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Abstract 
 
Background- Overgeneralised self-blaming emotions, such as self-disgust, are core 

symptoms of major depressive disorder (MDD) and prompt specific actions (i.e. 

"action tendencies"), which are more functionally relevant than the emotions 

themselves. We have recently shown, using a novel cognitive task, that when feeling 

self-blaming emotions, maladaptive action tendencies (feeling like “hiding” and like 

“creating a distance from oneself”)  and an overgeneralised perception of control are 

characteristic of MDD, even after remission of symptoms. Here, we probed the 

potential of this cognitive signature, and its combination with previously employed 

fMRI measures, to predict individual recurrence risk. For this purpose, we developed 

a user-friendly hybrid machine-/statistical- learning tool which we make freely 

available. Methods- 52 medication-free remitted MDD patients, who had completed 

the Action Tendencies Task and our self-blame fMRI task at baseline, were followed 

up clinically over 14-months to determine recurrence. Prospective prediction models 

included baseline maladaptive self-blame-related action tendencies and anterior 

temporal fMRI connectivity patterns across a set of fronto-limbic a priori regions of 

interest, as well as established clinical and standard psychological predictors. 

Prediction models used elastic-net regularised logistic regression with nested 10-fold 

cross-validation. Results- Cross-validated discrimination was highly promising 

(AuC≥0.86), and positive predictive values over 80% were achieved when including 

fMRI in multi-modal models, but only up to 71% (AuC≤.74) when solely relying on 

cognitive and clinical measures.  Conclusions- This shows the high potential of multi-

modal signatures of self-blaming biases to predict recurrence risk at an individual 

level, and calls for external validation in an independent sample.  
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Introduction 

One central feature of cognitive models of vulnerability to major depressive 

disorder (MDD) is a tendency to excessively blame oneself (1). These models have 

pointed to over-generalised self-blame as causing worthlessness and hopelessness, 

core symptoms of MDD that are distinctive compared with other recurrent emotional 

disorders such as panic disorder (2). Self-blame in MDD is strongly associated with 

complex emotions such as guilt, self-disgust, and shame(3). Social psychologists have 

highlighted that specific maladaptive “action tendencies” such as “feeling like hiding” 

were associated with self-blaming emotions(4) and distinguish adaptive from 

depressogenic self-blame more accurately than the label of the emotion(5). Indeed, 

using a novel Action Tendencies Task, we have shown that self-blame-related  action 

tendencies, in particular feeling like creating a distance from oneself and hiding, as 

well as an overgeneralised perception of control for other people’s wrongdoing were 

distinctive of remitted MDD patients compared with control participants cross-

sectionally (6).  If measures of maladaptive self-blame-related action tendencies 

prospectively predicted future recurrence risk in remitted MDD, this would provide 

critical evidence for their role in MDD vulnerability. Apart from its 

pathophysiological importance, the identification of novel predictors of recurrence is 

needed for developing accurate risk prediction tools, because clinical variables are 

poor predictors at an individual level(7) and there are no established biomarkers(8). 

Over the last decade, the application of machine learning to MRI-based 

prediction of individual responses to antidepressant treatments(9-12) has raised 

great promise for developing predictive markers in MDD. Machine learning models 

are powerful at making personalised predictions, because they condense multiple 

variables, such as MRI signal in different brain regions, or different modalities (e.g. 
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cognitive, structural MRI & functional MRI(10)) into one model used to classify 

individuals based on complex interactions between the multiple input variables(13). 

This approach has been used to predict whose symptoms will respond to a treatment 

(9, 10, 14, 15). Successful development of novel treatments and stratification 

algorithms to improve long-term outcomes of recurrent MDD, however, requires 

predictors that capture the neurocognitive underpinnings of asymptomatic 

precursors of recurrent symptoms. Using a standard general linear model, we have 

previously identified an fMRI signature of MDD patients who will develop a 

recurring episode after recovering from previous depression over one year of follow-

up(16), but the machine learning approach we used to show its predictive value at the 

individual level with a positive predictive value of 74% had several weaknesses: 

Firstly, it used a high variance leave-one-out cross-validation method(17, 18). 

Secondly, it used the extracted clusters showing the most significant association with 

recurrence risk in our SPM general linear model. This overestimates model 

performance due to selecting voxels and variables on the basis of another model 

comparing recurring episode and stable remission patients in the same sample(19). 

Here, we therefore sought to overcome these weaknesses.  

As recently reviewed(20), guilt-proneness has been previously selectively 

associated with subgenual cingulate cortex (SCC) activation on fMRI(21), whereas 

frontopolar activation was most reproducible for guilt vs. other-blaming emotions 

irrespective of individual differences in guilt-proneness(22-24). The latter is part of 

the “Default-Mode Network” and its connectivity with the SCC has been implied in 

depressive rumination (25), which is typically of a self-critical nature. Interestingly, 

the SCC was abnormally active in current MDD and normalisation of its metabolism 

was associated with remission(26, 27), its connectivity predicted response to 
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psychological vs. antidepressant treatment (14) suggesting its central importance. 

The SCC, however, is only part of a network of regions involved in self-blaming 

feelings. Using fMRI, we have demonstrated that proneness to self-blaming feelings 

in healthy people was associated with increased functional connectivity between the 

SCC and the right superior anterior temporal lobe (ATL(28)), which we had 

previously demonstrated to enable differentiated interpretations of the meaning of 

social behaviour(29, 30) (e.g. differentiating actions as “impolite”, or “absent-

minded”, rather than just over-generally “bad”).  

In an independent previous sample of patients with remitted MDD, we 

demonstrated abnormal functional connectivity between the right superior ATL and 

fronto-limbic networks when experiencing self-blaming feelings relative to feelings 

related to blaming others (compared with never-depressed controls, independently 

of medication status(24)). These fronto-limbic networks included the SCC, 

frontopolar cortex, hypothalamus, and hippocampus. This concorded with Price & 

Drevets’ neuroanatomical model of mood disorders which includes the superior 

ATL(26) because of its close anatomical connection with the medial prefrontal 

network including the subgenual cortex and the hypothalamus, thereby providing a 

crucial and often forgotten link between the limbic forebrain (including the 

hippocampus) and frontal cortex. The ATL is probably under-reported, because fMRI 

in this region requires optimised imaging parameters due to the abundance of 

artefacts(31).It is notable that the original formulations of the “Default Mode 

Network” based on positron emission tomography included the superior ATL(32). 

Our focus on the right superior ATL is based on its predominance for socio-

emotional functions(30, 33) (22, 30, 34-36) relative to the left ATL. This concords 

with the efficacy of right temporal electroconvulsive therapy in MDD(37), response 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.13.21249739doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.13.21249739


Self-blame and depression risk prediction  6  

to which was predicted by right ATL-frontal connectivity including the SCC(38).  

The aim of the current study was to develop a user-friendly prediction tool and 

use it to provide robust estimates for the potential to predict MDD recurrence risk at 

the individual level, when using cognitive and fMRI-based signatures of self-blaming 

biases.  Further, as one could argue that fMRI is relatively expensive for widespread 

use, we also probed the potential to replace it by our novel cognitive task for future 

clinical decision support systems. 

Methods and Materials 

Participants and standard measures  

Participants were recruited as a part of a prospective cohort study (from 2011-

2014) in a clinical research facility ((16), ethics reference: 07/H1003/194). All 

participants provided informed consent (verbal for initial telephone screening and 

written otherwise). Recruitment has been described previously (39). Inclusion 

criteria were: MDD according to DSM-IV-TR(40), remitted for ≥six months, 

psychotropic medication-free, right-handed, native English speaking, with normal or 

corrected-to-normal vision. Main exclusion criteria were: current Axis-I disorders 

including a history of substance or alcohol abuse, and past comorbid Axis-I disorders 

being the likely cause of depressive symptoms. Patients were subsequently followed 

up clinically over 14 months using the well validated Longitudinal Interval Follow-up 

Evaluation interview for DSM-IV (LIFE-IV(41)). Raters were blinded to the baseline 

results; inter-rater reliability was excellent (16).  

For our multi-modal prediction model we used a complete-cases analysis (see 

supplemental methods) including n=52 MDD with complete follow-up data that we 

were able to categorise into recurring episode over 14 months (n=18) vs. stable 

remission  with no recurring episode (n=34).  
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The following standard clinical and psychological measures were selected for use in 

the prediction model as based on previous reports establishing them as reproducible 

predictors of MDD recurrence at the group level: number of previous episodes ((42), 

categorised into non-recurrent [i.e. 1 previous episode], recurrent [2-4 episodes], and 

highly recurrent [>5 episodes]); Beck Depression Inventory (BDI, (43)) as a measure 

of residual symptoms which are associated with recurrence risk (42) and which loads 

heavily on self-criticism, also associated with recurrence (44); Global Assessment of 

Functioning to capture co-morbidity and functional impact (45); Rosenberg Self-

Esteem (46) (47); and Positive and Negative Affect Schedule (48), where the 

Negative Affect subscale was used as a measure of negative emotionality, closely 

related to “neuroticism” (49) and the Positive Affect subscale used because of its 

negative association with subsequent recurrence(50) in previous studies.  

Experimental Stimuli 

Stimuli for both fMRI and behavioural tasks were written sentences each 

presenting  an abstract hypothetical social behaviour contrary to social and moral 

values. Participants were asked to imagine the situation in each stimulus for two 

conditions differing by the agency of the participant. In the self-agency condition the 

participant was described to act towards their friend, in the other-agency condition 

their friend acted towards them. Stimuli were based on the value-related moral 

sentiment task (VMST) used previously (16, 39). The same social behaviours were 

used in both conditions (90 trials per condition, 50% per se negative social 

behaviours [e.g. does act stingily] and 50% negated positive behaviours [e.g. does not 

act generously]). Participants were asked to provide the name of their best friend of 

the same gender, with  whom they were not related and not romantically involved. 

After the fMRI and behavioural tasks, participants were asked to rate all items in 

the self- and other-agency conditions for unpleasantness ("How strongly would you 

feel unpleasant feelings?": scale of 1 ["Not unpleasant"] - 7 ["Extremely 
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unpleasant"]). As in our previous paper (16), we restricted our analyses to the items 

deemed most emotionally relevant to each participant (defined as items rated equal 

or higher than the individual’s median unpleasantness rating for each condition: self- 

and other-agency). 

fMRI acquisition and paradigm 

As previously described (16), we used an fMRI protocol optimised for detection of 

ventral brain regions (see Supplemental Methods) and standard fMRI results were 

previously reported (16). Participants were presented with hypothetical social actions 

in self-agency and other agency conditions (stimuli described above). Stimuli were 

presented for 5 seconds in three runs in pseudorandom order, runs were 

counterbalanced across participants, and interspersed with a baseline visual fixation 

of pattern condition (n=90). In the scanner participants were asked to decide 

whether each situation would feel mildly or very unpleasant to ensure they paid 

attention to the task and that they make an emotional decision about the stimuli. We 

used a jittered (range 500ms) inter-trial interval with mean duration four seconds.  

 

fMRI analysis 

As in our previous analysis [(16), Supplemental Methods]  to measure functional 

connectivity, we employed the well-established Psychophysiological interaction (PPI) 

analysis (51), which requires the extraction of the right superior ATL signal time 

course (physiological variable, as previously: (28); 6mm radius sphere; MNI 

coordinates: x=58, y=0, z=-12) and the creation of an interaction term with the 

psychological variable (the contrast between the most highly unpleasant items in the 

self-agency condition vs. the visual fixation condition and highly unpleasant items in 

the other-agency condition vs. the visual fixation condition).  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.13.21249739doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.13.21249739


Self-blame and depression risk prediction  9  

Regression coefficient averages over a priori ROIs (depicted in Figure 1b and 

further described below) as defined previously using an independent sample(24) 

were extracted as raw values using MarsBaR (52) and used to capture self-blame-

related fMRI connectivity with our ATL seed region, as well as ATL connectivity with 

these ROIs irrespective of psychological condition, whilst co-varying for root mean 

square movement parameters during the scan (obtained from the realignment 

process). In addition, we modelled standard Blood Oxygenation Level Dependent 

(BOLD) effects following the modelling approach as previously described (16) for 

self-blame in the SCC(27) and ATL seed region. This was in keeping with the PPI 

approach(51). To limit the number of variables, we modelled BOLD only in our 

primary regions of interest (SCC and ATL).  

fMRI regions of interest 

To ensure independence of our ROIs from the current dataset, we used all a priori 

ROIs from our previous independent publication (24), but in order to reduce the 

number of ROIs, we chose only right sided ROIs reflecting our right sided ATL seed 

region, except for the midline regions, where we used bilateral ROIs (see 

Supplemental Methods).  

The Action Tendencies Task 

As previously described (6), for each described social behaviour, the participant was 

asked: “What would you feel like doing in response to this behaviour?”.  “Please 

select the option that you feel  that you would most strongly feel like doing (see 

Supplemental Figure 1):  “verbally or physically attacking/punishing your best 

friend”, “verbally or physically attacking/punishing yourself”, “apologising/fixing 

what you have done”, “hiding”, “creating a distance from your best friend”, “creating 

a distance from yourself”, “no action”, “other action”. They then rated the 

hypothetical situation regarding how much control they feel they would have (1:None 

at all →  7:Complete).  
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We have previously reported that  self-agency-related hiding and self-distancing, as 

well as an overgeneralised perception of control for others’ wrongdoing was 

characteristic of MDD at baseline compared with control participants (6). In the 

present paper, we report their association with recurrence risk for the first time. As 

previously (6),  we separately calculated the proportion of trials that “hiding” or “self-

distancing” were selected in the self-agency condition for the highly unpleasant items 

as defined using individual median splits as described above. In order to reduce the 

number of variables, we z-transformed these proportions across the whole sample to 

combine hiding and self-distancing into a single average of z-scores of maladaptive 

self-blaming action tendencies. We measured over-generalised perception of control 

as previously by subtracting each subject’s average perceived control rating in the 

highly unpleasant other-agency condition trials from the same quantity in their 

highly unpleasant self-agency trials. Perceived control is expected to be higher during 

self-agency, so a smaller value in the calculated difference measure indicates 

abnormally higher perception of control in the other-agency condition which is 

conceptually related to the notion of “Omnipotent Responsibility Guilt” (i.e. caused  

by an exaggerated sense of responsibility for others wellbeing) as shown to be 

associated with MDD (53).  

 

Prediction modelling 

We developed a software tool (AL) to implement the proposed methods and make 

this tool available for use by the scientific and clinical community as an R-package 

(https://www.github.com/AndrewLawrence/dCVnet). We adopted a hybrid 

approach combining statistical- and machine-learning to balance their benefits and 

limitations in this type of prediction problem. In contrast to traditional statistical 

methods we reduced overfitting and allowed correlated predictors through 

regularisation. We also carefully cross-validated performance by including all 

modelling decisions within the cross-validation. This hybrid approach can likewise 
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be contrasted to more complex (and data-hungry(54)) machine learning methods: 

each model uses relatively few of the available predictors which are chosen a-priori 

based on previously published results and clinical utility. To further reduce 

complexity, we used a model which assumes the effects of the predictors are linear 

and additive, any interaction terms or predictor transformations must be 

prespecified. The software tool is called dCVnet, for “double Cross-Validation for the 

elastic-net”. It employs elastic-net regularised logistic regression with double (also 

termed nested) cross-validation, consisting of an ‘outer’ cross-validation of model 

performance measures with an ‘inner’ cross-validation to independently tune elastic 

net hyperparameters.  

 

Elastic-net model 

Elastic-net regularised binary logistic regression extends logistic regression with 

regularisation. This acts as a penalty to model complexity and reduces this by 

shrinking coefficients towards zero(55). The elastic-net regularisation penalty 

comprises two types of penalty with different roles: the L2 (Ridge) penalty produces 

allows correlated predictors to jointly enter the model and stabilises solutions; while 

the L1 (LASSO) penalty encourages variable selection (56). The amount of 

regularisation (hyperparameter: lambda) and balance of the two types of 

regularisation penalty (hyperparameter: alpha, indicating the fraction of the penalty 

that is of LASSO-type) are hyperparameters of the elastic-net procedure in that they 

determine the learning performance of the algorithm and tuning alpha and lambda 

adapt the algorithm to different problem settings.  

 

Cross-validation & Tuning 

Prediction models tune to both the reproducible relationships between data and 

outcome (desirable) and the idiosyncrasies of the particular dataset they are trained 

on (undesirable). The latter is worse with small data and complex/flexible models 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.13.21249739doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.13.21249739


Self-blame and depression risk prediction  12  

and results in overfitting - a high generalisation error when the model is provided 

new, data to predict for.  Although external validation is preferable, internal 

validation, involving (re-)training the model on a subset of the available dataset and 

validation of performance in the remainder, is often the only practical option and 

still allows nearly unbiased estimates of the ‘true’ or generalisation error (17). 

Overfitting does not just affect the identification of model coefficients, overfitting 

occurs for model selection and hyperparameter tuning(57). For cross-validation to 

combat this inflation of predictive performance model selection and hyperparameter 

tuning must be conducted independently within the internal validation(57). We 

implemented such a procedure in dCVnet. Specifically, double (also called nested) 

cross-validation is used to obtain performance estimates without optimistic bias at 

the same time as tuning hyperparameters based on cross-validated performance(57).  

For both inner and outer cross-validation loops our tool employed repeated k-fold 

cross-validation, an unbiased estimate of expected (out-of-sample) prediction error 

with lower variance than bootstrap, hold-out, and leave-one-out cross-validation 

methods(56, 58). 

For this particular application of dCVnet, stable hyperparameter selection could be 

obtained (for all models) with 30 repetitions of 10-fold cross-validation, and stable 

cross-validation results with 100 repetitions of 10-fold cross-validation. For tuning, 

six logarithmically spaced values of alpha were considered between 0.01 (mostly 

Ridge) and 1.0 (a LASSO model). For each alpha, one hundred lambda values were 

determined from the data by glmnet(59). The tuned alpha and lambda were selected 

based on the minimum mean square error (MSE; also termed Brier score), rather 

than AuC, as MSE combines discrimination and calibration components of 

prediction performance. 

Software 

dCVnet was programmed in R-software version 3.6.2 and makes repeated calls to the 

glmnet 3.0.2 package’s binomial elastic-net fitting function to produce the multiple 
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models required for nested k-fold cross-validation(59). The novelty of dCVnet lies in 

providing a documented and standardised implementation of this particular machine 

learning pipeline making it accessible to researchers lacking programming 

experience required for more general machine-learning software environments (e.g. 

sklearn, caret, tidymodels or mlr). We make this software including documentation 

available (github.com/andrewlawrence/dCVnet) to improve reproducibility and 

future open source development of clinical decision support systems. 

 

Model evaluation 

Predicted probabilities of depression recurrence were compared with the known 

recurrence status to calculate a variety of cross-validated prediction performance 

measures(60). These including common classification metrics (such as Positive 

Predictive Value, PPV; Negative Predictive Value, NPV) based on a 50% classification 

cut-off. For PPV and NPV we adjusted our estimates for the 42% prevalence of 

recurrence in the wider study sample. We further considered threshold-independent 

performance measures: the Brier score (mean squared difference between predicted 

probability and binary outcome), and the Area under the receiver-operator 

characteristic Curve (AuC; also termed the concordance statistic). Finally, we 

considered model calibration (i.e the fidelity of the predicted probability to the 

observed proportion with the outcome) by calculating the intercept and slope of the 

calibration graph(60). Consistent with our aims, at this point in model development 

the measure of prime interest is the AuC as this reflects the discriminative potential 

of a model independent of the classification threshold, or model calibration. 

 

Results 

As shown in Table 1, there were no demographic difference between groups. As 

expected, the recurring episode group showed a higher BDI score at baseline. We 

obtained an AuC of at least .86,  ≥80% cross-validated accuracy and moderate 
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calibration for classifying patients into Recurring Episode vs. Stable Remission when 

combining multi-modal information from fMRI & standard clinical and 

psychological measures, with or without our novel Action Tendencies Task (Table 2, 

Figure 1). We further probed the contributions of the different modalities to 

predictive performance. Relying solely on standard clinical and psychological 

measures achieved an AuC of .73  and positive predictive values of 68% (Table 2). 

Our results showed, however, that the novel cognitive measure, our Action 

Tendencies Task, did not improve prediction performance to a relevant degree 

(AuC=.74, positive predictive values of 71%, Table 2). We therefore also ran a 

prediction model which only contained the Action Tendencies Task variables to 

demonstrate that they were associated with recurrence risk (AuC=.67, Table 2), but 

this model performed slightly worse compared with known clinical and standard 

measures.  

When comparing unregularised odds ratios from single-predictor logistic 

regressions with the regularised odds ratios, there was relatively little shrinkage of 

coefficients (i.e. a small lambda was chosen), reflecting the relatively good cross-

validated performance of the model (Table 3). Interestingly, there were predictors 

which on their own had no relevant association with recurrence risk, but contributed 

to the multivariate prediction. Maladaptive action tendencies were associated with 

recurrence risk by themselves and in the full regularised model (Table 3), whereas 

overgeneralised perception of control was not (Table 3). 

 

Discussion 

We confirmed that combinations of clinical, psychological and self-blame fMRI 

measures were highly promising candidates for predicting individual recurrence risk 
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in MDD. Using a principled hybrid statistical-/machine- learning approach we 

observed excellent cross-validated discriminative performance with an AuC of 0.9 

and positive predictive values above the suggested benchmark of 80% for clinically 

useful markers (61). In contrast, our novel cognitive task to capture self-blame-

related action tendencies was not sufficient to replace fMRI. We nevertheless 

obtained AuC values above .7, which is considered “fair” discriminatory value (62) 

and there was an association of maladaptive action tendencies with subsequent 

recurrence risk (odds ratio above 2.5). Yet, there was no relevant improvement on 

known clinical and standard measures regarding its discriminative value. These 

findings of modest predictive utility are in keeping with the previous literature 

showing that clinical and standard measures in themselves are unable to make 

accurate predictions of individual recurrence risk (7, 63).   

Despite the lack of evidence for the predictive utility of the Action Tendencies task 

in this dataset, there are several strategies which could be pursued to improve the 

value of experimental cognitive tasks in future prediction models. Firstly, our task 

was purely text-based and lacked immersive features. Immersion could be improved 

by adopting a virtual reality paradigm (64). Secondly, any single task is unlikely to 

capture all relevant aspects of vulnerability and thus future work could integrate a 

wider range of cognitive measures, for example a recently developed cognitive task 

measuring effort and reward decisions has shown promising but modest effect sizes 

for predicting recurrence in MDD (65) resulting in similar AuC values of around .70 

as our action tendencies task, its combination with action tendencies may out-

perform the separate models.  

Although a wide variety of clinical and standard measures with known predictive 

value were assessed, performance of the model using just these features was modest 
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(AuC = 0.73) and one might ask whether important predictors were omitted. 

Recently, promising results were shown for recurrence risk prediction using a 

machine-learning model which included childhood trauma(66, 67), although this 

needs further replication, we did not measure childhood trauma and adding this to 

our prediction model may improve its accuracy in the future. Despite their 

theoretical importance (2), our model did not include stressful life events during the 

follow-up period, because our aim was prospective prediction from baseline data. We 

note that although 60% of our 93 patients with completed follow-up data in the 

overall study reported stressful life events during the 14-month follow-up period (as 

determined by clinical interview and standardised questionnaires), there was no 

difference in the rate of occurrence of these events between the Recurring Episode 

(61%) and Stable Remission (59%) groups. This is consistent with the hypothesis that 

life events trigger recurrence not directly, rather through their interaction with other 

factors, such as self-blaming biases(2), a hypothesis which merits further 

investigation. 

Previous studies using machine learning approaches to imaging data in depression, 

have usually relied on voxel-based methods (68). Yet, these methods do not allow 

integrating cognitive and clinical variables in a straightforward way. This is why we 

decided to employ a simpler approach to the imaging analysis which relies on ROIs 

and this may be more feasible for future clinical applications. By employing the 

elastic net as a machine learning extension of logistic regression, we alleviated 

overfitting by shrinking the regression coefficients towards zero, this allows for 

automatic variable selection by omitting some predictors. The nested cross-

validation is vital to provide realistic estimates of out-of-sample prediction accuracy 

and thereby estimate “internal validity”(69), a shortcoming of many studies of 
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clinical predictors which commonly employ shared cross-validation for both model 

tuning and performance estimation. Although this prognostic model is at an early 

stage, our approach follows the MRC Prognosis Research Strategy Partnership (69) 

guidelines for developing and reporting prognostic models.  

On a more cautionary note, for prognostic model development, our sample size was 

relatively small (70). Although we deliberately adopted more stable hybrid methods 

than the voxel-wise SVM considered by(70), we must nevertheless replicate these 

findings in a larger independent sample before drawing clinical conclusions. Further, 

we included patients who were fully remitted from symptoms and had no relevant 

co-morbidity, thus generalisation to patients with partial remission and comorbidity 

will need to be investigated. 

Conclusions 

Maladaptive self-blame-related action tendencies and fMRI measures predicted 

subsequent recurrence risk in our MDD sample. When including fMRI, our statistical 

learning-based prediction risk tool showed promising potential to predict recurrence 

risk at an individual level. This calls for external validation in an independent 

sample.   
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Figure Legends 

Figure 1 a| Average cross-validated Receiver Operator Characteristic (ROC) curves for 

repeated nested regularised logistic regression models (the same n=52 MDD participants in 

all models, 30 nested inner and 100 outer loop repetitions using 10-fold cross-validation, R-

software).The clinical variables model included standard scales and known clinical 

predictors. Cognitive & Clinical: maladaptive self-blaming action tendencies measures were 

added. fMRI & Clinical: fMRI measures were added. All modalities: included Cognitive, 

Clinical and fMRI measures. b| All a priori ROIs reported in a previous independent paper 

(24) with close anatomical connections to our ATL seed region and of sufficient anatomical 

specificity for data extraction were included (i.e. regions spanning multiple Brodmann areas 

[BA]such as the dorsolateral frontal cortex were discarded). The model included midline 

subgenual cingulate cortex (SCC), frontopolar cortex (BA10), and hypothalamus, as well as 

right hemispheric hippocampus, amygdala, insula, and basal ganglia (striatum/pallidum) 

ROIs to match our a priori right hemisphere ATL seed region (24).  
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Table 1| Demographic characteristics and symptoms 
 

Remitted MDD  
Recurring 

n=18 
Stable  
n=34 

p-overall 

Age 35.9 (13.2) 34.9 (13.9) 0.79 
Sex   0.98 
Female 13 (72.2%) 23 (67.6%)  
Male 5 (27.8%) 11 (32.4%)  
Years of Education 16.1 (2.08) 17.1 (1.88) 0.11 
BDI Score 5.44 (3.81) 2.97 (3.11) 0.03* 
MADRS Score 1.22 (1.56) 1.03 (1.49) 0.67 
GAF Score 83.6 (6.46) 86.5 (4.84) 0.10 
MDD = major depressive disorder; BDI = Beck Depression Inventory; MADRS = Montgomery-
Asberg Depression Rating Scale; GAF - Global Assessment of Function. Standard deviations are 
displayed in parentheses. 52 fully remitted MDD patients had available baseline data for all 
predictors included in the multi-modal prediction model and were followed up clinically over 14 
months to determine recurrence. As expected, there were slightly higher residual depressive 
symptoms on the more sensitive BDI in the group with a subsequent recurrence. 

 
 
 
Table 2| Cross-validated Prediction Model Results 

Metric 
 

Cognitive Clinical 
Clinical & 
Cognitive 

Clinical & 
fMRI All modalities 

Accuracy 0.68 0.69 0.70 0.83 0.80 
Sensitivity 0.33 0.28 0.33 0.69 0.61 
Specificity 0.86 0.91 0.90 0.90 0.90 
PPV 0.63 0.68 0.71 0.83 0.81 
NPV 0.64 0.63 0.65 0.80 0.76 
AuC 0.67 0.73 0.74 0.90 0.86 
Brier Score 0.20 0.20 0.20 0.13 0.15 
Calibration Intercept -0.12 -0.02 -0.10 0.02 -0.08 
Calibration Slope 0.78 0.99 0.83 0.61 0.55 
Cross-validated (100x repeated 10-fold CV) performance measures from the different prediction 
models. PPV=positive predictive value, NPV=negative predictive value, both were adjusted to the 
42% prevalence found in the full sample (16). AuC=area under the Receiver Operating Characteristic 
curve. Cognitive=Self-blame-related Action Tendencies Task variables, Clinical=Standard 
psychological and clinical measures, fMRI=self-blame-related fMRI variables. 
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Table 3| Model coefficients predicting recurrence 
 

Predictor variable 

All 
Modalities 

Beta 

All 
Modalities 

OR 
Univariate 

OR 
C

li
ni

ca
l/

S
ta

nd
ar

d 
ps

yc
ho

lo
gi

ca
l 

Intercept -2.26 0.10 - 
Global Assessment of Function Score -0.19 0.83 0.91 
Number of episodes categorised 1.37 3.94 3.19 
Rosenberg Self-Esteem Scale -1.00 0.37 0.90 
PANAS negative affect -2.56 0.08 0.96 
PANAS positive affect -0.73 0.48 0.86 
Beck Depression Inventory 1.30 3.67 1.23 

fM
R

I 

Motion Parameters -1.29 0.28 0.86 
SCC-ATL connectivity (Self-Blame) 2.43 11.36 2.14 
Basal Ganglia-ATL connectivity (Self-Blame) 2.76 15.80 3.49 
Frontopolar-ATL connectivity (Self-Blame) -1.68 0.19 0.73 
Hypothalamus-ATL connectivity (Self-Blame) -1.82 0.16 0.76 
Insula-ATL connectivity (Self-Blame) -0.14 0.87 1.67 
Amygdala-ATL connectivity (Self-Blame) 1.46 4.31 1.05 
Hippocampus-ATL connectivity (Self-Blame) 1.15 3.16 1.38 
SCC-signal time course 1.95 7.03 6.62 
Basal Ganglia-signal time course -0.13 0.88 8.08 
Frontopolar-signal time course 0.10 1.11 6.69 
Hypothalamus-signal time course 1.02 2.77 2.23 
Insula-signal time course 1.25 3.49 4.14 
Amygdala-signal time course 0.09 1.09 1.62 
Hippocampus-signal time course 0.27 1.31 5.53 
ATL-BOLD (Self-Blame) 2.14 8.50 1.07 
SCC-BOLD (Self-Blame) 0.72 2.05 1.05 

C
og

ni
ti

ve
 

Perceived Control for Self- vs. Other-Blame -0.25 0.78 1.19 

Maladaptive Action Tendencies 0.91 2.48 2.53 

Displayed are multivariate semi-standardised regularised logistic regression coefficients (Beta) and 
Odds Ratios (OR) for each predictor variable from the all modalities model (n=52) which is generated 
by dCVnet. Recurrence was coded as the positive outcome, so that positive regression coefficients for 
any predictor can be interpreted as a positive association with recurrence risk. For reference, 
univariate unregularised logistic regression Odds Ratios are provided. For fMRI measures “(Self-
Blame)” indicates the measurement is derived from a contrast between self-blame trials and fixation 
cross trials. Motion parameters were derived from the SPM realignment and used root mean squares 
of the 3 translation and 3 rotation parameters, averaged after z-transformation. PANAS=Positive and 
Negative Affect Scale (48); BOLD=Blood Oxygen Level Dependent Effect; SCC=Subgenual 
Cingulate Cortex; ATL=Anterior Temporal Lobe.  
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