CoV-2 infection. We present a systematic evaluation of the potential 66 

for existing candidate whole-blood transcriptomic signatures of viral infection to predict nasopharyngeal SARS-67 

CoV-2 PCR positivity in healthcare workers undergoing weekly testing with paired blood RNA sampling. 68 
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Results  69 

Overview of study cohort 70 

We included a total of 169 blood RNA samples from 96 participants in a nested case-control study (Fig. S1) derived 71 

from an observational healthcare worker cohort (26–28). Of these, 114 samples (including 16 convalescent 72 

samples collected 6 months after infection) were obtained from 41 incident cases with SARS-CoV-2 infection, and 73 

55 samples from uninfected controls. Participant baseline characteristics are shown in Table S1. 32/41 individuals 74 

with incident virus PCR positive infection denied any disease defining symptoms at the time of their positive PCR 75 

test, whilst 9/41 described one or more of cough, fever, or anosmia. A further 22 individuals developed symptoms 76 

during subsequent follow up. 77 

Overview of candidate RNA signatures for viral infection 78 

Our systematic literature search identified 1150 titles and abstracts; 61 studies were shortlisted for full-text review. 79 

A total of 18 studies, describing 20 distinct transcriptional signatures for viral infection, met the eligibility criteria for 80 

inclusion in the final analysis (Table 1 and Fig. S2). Signatures comprised between 1 and 48 component genes 81 

and were discovered in a range of populations including children and adults with acute viral infections, and adults 82 

experimentally challenged with viruses including influenza, respiratory syncytial virus (RSV) and rhinovirus. The 83 

majority of signatures (12/20) were discovered with the objective of discriminating viral infection from bacterial or 84 

other inflammatory presentations (10–21). Three aimed to discriminate viral infection from healthy individuals (29, 85 

30) and two were discovered with a specific objective of diagnosing influenza infection (23, 24). One signature 86 

aimed to predict the severity of RSV infection in children (25). One study evaluated a pre-existing signature with 87 

the objective of identifying pre-symptomatic viral infection in individuals who were close contacts of index cases 88 

with acute viral respiratory tract infections (22).  89 

In most cases there was little overlap between the constituent genes in each signature, but most signatures 90 

showed moderate to strong correlation, which was only partly explained by overlapping constituent genes 91 

(Fig. 1A–C). Bioinformatic analysis of the integrated list of constituent genes to identify upstream regulators using 92 

Ingenuity Pathway Analysis was consistent with type 1 interferon regulation of these genes to explain the strong 93 

correlation between signatures despite limited overlap of their constituents. 94 
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Diagnostic accuracy of RNA signatures for SARS-CoV-2 infection  95 

Among all the signatures, the transcript for Interferon Alpha Inducible Protein 27 (IFI27) by itself provided the best 96 

discrimination of contemporaneous SARS-CoV-2 infection by nasopharyngeal PCR, compared to uninfected 97 

controls, achieving an AUROC of 0.95 (95% confidence interval 0.91–0.99). Using a pre-specified Z2 cut-off based 98 

on two standard deviations above the mean of the uninfected control samples, IFI27 had a sensitivity of 0.84 99 

(0.70–0.93) and specificity of 0.95 (0.85–0.98). Three other candidate signatures (Sweeney7, Zaas48 and 100 

Pennisi2) had statistically equivalent accuracy to IFI27 using paired DeLong tests (Table 2). Fig. S3 shows 101 

constituent genes for these four best performing signatures; only one of these (Pennisi2) did not include IFI27. 102 

Exclusion of participants with contemporaneous case-defining symptoms at the time of SARS-CoV-2 infection 103 

(n=9) had no significant impact on the primary analysis (Table S2). Scores for each of the four best performing 104 

signatures were inversely correlated with SARS-CoV-2 RT-PCR cycle thresholds, also independent of symptoms, 105 

suggesting that higher viral loads were associated with higher signature scores (Figure 2B; Spearman rank 106 

correlation coefficients −0.61 to −0.69). 107 

Longitudinal expression of the four best performing signatures peaked at the week of first virus PCR-positivity and 108 

had normalised at the point of convalescent sampling (Fig. 2). Importantly, however, measurements in the week 109 

preceding the first positive virus PCR were higher than uninfected controls and convalescent samples. AUROCs 110 

for discrimination between samples taken in the week prior to first SARS-CoV-2 detection and uninfected controls 111 

revealed statistically significant discrimination, but were lower than those for contemporaneous virus PCR positivity 112 

(Table S3). For illustration, IFI27 predicted infection one week before a positive virus PCR test with an AUROC of 113 

0.79 (0.6–0.98). At a Z2 cut-off this achieved sensitivity of 0.4 (0.17–0.69) and specificity of 0.95 (0.85–0.98).  114 

Discussion  115 

To our knowledge, this is the first evaluation of host transcriptomic signatures for detection of pre-symptomatic 116 

SARS-CoV-2 infection. Using a longitudinal blood transcriptomic dataset prospectively collected from London 117 

healthcare workers during the first wave of the COVID-19 pandemic, we systematically compared the diagnostic 118 

accuracy of 20 candidate transcriptional signatures originally discovered in a wide range of viral infection cohorts. 119 

We found that four candidate signatures had high accuracy (AUROCs 0.91–0.95) for discriminating individuals 120 

with acute contemporaneous SARS-CoV-2 infection from uninfected controls. Three of the four signatures 121 
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contained the interferon-stimulated gene IFI27, which was by itself the top-performing biomarker, originally 122 

discovered in a paediatric cohort (30) to discriminate RSV infections from controls. 123 

The candidate signatures evaluated in the present study are collectively associated with type 1 IFN responses, 124 

which are a canonical feature of antiviral host defences. The importance of this response in SARS-CoV-2 infection 125 

is highlighted by the association of severe COVID-19 with both of loss-of-function genetic variation in various 126 

components of type 1 IFN pathways and with anti-type 1 IFN antibodies (31, 32). IFI27 is best characterised for 127 

its functional role in type 1 IFN mediated apoptosis as a component of anti-tumour effects of IFNs (33). Differential 128 

regulation of IFN inducible genes might explain why expression of IFI27 transcripts outperforms other type 1 IFN 129 

signatures and merits investigation in future work to evaluate its significance in the anti-viral response. 130 

A key feature of our study is that all participants self-declared as fit to work when attending study visits, including 131 

at the time of their first positive SARS-CoV-2 PCR test, when most were asymptomatic. We also found detectable 132 

expression of the signatures in blood transcriptomes collected at the study visit one week prior to virus PCR test 133 

positivity among a subset of participants. Our data therefore demonstrate that measurable type 1 IFN-stimulated 134 

responses to SARS-CoV-2 precede the onset of symptoms, and in some individuals may predate detectable viral 135 

RNA on RT-PCR testing. We propose that novel diagnostic tests that detect transcripts (or associated protein 136 

targets) from the top-performing candidate signatures could be valuable tools in the rapid detection and isolation 137 

of individuals in the very earliest stages of pre-clinical infection. Importantly, these signatures also correlated with 138 

viral load independently of symptoms, indicating that they have strong potential to identify the most infectious 139 

individuals, critical to breaking chains of transmission. 140 

A key strength of our study was the weekly longitudinal follow-up of study participants which enabled detailed 141 

characterisation of the study cohort, including contemporaneous capture of blood RNA samples at the point of 142 

SARS-CoV-2 PCR positivity in pre-symptomatic and asymptomatic infection. In addition, we performed a 143 

comprehensive systematic literature search to identify candidate blood transcriptional signatures for viral infection. 144 

This enabled direct head-to-head assessments of their diagnostic accuracy for SARS-CoV-2 infection and will 145 

provide a framework for future systematic evaluations of blood transcriptional biomarkers for viral infections.  146 

Our findings focus on early pre-symptomatic infection and may not be generalisable in moderate to severe 147 

COVID-19. In addition, we have not sought to evaluate discrimination between SARS-CoV-2 and other acute viral 148 

infections. In view of their discovery in a range of viral infections, we expect these signatures to serve as 149 
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non-specific biomarkers of acute viral infection. Nonetheless, their sensitivity for detecting pre-symptomatic 150 

infection offers potential clinical utility for screening contacts of index cases of SARS-CoV-2 in order to inform 151 

infection control management, and stratify the need for confirmatory viral PCR testing.  152 

In summary, we have shown that a single transcript (IFI27) detects SARS-CoV-2 infection with high accuracy. If 153 

translated to a near-patient diagnostic test (34, 35), this transcript could have significant clinical utility by facilitating 154 

early case detection.  155 

Materials and Methods 156 

Ethical approval 157 

The study was approved by a UK Research Ethics Committee (South Central - Oxford A Research Ethics 158 

Committee, reference 20/SC/0149). All participants provided written informed consent. 159 

Study design 160 

We undertook a case-control study nested within our COVIDsortium health care worker cohort. Participant 161 

screening, study design, sample collection, and sample processing have been described in detail previously (26–162 

28) and the study is registered at ClinicalTrials.gov (NCT04318314). Briefly, healthcare workers were recruited at 163 

St Bartholomew’s Hospital, London, UK in the week of lockdown in the United Kingdom (between 23rd and 31st 164 

March 2020). Participants underwent weekly evaluation using a questionnaire and biological sample collection 165 

(including serological assays) for up to 16 weeks when fit to attend work at each visit, with further follow up samples 166 

collected at 6 months. 167 

Participants with available blood RNA samples who had PCR-confirmed SARS-CoV-2 infection (Roche cobas® 168 

diagnostic test platform) at any time point were included as ‘cases’. A subset of consecutively recruited participants 169 

without evidence of SARS-CoV-2 infection on nasopharyngeal swabs and who remained seronegative by both 170 

Euroimmun anti-S1 spike protein and Roche anti-nucleocapsid protein throughout follow-up were included as 171 

uninfected controls. 172 

Systematic search for candidate transcriptional signatures 173 

We performed a systematic literature search of peer-reviewed publications in order to identify concise blood 174 

transcriptional signatures discovered or applied with a primary objective of diagnosis or assessment of severity of 175 

viral infection from blood or PBMC samples. We searched Medline on 12/10/2020 using comprehensive MeSH 176 
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and key word terms for “viral infection”, “transcriptome”, “biomarker” and “blood” (full search strategy shown in 177 

Table S4). Additional studies were identified in reference lists and from expert consultation. Titles and abstracts 178 

were initially screened by two independent reviewers; full-text review was performed for shortlisted articles to 179 

determine eligibility and conflicts were resolved through discussion and arbitration by a third reviewer where 180 

required. We focused on ‘concise’ signatures that might be more amenable to translation to diagnostic tests and 181 

defined this as any signature discovered using a defined approach to feature selection to reduce the number of 182 

constituent genes, as previously (36). We required that gene names that comprised the signature were publicly 183 

available, along with the corresponding signature equation or model coefficients, and that the signature must be 184 

validated in at least one independent test or validation set in order to prioritise signatures discovered from higher 185 

quality studies. Where multiple signatures were discovered for the same intended purpose and from the same 186 

discovery cohort, we included the signature with highest discrimination (as defined by the AUROC) in the validation 187 

data, or the signature with fewest number of genes where accuracy was equivalent. 188 

For each signature that met our eligibility criteria, we extracted constituent genes, modelling approaches and 189 

coefficients to enable independent reconstruction of signature scores. Extraction was performed by a single 190 

reviewer and was verified by a second reviewer. 191 

Blood RNA sequencing  192 

For ‘cases’, we included all available RNA samples, including convalescent samples at week 24 of follow-up for a 193 

subset of participants. For uninfected controls, we included baseline samples only. Genome wide mRNA 194 

sequencing was performed as previously described (37), resulting in a median of 26 million (range, 19.8–32.4 195 

million) 41 bp paired-end reads per sample. RNAseq data were mapped to the reference transcriptome (Ensembl 196 

Human GRCh38 release 100) using Kallisto (38). The transcript-level output counts and transcripts per million 197 

(TPM) values were summed on gene level and annotated with Ensembl gene ID, gene name, and gene biotype 198 

using the R/Bioconductor packages tximport and BioMart (39, 40). 199 

Data analysis 200 

For each eligible signature, we reconstructed signature scores as per the original authors’ descriptions. For logistic 201 

and probit regression models, we calculated scores on the linear predictor scale by summing the expression of 202 

each constituent gene multiplied by its coefficient. Scores for each signature were standardised to Z scores using 203 

the mean and standard deviation among the uninfected control population. Scores that were designed to decrease 204 
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in viral infection were multiplied by −1 in order to ensure that higher scores should be associated with higher risk 205 

of viral infection across all candidate signatures.  206 

The primary outcome was the AUROC for discriminating participants with PCR-confirmed SARS-CoV-2 infection 207 

during their first week of PCR positivity, from uninfected control samples. The secondary outcome was the AUROC 208 

for discriminating participants with PCR-confirmed SARS-CoV-2 infections in the week prior to first PCR positivity, 209 

from uninfected control samples. We calculated corresponding sensitivities and specificities for each signature for 210 

the primary and secondary outcomes using pre-specified cut-offs based on two standard deviations above the 211 

mean of the uninfected controls, as previously (36). In order to identify the subset of best performing signatures, 212 

we performed pairwise DeLong tests to the signature with the highest AUROC for the primary outcome (or most 213 

parsimonious in the event of equal performance), with adjustment for multiple testing using a Benjamini-Hochberg 214 

correction (41). Signatures were considered to have statistically inferior accuracy to the best performing signature 215 

if adjusted p<0.05. We also performed a sensitivity analysis for the primary outcome, excluding participants with 216 

positive SARS-CoV-2 swabs who reported contemporaneous case-defining symptoms at the time of sampling. 217 

Upstream analysis of transcriptional regulation of the constituent genes in the candidate signatures was performed 218 

using Ingenuity Pathway Analysis (Qiagen, Venlo, The Netherlands) and visualized as network diagrams in Gephi 219 

v0.9.2, depicting all statistically overrepresented molecules predicted to be upstream >2 target genes, as 220 

previously (36). We evaluated pairwise Spearman rank and Jaccard indices between each candidate signature in 221 

order to quantify correlations and proportions of intersecting genes between signatures. 222 

Role of the funding source 223 

The funder had no role in study design, data collection, data analysis, data interpretation, writing of the report, or 224 

decision to submit for publication. The corresponding authors had full access to all the data in the study and had 225 

final responsibility for the decision to submit for publication. 226 

Supplementary Materials 227 

Fig. S1. CONSORT (Consolidated Standards of Reporting Trials) flow diagram. 228 

Fig. S2. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow-chart of systematic 229 

review process. 230 

Fig S3. Constituent genes of best-performing RNA signatures. 231 
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Figures 443 

Fig. 1. Correlation and Jaccard indices for all RNA signatures for viral infection included in analysis. (A) 444 

Jaccard index intersect of constituent genes for all pairs of signatures clustered by Euclidean distance. (B) 445 

Spearman rank correlation coefficients for all pairs of signatures clustered by 1-Spearmean rank distance (C) 446 

relationship between pairwise Jaccard indices and Spearman rank correlation coefficients. (D) Network plot of 447 

significantly enriched predicted upstream regulators by cytokine (red nodes), transmembrane receptors (purple 448 

nodes), kinase (dark blue nodes) and transcription factors (light blue nodes) of all constituent genes in any 449 

signature (black nodes). Size of upstream regulator nodes proportional to statistical enrichment (-log10 FDR). 450 
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Figure 2. Four best performing RNA signatures for discriminating participants with contemporaneous PCR-confirmed SARS-CoV-2 infection, 451 

compared to uninfected controls. Shown as (A) Z scores stratified by interval to positive SARS-CoV-2 PCR; and (B) Z scores vs. contemporaneous 452 

PCR cycle threshold for SARS-CoV-2 ORF1. NIC = non-infected controls; Conv = convalescent samples, collected at study week 24. AUC = area under 453 

the receiver operating characteristic curve (95% CI) for discriminating participants with contemporaneous PCR-confirmed SARS-CoV-2 infection 454 

(PCR+ve_0 group), compared to uninfected controls. R = Spearman rank correlation coefficient. 455 
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Tables 456 

Signature(s) Model& Discovery population(s) Discovery 
setting(s) 

Discovery approach Validation population(s) Intended application 

AndresTerres11 
(23) 

Geometric mean of all 
genes (“influenza meta-
signature”) 

Five cohorts -children and 
adults with influenza; adults 
challenged with influenza; 
adults with bacterial 
pneumonia 

UK, USA and 
Australia 

Differential expression followed by 
leave-one-cohort-out strategy and 
filtering for heterogeneity of effect 
size, using genome-wide data 

Eight cohorts - children or 
adults with influenza or 
bacterial infection; adults 
challenged with influenza; 
adults vaccinated against 
influenza 

Influenza versus bacterial or 
other viral infection 

Henrickson16  
(24) 
 

Difference in geometric 
means between 
upregulated and 
downregulated genes 
(“Influenza paediatric 
signature score”) 

Four cohorts -children with 
influenza-like illness 

USA Meta-analysis and leave-one-out 
strategy to identify common genes 
using genome-wide data 

Two cohorts – children or 
adults with influenza. 

Influenza infection versus 
healthy 

Herberg2 
(10) 

Disease risk score† Children with viral or 
bacterial infection 

UK, USA and 
Spain 

Elastic net followed by forward 
selection–partial least squares, 
using significantly differentially 
expressed transcripts 

Children with bacterial or 
viral infection, inflammatory 
disease, or indeterminate 
diagnosis 

Viral versus bacterial 
infection in febrile children 

IFI44L 
(14) 

N/A Children with viral or 
bacterial infection (10) 

UK, USA and 
Spain 
 

Elastic net followed by forward 
selection–partial least squares, 
using significantly differentially 
expressed transcripts 

Children with bacterial or 
viral infection 

Viral versus bacterial 
infection in febrile children 

IFIT3; 
RSAD2* 
(22) 

N/A Three cohorts of adults 
challenged with rhinovirus, 
influenza or RSV (42) 

UK and USA Sparse latent factor regression 
analysis on genome-wide data (42) 
followed by regularised logistic 
regression on the resulting 30-gene 
signature 

Close contacts of students 
with acute upper respiratory 
viral infections 

Pre-symptomatic viral 
infection versus healthy 

Lopez7 
(15) 

Sum of weighted gene 
expression values 
(“Bacterial versus viral 
classifier”) 

Children and adults with 
viral, bacterial or non-
infectious acute respiratory 
illness (19) 

USA SVM using genome-wide data Children with acute viral or 
bacterial infections (43) 

Viral versus bacterial 
respiratory infection 

Lydon15 
(11) 

Logistic regression (“Viral 
classifier”)§ 

Adolescents and adults with 
viral, bacterial or non-
infectious acute respiratory 
illness 

USA LASSO using 87 selected target 
genes from previously derived 
signatures (19, 21) 

Patients with viral/bacterial 
co-infection or suspected 
bacterial infection 

Viral versus bacterial 
respiratory infection 

MX1 
(29) 

N/A N/A N/A Pre-selected due to biological 
plausibility 

Adults challenged with the 
live yellow fever virus 
vaccine 

Viral infection verus healthy 

OLFM4 
(25) 

N/A Children with RSV infection The Netherlands Differential expression and PAM 
classifier training using genome-
wide data 

A second cohort of children 
with RSV infection 

Severity of RSV infection in 
children 

Pennisi2 
(20) 

Disease risk score† Children with viral or 
bacterial infection (10) 

UK, USA and 
Spain 

Elastic net followed by forward 
selection–partial least squares, 
using significantly differentially 
expressed transcripts (10), followed 
by selection of an adequately 
expressed transcript for use in RT-
LAMP  

Children with bacterial or 
viral infection 

Viral versus bacterial 
infection in children 
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Sampson10 
(13) 

Disease risk score 
(“Combined SeptiCyte 
score”) 

Eight cohorts of neonates, 
children and adults with 
bacterial infections 

UK, USA, Estonia 
and Australia 

Regression analysis of transcript 
pairs using the 6000 most highly 
expressed genes from each dataset 

Unselected consecutive 
patients presenting to the 
emergency department with 
febrile illness 

Viral versus bacterial in 
febrile patients  

Sampson4 
(16) 

Disease risk score 
(“Septicyte VIRUS”) 

Ten cohorts - children and 
adults with viral infections. 
Two cohorts - adults 
challenged with influenza. 
Two cohorts - macaques 
challenged with Lassa or 
LCMV. 

USA, Brazil, 
Finland and 
Australia 

Regression analysis of transcript 
pairs using the 6000 most highly 
expressed genes from each dataset 

Seven human cohorts and 
six non-human mammal 
cohorts, infected or 
challenged with viruses 
across all seven of the 
Baltimore virus 
classification groups 

Viral versus non-viral 
conditions 

Sweeney11 
(17) 

Difference in geometric 
means between 
upregulated and 
downregulated genes, 
multiplied by ratio of counts 
of positive to negative 
genes (“Sepsis metascore”) 

Nine cohorts of patients with 
sepsis or trauma 

USA, Australia, 
Europe, 
Scandinavia, 
Canada, UK 

Greedy forward search of 82 
differentially expressed genes 
identified by multicohort analysis 

Twelve cohorts of adults 
with viral or bacterial sepsis, 
or trauma 

Viral or bacterial sepsis 
versus sterile inflammation 

Sweeney7 
(12) 

Difference in geometric 
means between 
upregulated and 
downregulated genes, 
multiplied by ratio of counts 
of positive to negative 
genes (“Bacterial/viral 
metascore”) 

Eight cohorts of children 
and adults with viral and 
bacterial infections 

USA, Australia, UK Greedy forward search of 72 
differentially expressed genes 
identified by multicohort analysis 

Twenty-four cohorts of 
children and adults with viral 
or bacterial infections, or 
healthy controls 
 

Viral versus bacterial 
infection 

Trouillet-
Assant6 
(18) 

Median expression of 6 
interferon-stimulated genes 
(“Interferon score (44)”) 

N/A N/A Differential expression using 15 
preselected interferon-stimulated 
genes 

Febrile children with 
bacterial or viral infection 

Viral versus bacterial 
infection in febrile children 

Tsalik33 
(19) 

Logistic regression (“Viral 
ARI classifier”)§ 

Children and adults with 
viral, bacterial or non-
infectious acute respiratory 
illness, and healthy controls 

USA LASSO using the 40% of microarray 
probes with the largest variance after 
batch correction 

Five cohorts – children or 
adults with viral, bacterial or 
non-infectious respiratory 
illness, or viral/bacterial co-
infection 

Viral versus bacterial acute 
respiratory illness 

Yu3;  
IFI27 
(30) 

1. Mean expression (“non-
RSV infections vs. 
controls”)¶¶ 
2. N/A 

Children with acute 
respiratory illness and a 
positive result for a viral 
infection on a 
nasopharyngeal swab 

USA Modified supervised principal 
component analysis using all 
expressed transcripts 

Children with RSV or 
rhinovirus infection 

Viral versus healthy in 
children 

Zaas48 
(21) 

Probit regression (“Viral 
classifier”)§ 

Two cohorts of adults 
challenged with influenza A 
H3N2 or H1N1 

USA Elastic net using 48 selected genes 
comprised of 29 derived as a 
signature in a previous study (42) , 7 
shown to be downregulated in 
analysis of influenza challenge time 
course data (45) and 12 control 
genes 

Adults presenting to the 
emergency department with 
fever and healthy controls 

Viral versus bacterial acute 
respiratory illness 

Table 1. Characteristics of whole-blood RNA signatures for viral infection included in analysis. Signatures are referred to by combining the first author's name 457 

of the corresponding publication as a prefix, with number of constituent genes as a suffix. Log2-transformed transcripts per million data used to calculate all signatures. 458 

*Study by McClain et al. sought to validate a 36-transcript signature for detection of respiratory viral infections. Model coefficients for the 36-transcript model are not 459 
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provided; we therefore included the two best performing single transcripts from the study in the current analysis, since they demonstrated similar performance to the 460 

full model in the original publication.  &Where applicable, the name of the signature from the original publication is indicated in brackets. †Defined as the sum of 461 

downregulated genes subtracted from the sum of upregulated genes. §Logistic and probit regression models were calculated on the linear predictor scale using model 462 

coefficients from original publications. Abbreviations: RSV, respiratory syncytial virus. PAM, prediction analysis of microarrays. SVM, support vector machine. LASSO, 463 

Least Absolute Shrinkage Selector Operator. RT-LAMP, Reverse Transcription Loop-mediated Isothermal Amplification. LCMV, lymphocytic choriomeningitis virus.464 
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 465 

Signature AUROC Sensitivity Specificity p 

IFI27 0.95 (0.91 - 0.99) 0.84 (0.7 - 0.93) 0.95 (0.85 - 0.98) NA 

Sweeney7 0.95 (0.91 - 0.99) 0.82 (0.67 - 0.91) 0.95 (0.85 - 0.98) 0.851 

Zaas48 0.93 (0.88 - 0.98) 0.61 (0.45 - 0.74) 0.95 (0.85 - 0.98) 0.088 

Pennisi2 0.91 (0.86 - 0.96) 0.58 (0.42 - 0.72) 0.95 (0.85 - 0.98) 0.088 

IFI44L 0.9 (0.84 - 0.96) 0.55 (0.4 - 0.7) 0.95 (0.85 - 0.98) 0.039 

AndresTerre11 0.89 (0.83 - 0.95) 0.55 (0.4 - 0.7) 0.95 (0.85 - 0.98) 0.021 

Henrickson16 0.89 (0.82 - 0.96) 0.55 (0.4 - 0.7) 0.93 (0.83 - 0.97) 0.009 

TrouilletAssant6 0.87 (0.8 - 0.94) 0.53 (0.37 - 0.68) 0.93 (0.83 - 0.97) 0.008 

Lydon15 0.86 (0.79 - 0.94) 0.58 (0.42 - 0.72) 0.95 (0.85 - 0.98) 0.005 

Herberg2 0.84 (0.76 - 0.92) 0.5 (0.35 - 0.65) 0.93 (0.83 - 0.97) 0.003 

Sampson4 0.84 (0.76 - 0.92) 0.5 (0.35 - 0.65) 0.93 (0.83 - 0.97) 0.003 

Sampson10 0.83 (0.74 - 0.92) 0.5 (0.35 - 0.65) 0.95 (0.85 - 0.98) 0.002 

RSAD2 0.83 (0.74 - 0.91) 0.47 (0.32 - 0.63) 0.93 (0.83 - 0.97) 0.002 

MX1 0.82 (0.74 - 0.91) 0.45 (0.3 - 0.6) 0.95 (0.85 - 0.98) 0.002 

Tsalik33 0.79 (0.7 - 0.89) 0.39 (0.26 - 0.55) 0.98 (0.9 - 1) 0.001 

Lopez7 0.79 (0.69 - 0.88) 0.37 (0.23 - 0.53) 0.98 (0.9 - 1) 0.001 

IFIT3 0.75 (0.64 - 0.86) 0.45 (0.3 - 0.6) 0.93 (0.83 - 0.97) 0.000 

OLFM4 0.62 (0.51 - 0.74) 0.03 (0 - 0.13) 0.98 (0.9 - 1) 0.000 

Sweeney11 0.6 (0.48 - 0.73) 0.16 (0.07 - 0.3) 0.96 (0.88 - 0.99) 0.000 

Yu3 0.59 (0.47 - 0.71) 0.05 (0.01 - 0.17) 1 (0.93 - 1) 0.000 

Table 2. Validation metrics of whole-blood RNA signatures for discrimination of participants with PCR-466 

confirmed SARS-CoV-2 infection at first week of PCR-positivity (PCR+ve_0). Discrimination is shown as area 467 

under the receiver operating characteristic curve (AUROC). Sensitivity and specificity are shown using pre-defined 468 

thresholds of 2 standard deviations above the mean of the uninfected control population (Z2). P values show 469 

pairwise comparisons to best performing signature with Benjamini-Hochberg adjustment (false discovery rate 470 

0.05). All metrics as shown as point estimates (95% confidence intervals). Equivalent table for discrimination of 471 

participants with SARS-CoV-2 infection one week prior to PCR-positivity (PCR+ve_-1), compared to uninfected 472 

controls, is shown in Table S3. 473 
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