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Abstract

Heart failure is a clinical syndrome characterised by a reduced ability
of the heart to pump blood. Patients with heart failure have a high mor-
tality rate, and physicians need reliable prognostic predictions to make in-
formed decisions about the appropriate application of devices, transplan-
tation, medications, and palliative care. In this study, we demonstrate
that combining symbolic regression with the Cox proportional hazards
model improves the ability to predict death due to heart failure compared
to using the Cox proportional hazards model alone.

We used a newly invented symbolic regression method called the QLat-
tice to analyse a data set of medical records for 299 Pakistani patients
diagnosed with heart failure. The QLattice identified a minimal set of
mathematical transformations of the available covariates, which we then
used in a Cox model to predict survival.

An exponential function of age, the inverse of ejection fraction, and
the inverse of serum creatinine were identified as the best risk factors for
predicting heart failure deaths. A Cox model fitted on these transformed
covariates had improved predictive performance compared with a Cox
model on the same covariates without mathematical transformations.

Symbolic regression is a way to find transformations of covariates from
patients’ medical records which can improve the performance of survival
regression models. At the same time, these simple functions are intuitive
and easy to apply in clinical settings. The direct interpretability of the
simple forms may help researchers gain new insights into the actual causal
pathways leading to deaths.

Background

Heart failure (HF) is a clinical syndrome characterised by a reduction in the
ability of the heart to pump or fill with blood. HF can be defined physiologically
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as an inadequate cardiac output to meet metabolic demands, often manifesting
as increased left ventricular filling pressure[13]. Among the causes of HF are
coronary heart disease, hypertension, diabetes, obesity, and smoking[15]. HF
affects at least 26 million people globally and has a high mortality rate[11].

Various methods have been developed to estimate the risk of death for pa-
tients with HF. Well-known models include the ADHERE model[9] and the
Seattle Heart Failure Model[10]. Although these models are accurate, they are
unintuitive and rely on extensive medical records, making them hard to apply
in a clinical setting.

Ahmad et al. published a study of 299 patients with HF admitted to Faisal-
abad Institute of Cardiology or Allied Hospital Faisalabad, Punjab, Pakistan[3].
In their study, Ahmad et al. used a Cox model to predict survival of patients
using much fewer covariates than the Seattle Heart Failure Model. The data
set was made freely available by Ahmad et al., and it has subsequently been
used in additional analyses using both survival models[17] and machine learning
techniques[5].

Cox proportional hazards model

The Cox model[6] is widely used to predict survival in health science. When
using the method, the researcher needs to choose which risk factors to include
in the model, and the final model performance is obviously dependent on the
appropriate choice of risk factors.

The general form of the Cox model is[6]:

h(t) = h0(t) · eb1x1+b2x2+...+bpxp

where

• t is the survival time

• h(t) is the hazard function determined by a set of p covariates (x1, x2, . . . , xp)

• (b1, b2, . . . , bp) are the coefficients which measure the impact of the covari-
ates

• the term h0(t) is the baseline hazard, i.e. the hazard if all the xi are equal
to zero

This can also be written as:

h(t) = h0(t) · eb1x1 · eb2x2 · . . . · ebpxp

If we let h(t) and h′(t) be the hazard function for two individuals that differ
only in x1 with a difference δx, their relative hazard is:

h′(t)

h(t)
=
eb1(x1+δx)

eb1x1
= eb1(x1+δx−x1) = eb1δx
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This shows an important limitation of Cox models: A unit change in a
covariate will have the same effect on the hazard regardless of the origin of the
change. For example: a change in x1 of 0.1 will have the same effect on survival
whether from 1.0 to 1.1 or from 5.0 to 5.1.

Mathematical transformations

In this paper, the term mathematical transformation, sometimes just transfor-
mation, means to apply a mathematical function to a covariate: xT = f(x) for
some function f . Perhaps the most widely used mathematical transformation
is log-transformation: xT = log(x). But other typical transformations include
x2,
√
x, and ex.

When fitting a Cox model using mathematically transformed covariates, we
have:

h′(t)

h(t)
= eb1(f(x1+δx)−f(x1))

which is clearly no longer independent of the origin of x1 unless f is a linear
function. Thus the effect of the transformation is to overcome this specific
limitation in the generality of Cox models.

It is reasonable to hypothesise that well-chosen transformations of the avail-
able covariates will improve the predictive power of Cox models.

In this study, we demonstrate that this is indeed the case, and that a use-
ful method to identify an appropriate mathematical transformation is to use
symbolic regression.

Symbolic regression

Symbolic regression is a machine learning method that attempts to explain
some Y in terms of some X using a mathematical expression composed of a
set of basic functions. However, the search space of possible expressions grows
exponentially with the length of the expression, which makes a direct search
infeasible. Traditionally, genetic programming has been used to search this space
selectively[12, 16, 7]. Recent approaches have been more physics-inspired[14].

The QLattice is a symbolic regressor inspired by quantum field theory[1].
The QLattice runs on a dedicated high-performance computing cluster and
models the list of possible mathematical expressions—in principle: infinite—
that could link Y to X as a superposition of an infinite set of spatial paths. The
QLattice searches this list of all mathematical expressions, including parame-
ters, for the expressions that best model the output from the input. The result
of the search is a list of expressions sorted by how well they match observations.

The QLattice can be used to generate either classification models or regres-
sion models. In this study, we only use it to generate classification models.
Mathematically, this means that the QLattice will wrap each expression in a
logistic function, thereby allowing the output to be interpreted as a probability.
In other words: if X is an input vector, f(X) is the mathematical equation, and
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Y is the event we want to predict, then the QLattice will search for functions f
such that the predictive power of:

Ŷ =
1

1 + e−f(X)

is maximised.
In this study, we first used symbolic regression to select and mathematically

transform the available covariates from Ahmad et al. We subsequently fitted a
Cox model to these transformed values.

To our knowledge, the combination of symbolic regression and Cox models
has not previously been studied in research.

Data

The data set used in this study consists of medical records of 299 HF patients
admitted to the Faisalabad Institute of Cardiology and the Allied Hospital in
Faisalabad (Punjab, Pakistan) between April and December 2015.

The data set contains 105 women and 194 men with left ventricular systolic
dysfunction. The patients had HF in the classes III or IV of New York Heart
Association (NYHA) classification scheme.

The patients were between 40 and 95 years old (mean 60.8) at the time of
admission. The follow-up period was between 4 days and 285 days with a mean
of 130 days.

The data set contains the following potential risk factors: age, serum sodium,
serum creatinine, gender, smoking, blood pressure (BP), ejection fraction (EF),
anaemia, platelets, and creatinine phosphokinase (CPK). Table 1 shows the
summary statistics for the data.

Anemia in patients was assessed by their haematocrit level. Patients with
haematocrit less than 36% (minimum normal level of haematocrit) were taken
as anemic. Information on a patient’s smoking status and high blood pressure
were taken from physician’s notes.

Methods

In this study, we used the QLattice for two purposes: first, to select the three
most important covariates from the data set for further modelling; and second,
to find how these covariates can best be mathematically transformed to model
risk of death. Finally, we fitted a Cox model on the transformed covariates.

QLattice for feature selection

In the first step, we instructed the QLattice to search for a model that best
described the probability of death given any three of the available covariates.
The purpose of this search was to identify three important covariates that we
then examined further.
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Table 1: Summary statistics for the data set
Overall Min 25% 50% 75% Max

n 299
TIME, mean (SD) 130.3 (77.6) 4 73 115 203 285
Event, n (%) 0 203 (67.9)

1 96 (32.1)
Gender, n (%) 0 105 (35.1)

1 194 (64.9)
Smoking, n (%) 0 203 (67.9)

1 96 (32.1)
Diabetes, n (%) 0 174 (58.2)

1 125 (41.8)
BP, n (%) 0 194 (64.9)

1 105 (35.1)
Anaemia, n (%) 0 170 (56.9)

1 129 (43.1)
Age, mean (SD) 60.8 (11.9) 40 51 60 70 95
EF, mean (SD) 38.1 (11.8) 14 30 38 45 80
Sodium, mean (SD) 136.6 (4.4) 113 134 137 140 148
Creatinine, mean (SD) 1.4 (1.0) 0.5 0.9 1.1 1.4 9.4
Pletelets, mean (SD) 263K (97K) 25K 212K 262K 303K 850K
CPK, mean (SD) 581.8 (970.3) 23 116.5 250 582 7861

The user of the QLattice can choose the specific optimisation target to use
when searching for models. We used the default optimisation target, which is
to minimise the residual sum of squares.

When using the QLattice, it is possible to control the elementary mathe-
matical functions from which the expressions are composed. For this search, we
limited the QLattice to work with the following function set: 1

x , ex, log(x),
√
x,

x+ y, and x · y.
The QLattice searches through all the available input covariates in the data

set, combines them into expressions using the elementary mathematical func-
tions, and sorts them based on how well the resulting expression compares to
the actual observations. Even given the limit of three inputs, the QLattice will
search through millions of different expressions to find the best expression.

QLattice for finding the best transformation of covariates

For each of the selected covariates, we used the QLattice to find the mathe-
matical transformation that best predicted death events given that covariate
alone.

Since this search only involved a single covariate, we limited the QLattice to
work with the following unary function set: 1

x , ex, log(x),
√
x.
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Cox Model

Finally, we fitted a Cox model with the output of the mathematically trans-
formed covariates.

The resulting model was validated using concordance index (C-index). The
C-index for a survival model can be thought of as the weighted average of the
area under time-specific Receiver Operating Characteristic (ROC) curves. We
also computed the time-specific ROC curve and area under the curve (AUC) for
285 day survival.

Comparison Cox model

For comparison, we fitted a Cox model on the same covariates but without the
identified mathematical transformations. The two models used the same co-
variates and only differed in the transformations. The models were compared
using C-index, AUC (285 days), log-likelihood, and Akaike Information Crite-
rion (AIC)[4].

All calculations were done in the programming language Python. For sym-
bolic regression, we used QLattice version 1.4.6[1]. For Cox Modelling, we used
lifelines version 0.25.7[8].

Results

Feature selection

The QLattice was given the opportunity to find the best model that uses at
most three features out of the eleven. The model itself is unimportant as we
want to model the survival function using Cox regression and not classify the
data set into those that survived and those that died. The purpose of this step
is to find which features carried the most signal.

The three features chosen by the QLattice when searching for symbolic forms
were ejection fraction, serum creatinine, and age. This is consistent with other
studies of the same data set using different feature selection methods[17, 5].

Best transformation of Ejection Fraction

The best mathematical relation between ejection fraction and the probability of
death was:

f(E) = −2.1 +
1.6

0.066E − 0.89

or, combined with the logistic wrapper:

P (death | E) =
1

1 + e2.1−
1.6

0.066E−0.89

The probability of death was found to be closer associated with the inverse of
the ejection fraction than with the ejection fraction directly.
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Best transformation of serum creatinine

The best mathematical relation between serum creatinine and the probability
of death was:

f(C) = 1.5− 0.91

0.42C − 0.084

or, combined with the logistic wrapper:

P (death | C) =
1

1 + e−1.5+
0.91

0.42C−0.084

As with the ejection fraction, the probability of death is closer associated with
the inverse of serum creatinine than to serum creatinine directly.

Best transformation of age

The best mathematical relation between age and the probability of death was:

f(C) = 0.02e0.056A − 1.5

or, combined with the logistic wrapper:

P (death | A) =
1

1 + e−0.02e0.056A+1.5

The probability of death grows exponentially with age, with a growth constant
of 0.056.

Cox model with transformed risk factors

Having determined that e0.056A, 1/E, and 1/C are closer associated with risk
of death than E, C, and A directly, we fitted a Cox model on these transformed
covariates. Table 2 shows the coefficients (coef), hazard ratios (HR), and p-
values for each of the risk factors. (Where A is the age, E is the ejection
fraction, and C is serum creatinine.)

Table 2: Significance of mathematically transformed covariates in the Cox model
coef HR HR lower 95% HR upper 95% z p

exp(0.056A) 0.014 1.014 1.009 1.019 5.851 <0.0005
1/E 0.537 1.711 1.418 2.064 5.609 <0.0005
1/C -1.515 0.220 0.108 0.446 -4.198 <0.0005

The log-likelihood of the model was found to be 83.8, and the C-index was
0.75. The model’s discrimination ability was also tested with a ROC curve,
and the AUC was found to be 0.82 at 285 days, meaning that the model could
correctly predict death within 285 days for 82% of the patients.

7

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.15.21249874doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.15.21249874
http://creativecommons.org/licenses/by-nd/4.0/


Cox model with unmodified covariates

The comparison model was fitted on the same three covariates used above, but
in untransformed form. Table 3 shows the coefficients (coef), hazard ratios
(HR), and p-values for each of the risk factors for this comparison model.

Table 3: Significance of covariates without transformation in the Cox model
coef HR HR lower 95% HR upper 95% z p

A 0.044 1.045 1.027 1.064 4.934 <0.0005
E -0.049 0.952 0.933 0.971 -4.803 <0.0005
C 0.358 1.430 1.251 1.635 5.244 <0.0005

The log-likelihood of the model was found to be 66.5, and the C-index was
0.72. The model’s discrimination ability with AUC was found to be 0.78 at 285
days, meaning that the model could correctly predict death within 285 days for
78% of the patients.

Comparing the two models

Table 4 shows a comparison of all four performance metrics for the two Cox
models on the three covariates (ejection fraction, serum creatinine, and age)
with and without the mathematical transformations.

Table 4: Comparison of performance metrics
Transformed covariates Untransformed covariates

C-index 0.75 0.72
AUC (285 days) 0.82 0.78
Log-likelihood 83.8 66.5
Partial AIC 941 958

The mathematical transformations improved the Cox model on all metrics
without adding additional covariates or any other information.

Discussion

Beyond the linear assumption in Cox models

Cox models are a powerful tool for survival regression. They are conceptually
simple, easy to interpret, and can often accurately model the survival probability
over time–even given censored data. These properties have made Cox models
one of the most popular methods for survival modelling in health science.

As described above, a limitation of Cox models is that each risk factor is
modelled to affect risk independent of the origin. This study has shown than
using mathematically transformed covariates can overcome this limitation.
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For example: with the mathematical transformation 1/E, the hazard ratio
after a unit change in ejection fraction is:

h′(t)

h(t)
= eb1(f(E+δE)−f(E)) = eb1(

1
E+δE−

1
E )

which is clearly no longer independent of the origin of E.

Interpretability

One of the advantages of symbolic regression over other machine learning meth-
ods is that the models are easier to interpret. This is true when the full model
is expressed as a symbolic relation, and it is also true when a symbolic transfor-
mation is combined with another interpretable model such as the Cox model.

For example, the fact that the transformation 1/E is a better risk factor
than E directly has at least two possible interpretations:

• One is simply that the lower the ejection fraction, the larger the additional
hazard given an additional reduction, i.e. a change from 0.3 to 0.29 is more
dangerous than a change from 0.6 to 0.59

• Another interpretation can be seen by observing that if a fraction E is
pumped out of the heart in every heartbeat, the average number of heart-
beats that a unit of blood stays in the heart before it is pumped out will
be 1/E, although certainly with large variation across the cavity of the
ventricles.

The mathematical transformation 1/E of ejection fraction means that
the Cox model is based on a covariate which is the average number of
heartbeats blood stays in the heart.

Conclusions

In this study, we demonstrated that combining symbolic regression with survival
regression models improves the predictive power without sacrificing the inter-
pretability that comes from a clear mathematical formulation of the model.

Other machine learning methods exist that may provide the same—or per-
haps better—performance improvements than what can be achieved with the
combination approach used here, but the price will typically be that the result-
ing model is black-box, or at least difficult to interpret.

In this study, we focused on predicting heart failure deaths, which is impor-
tant in its own right, but the perspective of our research is that mathematical
transformations based on symbolic regression may be applied to any survival
model with improved predictive accuracy and new insights as a result.
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