
   
 

 1 

Scalable cardiovascular risk assessment using artificial 
intelligence-enabled event adjudication and widely available 

hematologic predictors. 
 
James G. Truslow, PhD1, Shinichi Goto, MD, PhD1, 2, Max Homilius, PhD1, 2, Christopher Mow, 

MS3,4, John M. Higgins, MD, PhD 3,5,6, Calum A. MacRae, MD, PhD 1,2 and Rahul C. Deo, MD, 

PhD 1, 2 

 Running title: Artificial-enabled risk models from blood profiles 

  

1: One Brave Idea and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 

USA 

2: Department of Medicine, Harvard Medical School, Boston, MA, USA 

3: Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.  

4: Partners Healthcare Enterprise Research Information Systems, Boston, Massachusetts, USA 

5: Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. 

6: Department of Systems Biology, Harvard Medical School, Boston, Massachusetts USA. 

 

 

*To whom correspondence should be addressed:  

Rahul C. Deo, MD, PhD 

One Brave Idea / Division of Cardiovascular Medicine, Department of Medicine, Brigham and 
Women’s Hospital, Boston, MA, USA 

rdeo@bwh.harvard.edu 

 

Total word count: 6493 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.12.21249662doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.01.12.21249662
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 2 

Abstract 
  

Introduction: Researchers routinely evaluate novel biomarkers for incorporation into clinical risk 

models.  Although of potential benefit, such emerging markers, which are often costly or not yet 

commercially available, are unlikely to enable the scalable risk assessment needed for population 

health strategies. In contrast, the ideal inputs for population approaches would be those already 

widely available for most patients. We hypothesized that simple hematologic markers, available 

in an outpatient complete blood count without differential, would be useful to develop risk models 

for cardiovascular events.  

Methods: Using routine laboratory measurements as predictors and neural network-based 

automated event adjudication of 1,072,348 discharge summaries, we developed and validated 

models for prediction of heart attack, ischemic stroke, heart failure hospitalization, 

revascularization, and all-cause mortality.  

Results: Models with hematology indices alone showed Harrell's concordance index ranging from 

0.60–0.80 on an external validation set.  Hematology indices added significantly in terms of 

discrimination and calibration performance compared to models using only demographic data and 

diagnostic codes for coronary artery disease, heart failure, and ischemic stroke, with the 

concordance index of resulting models in the range 0.75–0.85 on an external validation set. 

Predictive features varied by outcome, and included red blood cell, leukocyte, and platelet indices.   

Conclusion: We conclude that low-cost ubiquitous inputs, if biologically informative, can provide 

population-level readouts of risk. 
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Introduction 
 

Two approaches guide the development of clinical risk models1. One strategy focuses on 

evaluating innovative markers, typically biomolecular, in a research cohort where banked 

historical samples and adjudicated outcomes are available. Recent biomarker candidates include 

genetic variants2–4, protein biomarkers5, somatic mutations6 and serum metabolites7. The 

motivation for such an approach is to improve model performance, while proposing something 

new about disease mechanisms. One challenge for such a strategy is the lack of availability of 

such markers in other cohorts, making replication a challenge. The problem of predictor 

availability extends to model deployment, especially when considering the use of such models to 

guide population health initiatives. Moreover, given that contributors to disease may evolve over 

time, insights from a historical cohort may not be readily transportable to new settings8. 

An alternative approach involves training models using existing low-cost data readily available on 

a high percentage of patients within a healthcare system. Such an approach is pragmatic and 

exploits model training as the first step in a systematic program to enable risk assessment for the 

maximal number of individuals. The output of the models could then be used to guide population 

health initiatives, hospital- or payer-level financial planning, or clinical trial enrollment9.  The use 

of widely available inputs also facilitates iteratively updating models to match changing 

environments. 

In this work, we focus on the latter approach, but use an unconventional choice of predictors: 

hematologic indices available in a complete blood count without differential (CBC). Moreover, in 

the spirit of enabling ease of re-training models in new settings, we use a machine-learning 

strategy for adjudication of acute coronary syndrome, coronary revascularization, heart failure 

hospitalization, and ischemic stroke, using discharge summaries from hospitalizations10. We 

describe discrimination and calibration performance of the models across two institutions. 
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Methods 
  

Study design and source data 

All patients in the model-derivation cohort had a non-urgent outpatient CBC recorded on a 

Sysmex XE-5000 Automated Hematology System at the Massachusetts General Hospital (MGH) 

during March 2016 - May 2017.  Among 494,654 result-log files stored by the XE-5000s during 

this period, there were 469,543 unique lab-order identifiers.  Where identifiers were associated 

with more than one file, their timestamps varied by less than 3 hours in 99% of cases. We thus 

interpreted such multiple readouts as mapping to a single blood sample, and we discarded all but 

the most recent file.  We discarded another 26 files which had internally inconsistent data.   Among 

the 469,517 files we retained for later processing, there were no missing data. 

For each patient, we also accessed all diagnostic-code data from the Massachusetts General 

Brigham (MGB) Electronic Data Warehouse (EDW), including admit diagnoses, encounter 

diagnoses, medical history, and problem lists, as well as all discharge summaries and progress 

notes. Encounters, diagnostic codes, and notes could be from any of the institutions within MGB 

network of hospitals. We excluded all tests that occurred within 7 days prior to or 30 days following 

an emergency department visit or hospital admission, as defined by the date of a discharge 

summary note, so that the hematologic indices would more closely reflect the patient’s baseline 

values.   

From the remaining CBCs for each patient, only the earliest one was included, and this CBC 

defined the patient's time of entry into the survival study (see below).  We excluded patients 

younger than 30 years at the time of entry into study.  Follow-up time was defined from the date 

of the CBC to the last encounter or note within the MGB-EDW under the following categories: 

encounters coded as "office visit", "system generated", or "hospital encounter"; notes coded as 

"progress note", "telephone encounter", "assessment & plan", "discharge summary", "ED provider 

note", "consult", "MR AVS snapshot", "plan of care", "patient instruction", "H&P".  Because of the 

dramatic change in hospital population caused by COVID-19 in the winter of 2020, we did not 

consider follow-up or events after 2019 Dec. 31.  When a patient’s follow-up extended past this 

date or if a study outcome occurred after this date, we right censored the patient at 2020 Jan. 1.  

Patients with no follow-up in the MGB-EDW system were excluded. 
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The validation cohort consisted of all individuals who had a 10-parameter complete blood count 

(described below) collected at Brigham Women’s Hospital (BWH) between June 2015 and 

December 2016, and whose results were available within the MGB-EDW. As with the training 

data, we excluded laboratory values occurring close in time to emergency department or hospital 

discharges. 

Artificial intelligence-enabled adjudication of cardiovascular outcomes 

We recently trained neural network-based models to classify discharge summaries as associated 

with one the following four cardiovascular events: acute coronary syndromes (ACS), ischemic 

stroke (IS), heart-failure hospitalization (HF), and percutaneous coronary intervention/coronary 

artery bypass surgery (PCI/CABG)10. Briefly, after manually labeling 1,372 training notes + 592 

validation notes + 1,003 testing notes across 17 institutions, we trained and validated models for 

event adjudication, with AUROC on the 1,003 test notes as follows:  ACS, 0.967; HF, 0.965; IS, 

0.980; PCI/CABG, 0.998.  The fraction of all discharges in our test set which received labels for 

CVD events was as follows: ACS, 0.054; HF, 0.122; IS, 0.059; PCI/CABG, 0.054.  The four types 

of events were not mutually exclusive, and a discharge summary could receive as many as four 

positive labels. For the current work, we selected classification thresholds to maximize F1 score 

(Supplementary Table 1A). The four event models were deployed on the 1,072,348 discharge 

summaries for the derivation and validation cohorts and a binary event status was determined by 

each model for each note.   

The four AI-adjudicated clinical events, plus all-cause mortality, constituted the five primary 

outcomes for our survival analysis.  In addition to these primary outcomes, we also defined two 

composite outcomes:  1) acute coronary syndrome or heart-failure hospitalization or ischemic 

stroke (“ACS/HF/IS”); and 2) ACS/HF/IS or death (“ACS/HF/IS/death”). Date of death was 

obtained from MGB-EDW, without mediation by statistical methods. We did not employ 

competing-risk models or exclude a patient from the dataset for outcome X if they also 

experienced outcome Y. 

Prior history of CAD, IS, or HF was established using diagnostic codes, which we previously 

evaluated for performance on a set of manually labeled test notes10 (Supplementary Table 1B). 

In contrast to the event models above, which map a single discharge summary to the probability 

of an event immediately associated with that hospital discharge, ICD codes were taken in 

aggregate across a patient’s history, to generate a binary status of extant disease up to a certain 

date.   
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Predictors 

 Predictors used in the sex-specific survival models were: 

• Patient's age at entry into study. 

• Binary diagnostic codes for history of each of three conditions, at time of entry into study: 

heart failure; ischemic stroke; coronary artery disease or myocardial infarction. 

• Ten hematologic indices obtained as routine values using the Sysmex XE-5000, at time of 

entry into study:  hematocrit, whole-blood hemoglobin concentration, mean corpuscular 

hemoglobin, mean corpuscular hemoglobin concentration, mean corpuscular volume, platelet 

count, red blood cell count, red blood cell distribution width, mean platelet volume, white cell 

count.   

All predictors were centered and scaled except the three binary flags for disease.  Some predictor 

sets included 1st order interactions with age.  When main effects were centered and scaled, this 

transformation was applied before computing interaction terms (Supplementary Table 3). 

Derivation and validation of the models 

For each of the seven outcomes, we used L1-penalized Cox proportional hazards models to 

estimate coefficients for each risk factor.  For each outcome, we developed separate models for 

male and female patients.  Penalty strength for each model was selected by optimizing Harrell’s 

concordance index (C-index)11 through k-fold cross validation (3 ≤ k ≤ 5).  Ties were handled with 

Breslow’s method.  Regression and penalty tuning were performed with the python package scikit-

survival v0.14.012.  

Each combination of outcome and sex was treated with five different models, each supported by 

a different set of predictors: set 1 consisted of the ten hematologic indices ("HEM"); set 2 added 

age to set 1 ("HEM-AGE"); set 3 added disease history to set 2 ("HEM-AGE-HX"); set 4 consisted 

of age and history ("AGE-HX"); set 5 consisted of just age ("AGE").  Whenever we included age 

in a predictor set, we also include first-order interactions between age and all main effects 

(Supplementary Table 3B).  

To evaluate performance within the derivation set and provide a measure of uncertainty for the 

performance estimate, we repeated rounds of 5-fold cross validation, placing the penalty-tuning 

loop within the model-derivation step for each fold.  We then trained final models on the entire 

derivation dataset.  We externally validated each final model on the BWH dataset, having 
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preprocessed the validation data in the same way as the training data.  We removed any patients 

from the validation dataset who also appeared in the derivation dataset. 

Evaluation of model performance 

Each combination of outcome, predictors, and sex were evaluated by C-index and Brier 

score. Brier score was calculated using survival at 3 years post-CBC, using the IPCW method to 

address censoring13,14.  Performance on the derivation dataset is presented with means and 

confidence intervals computed from repeated k-fold cross-validation (40 repeats of 5-fold cross 

validation).  Performance on the validation dataset is presented with means and confidence 

intervals computed from bootstrapping the validation dataset (1000 bootstrapped samples). 

Coefficients for final models are estimated using the entire derivation dataset. 

Where the performance of two different predictor sets is compared for a single event model (e.g., 

compare predictor sets HEM-AGE-HX and AGE-HX, for the time-to-death model on the female 

validation cohort), the comparison is reported as the difference between model scores, as 

evaluated on a given set of patients.  For the derivation dataset, this means that model scores 

are computed during each fold of cross-validation and compared for the patients in that fold.  For 

the validation dataset, this means that model scores are computed on each bootstrapped sample 

and compared for the patients in that sample.  Thus, a distribution of comparisons is compiled for 

each type of performance metric. 

We evaluate model calibration graphically by plotting deciles of observed event probability vs. 

predicted probability.  Comparisons are made at 3 years of follow-up.  Baseline hazard is 

estimated nonparametrically, using Breslow's method15, and represents the hazard for a patient 

whose predictors are all zero.  This is a patient with average hematologic indices, average age, 

and with no history of CAD or MI or heart failure or stroke. 

Random Survival Forest 

To explore the benefit of modeling high dimensional interactions, we employed an ensemble 

learning method, random survival forest (RSF)16 to train models for each combination of outcome, 

sex, and predictor set with the help of the Python package scikit-survival v0.14.0.  We performed 

a single round of hyperparameter tuning using k-fold cross-validation (k = 5).  Hyperparameters 

optimized included: trees per forest {50,150}; maximum depth of any tree {2,4,6,8}; number of 

features examined for splitting at each node {1,2,3,4}.  We report the mean test-set C-index 
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calculated over the k folds.  The hyperparameter set represented by the reported C-index is the 

one that produced the highest mean C-index.  

Results 
Baseline characteristics 

The derivation cohort included 11,056 males and 12,182 females, all of whom received at least 

one outpatient, non-urgent CBC between 2016-Apr-2 and 2017-May-16 (Table 1A, 1B).  The 

external validation cohort, at a second institution, consisted of 10771 males and 18900 females, 

all of whom received at least one outpatient elective CBC between 2015-Jun-1 and 2017-Jan-1. 

All patients in this study were at least 30 years old at the time the CBC was performed.  Unlike 

other risk-model efforts17,18, which have focused on a population free of CVD events and not taking 

statins, our focus was on a broader set of patients, likely at higher risk.  Our rationale was that 

such individuals are responsible for high resource healthcare utilization, and so could benefit from 

triggered therapeutic innovations to reduce risk, whether they be novel medications or population-

health initiatives.   

Median follow-up time for the derivation cohort was 1,091 days, and for the validation cohort was 

1,517 days (Supplementary Figures 1 and 2). The most notable differences between derivation 

and validation cohorts were a younger age in the female validation cohort compared to the 

derivation cohort (53.7 vs. 57.4 years) and greater racial diversity within the validation cohorts 

(e.g., 19.6% non-White in female validation vs. 12.3% in female derivation). Prevalence of 

cardiovascular disease in the male derivation cohort was similar to that in the male validation 

cohort, whereas prevalence in the female derivation cohort was higher than in the validation 

cohort.   

CONSORT-type diagrams showing the flow of patients and their data through our analysis are 

available in the Supplement (Supplementary Figures 3 and 4). 

Rates of cardiovascular disease and death 

In the derivation cohort, the proportion of patients with one or more ACS events within the follow-

up period was 0.019, with one or more HF hospitalizations was 0.046, with one or more ischemic 

strokes was 0.022, with one or more coronary revascularizations was 0.023 (Tables 2A, 2B).  

The fraction who died was 0.054.  In the validation cohort, the proportion of patients with one or 

more ACS events was 0.013, with one or more HF hospitalizations was 0.045, with one or more 
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ischemic strokes was 0.021, with one or more coronary revascularizations was 0.014.  The 

fraction who died was 0.050.   

Model performance 

Model performance was assessed in the derivation cohort using repeated 5-fold cross validation 

(Table 3). We refer to the held-out data defined by repeated k-fold cross validation as the internal 

test set (though, to be clear, the process of repeated k-fold cross validation operated on 100% of 

the derivation cohort).  Results from the external validation cohort are obtained by the bootstrap 

method 19. 

The relationship of age to cardiovascular outcomes: AGE predictor set 

Age is a powerful predictor for cardiovascular outcomes. On the internal test set, the AGE models 

produced C-indices between 0.65 and 0.74, whereas in the external validation cohort, the AGE 

models produced C-indices between 0.64 and 0.78 (Table 3). Brier scores were < 0.15 for all 

models in this study, their low magnitude due primarily to the low frequency of events in this 

dataset (Supplementary Table 4).   

The utility of hematologic predictors for predicting cardiovascular events: HEM, and HEM-

AGE vs AGE 

Hematologic predictors also had utility for predicting cardiovascular outcomes. On the internal 

test set, C-indices for the HEM models ranged from 0.59 to 0.80 whereas on the validation set, 

C-indices for the HEM models ranged from 0.61 to 0.80 (Table 3). For both cohorts, the best 

discrimination was seen for heart failure hospitalization, composite cardiovascular outcomes, and 

death for both sexes, whereas the worst prediction was seen for ACS risk in men. 

In the internal test set, when we added hematologic predictors to the AGE models (thus making 

the HEM-AGE models), we observed superior discrimination for almost all of our outcomes 

compared to models predicting on age alone (Table 4).  The only models that did not clearly 

benefit from adding the hematologic predictors were models for ACS and PCI/CABG, in which 

cases the improvement in C-index was small or not statistically significant.  Out of 14 comparisons 

(7 outcomes ´ 2 sexes) for these two predictor sets, 11 showed a statistically significant change 

in C-index on the internal test set.  Of those 11, 10 also showed a corroborating statistically 

significant change on the external validation set.   
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The addition of hematologic predictors to the AGE models improved (made smaller) Brier scores 

for almost all outcomes in the internal test set, for both men and women (Supplementary Table 

4). Out of 14 comparisons for these two predictor sets, 11 showed a statistically significant change 

in Brier score on the internal test set.  Of those 11, 10 also showed a corroborating statistically 

significant change on the external validation set.  Only the ACS models and the female IS model 

and did not show a statistically significant change. 

Incorporating disease history: AGE-HX vs AGE 

We hypothesized that history for some diseases would be available in most EHRs, albeit with 

varying degrees of completeness, and so may be considered for a scalable risk-assessment 

strategy.  Adding disease histories to the AGE predictor set (i.e., making the AGE-HX predictor 

set) resulted in superior discrimination: AGE-HX models had higher C-index compared to AGE 

models for all outcomes, for both sexes, and in both derivation and validation cohort (Table 4).  

On the internal test set, increases in C-index were in the range 0.026 to 0.126.  On the external 

validation set, increases in C-index were in the range 0.020 to 0.108.  AGE-HX models also had 

better (lower) Brier scores than the AGE models (Supplementary Table 4).  Out of 14 

comparisons on the internal test set, all 14 showed statistically significant improvement, and all 

14 improvements were corroborated by statistically significant improvements in the external 

validation set. 

Substitution of hematology for history: AGE-HEM vs AGE-HX 

To address the scenario where these highly predictive diagnostic codes are unavailable (e.g., a 

population-health program initiated with the help of a diagnostic lab provider), we compared the 

utility of the AGE-HEM models to that of the AGE-HX models.  Equivalence between the two 

predictor sets depended on the outcome considered.  For HF, IS, and the composite outcomes, 

the drop in C-index associated with using AGE-HEM instead of AGE-HX was < 0.03, for men and 

women, on both internal and external cohorts (Table 4).  For modeling death, AGE-HEM was in 

fact superior to AGE-HX by as much as 0.077.  For ACS and PCI/CABG, the drop in C-index was 

between 0.062 and 0.127 and was significant in both sexes and datasets.  Calibration showed 

minimal difference, though for all outcomes except death and ACS/HF/IS/death, using AGE-HEM 

instead of AGE-HX produced minimally inferior Brier scores (Supplementary Table 4), with the 

HF model showing the lowest magnitude change in performance (increase of 0.003 on the 

external dataset). 
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Incremental value of hematologic predictors to age + disease history: HEM-AGE-HX vs 

AGE-HX 

As was the case when we added hematologic predictors to the AGE models, we found that adding 

hematologic predictors to the AGE-HX models (thus making the HEM-AGE-HX models) often 

yielded significantly higher C-indices than did the AGE-HX predictor set, both for men and for 

women (Table 4).  For example, C-index for the male HF model was higher by 0.067 under the 

larger predictor set, and C-index for the male death model was higher by 0.080 under the larger 

predictor set. The incremental effect of hematologic predictors was usually smaller than the 

difference between HEM-AGE and AGE, and so effects were less often significant in both 

validation and derivation datasets. Models for HF, death, and the composite outcomes showed 

statistically significant improvements in both cohorts for both sexes.  Improvements in Brier score 

followed almost the same pattern (Supplementary Table 4).  On the validation cohort, the HEM-

AGE-HX models demonstrated C-indices between 0.75 and 0.85 (Table 3). 

Calibration curves 

We examined calibration curves for the HEM-AGE-HX model for all outcomes (Figure 1), as 

measured on the validation cohort.  For females, risk is calibrated well for the all but the highest-

risk decile. Over-prediction of risk for high-risk patients is more pronounced among the male 

models than the female models, consistent with higher Brier scores for male models.  

Survival by predicted-risk quartile 

Discrimination was assessed visually using Kaplan-Meier curves for the seven outcomes, as 

modeled with the HEM-AGE-HX predictor set and measured on the external validation cohort 

(Figure 2).  In each subplot, the cohort is split into quartiles, according to the predicted relative 

risk of the outcome for each patient.   

For all seven outcomes among men, the risk groups predicted by the models maintain proper 

rank by observed risk over the whole observation period, at least for the highest risk 3 quartiles.  

For the HF model, survival curves for the low-risk and lowest-risk quartiles intersect at a follow-

up time of around 4 years, which can indicate poor calibration of this model for the healthiest 

patients, though given the low event rate after 4 years (< 10/month for the entire male cohort), 

this is also readily attributable to noise in the Kaplan-Meier estimator. 

Performance for the female-cohort models is similar: survival curves for the riskiest three quartiles 

are properly ordered over the entire observation period, but the low-risk and lowest-risk curves 
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are sometimes inverted for the HF model and for the two composite models.  The only exception 

is the PCI/CABG model, for which the middle two risk groups are inverted at t < 2 years. 

Parameter estimates 

Proportional-hazards coefficients in the HEM-AGE-HX models were examined for the three 

outcomes (composites not included) where the HEM-AGE-HX predictor set had better 

discrimination than AGE-HX on the internal test set (Table 5).  The L1 penalization selects 

approximately half of the ten hematologic indices for each of the final models.  Among the highly 

correlated set {HCT, HGB, MCH, MCHC, MCV, RBC}, usually more than half are eliminated, with 

the most commonly retained being RBC and HGB.  Two out of the ten hematologic indices appear 

in all six models in Table 8: platelet count (PLT) and red cell distribution width (RDW). White cell 

count (WBC) and red cell count (RBC) are retained in five out of six models. As expected, the 

disease-history terms and the age terms are extremely strong factors in most HEM-AGE-HX 

models. 

Random Survival Forest 

Discrimination of the Cox proportional hazards models was comparable to the discrimination of 

the random survival forests (Supplementary Table 6). Many of the optimized RSF models had 

slightly better discrimination than the Cox proportional hazards models, with advantages for RSF 

ranging from -0.009 to 0.050. The biggest advantage for RSF came when using the HEM predictor 

set, which does not include any explicit interaction terms, and which therefore might be harder for 

a linear model to learn from than for a tree-based model. Improvement was less apparent for the 

HEM-AGE-HX models. 

Discussion 
The objective of our work is fundamentally different from that of most efforts focused on training 

risk models: we sought to develop risk models for cardiovascular events based entirely on low-

cost, widely available, well-calibrated20, and objective input features. Whereas most risk models 

have emphasized the utility of a diverse set of inputs, which will typically require providers to order 

specific laboratory tests, document an expansive set of diagnoses, and record candid responses 

of patients regarding such attributes as smoking status18, our approach deliberately attempts to 

minimize the burden on providers or dependence on costly elements of data collection. Our 

rationale is based in part on our own experience with EHR-based risk assessment:  for example, 

the percentage of patients in our cohorts for which one can compute the Pooled-Cohort Equation 
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risk score from structured data within the MGB-EDW is <30% (data not shown). Even when the 

relevant tests may have been ordered, they may not be available as structured data in the EHR, 

if, for example, they were collected outside of the system and were only available as scanned 

documents. Furthermore, most risk models focus on primary prevention – whereas our focus was 

on a broader patient population with anticipated high resource utilization. 

We have used hematologic predictors based on an assumption that many contributors to chronic 

diseases such as cardiovascular disease are systemic and may be reflected across multiple 

tissue types. This hypothesis is supported by a large amount of prior data, both experimental and 

observational, including the ability to estimate cardiovascular outcomes from digital retinograms21, 

the association of somatic mutations in leukocytes with coronary artery disease and heart failure 

risk6,22, the association of a complete-blood count-based score with mortality23–27, and the 

modulation of cardiovascular disease through leukocyte-restricted gene knockouts28,29. 

Others have shown association of hematologic indices with all-cause mortality and cardiovascular 

events, including a focus on red-cell distribution width23,30–34 and specific leukocyte 

subpopulations such as the neutrophil-to-lymphocyte ratio35.  The utility of RDW for predicting 

outcomes may be related to its association with anemias of chronic disease or with clonal 

hematopoiesis of indeterminate potential6, which appear to predict similar patterns of events. In 

both cases, the biomarkers may primarily be providing a readout for underlying systemic pathway 

abnormalities, with the hematopoietic lineage representing a shared upstream pathway 

abnormality or an index of prior exposures.  

Although our work demonstrated success primarily for heart failure, major adverse cardiovascular 

events, all-cause mortality, and to a lesser extent ischemic stroke, we had less success in 

predicting incident acute coronary syndromes beyond what is possible with age and prior 

diagnoses. Nonetheless, a model using hematologic indices alone was able to modestly predict 

incident acute coronary syndromes (C-index = 0.62 [95% CI 0.57 to 0.67] and 0.60 [95% CI 0.56 

to 0.63] for women and men, respectively, on validation dataset, comparable to polygenic risk 

scores2) suggesting that some signal exists, but there is likely redundancy with age and existing 

CVD.  Nonetheless, a strategy combining age and hematologic predictors may still be useful in 

situations where structured diagnoses are not available or as complete as found within the MGB-

EDW. 

The primary limitation of our work, which is also a strength, is a deliberate use of restricted 

numbers of inputs to the risk models. Our patient population may also exhibit some selection bias 
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that could limit generalizability to other settings – though in such cases, our approach combining 

widely available inputs with automated adjudication should enable rescaling or retraining.  We 

have also not looked at out how these measures of risk progress through time and in response to 

therapy in individual patients.  Given the limited performance benefit of random survival forests 

for predicting outcomes with these same inputs, we chose not to explore other algorithms, though 

it is possible some would show superior performance.  

There is no shortage of risk models available for cardiovascular outcomes – and the challenge is 

motivating their use. We suspect that models such as the ones described here will primarily be 

attractive at an institutional or payer level, where better estimation of risk for a very large 

percentage of a population has clear economic value. We are not aware of any comparable effort 

to deliberately push the limits of models with minimal low-cost input features. We see our 

approach as complementary to other models which typically rely on individual or provider-entered 

data and have focused on patients not currently taking statins and free of cardiovascular 

disease17,18,36.  These approaches also lend themselves to the creation of continuously updating 

risk trajectories where the rates of change may have additional predictive utility. Our goal is to 

maximize the number of patients for which a system-level estimation of risk is feasible, with 

minimal disruption to the existing workflow of providers, a place where we see model deployment 

having the greatest impact. 
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Figures 

 
 
Figure 1. Calibration curves for HEM-AGE-HX models on validation cohort. 

Calibration curves for the seven modeled outcomes, on female (A) and male (B) in the validation cohort.  
Predictor set is HEM-AGE-HX, which includes hematology and age and disease history, and interactions with 
age. Predicted risk is compared with observed outcomes at 3 years.  
 

A
Female

B
Male
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Figure 2. Kaplan-Meier curves for HEM-AGE-HX models, by quartiles of predicted risk in validation 

cohort. 

Curves are shown for all seven outcomes in the validation cohort, females (A) and males (B). For each 
outcome, the cohort is split into quartiles, according to the risk model developed for that outcome on the 
derivation cohort.  Lowest-risk quartile is shown in blue; highest-risk quartile is shown in red. 

  

A: Female B: Male
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Tables 
Table 1A. Baseline Demographic Characteristics of Derivation and Validation Cohorts 

Parameter 
Men Women 

Deriv. Cohort Valid. Cohort p Deriv. Cohort Valid. Cohort p 

N 11056 10771   12182 18900 - 

Age, years (SD) 60.1 (14.3) 59.9 (13.9) 3.89E-01 57.4 (15.0) 53.7 (15.4) 4.17E-95 

Race             

   White, % (N) 79.2 (8756) 80.3 (8652) 

9.27E-67 

78.0 (9497) 73.1 (13808) 

1.52E-107 

   Black or African American, % (N) 5.5 (606) 6.6 (714) 5.7 (698) 9.9 (1872) 

   Hispanic or Latino, % (N) 0.4 (45) 2.8 (303) 0.9 (107) 4.1 (779) 

   Asian, % (N) 4.9 (543) 3.3 (356) 5.5 (664) 5.5 (1042) 

   American Indian or Alaska Native, % (N) 0.1 (8) 0.2 (19) 0.1 (12) 0.1 (18) 

   Native Hawaiian or Other Pacific Islander, % (N) 0.0 (3) 0.1 (10) 0.1 (7) 0.0 (6) 

   Missing, % (N) 9.9 (1095) 6.7 (717) 9.8 (1197) 7.3 (1375) 

Hispanic Origin             

   Hispanic, % (N) 4.8 (536) 5.8 (628) 

2.89E-64 

6.5 (789) 8.5 (1614) 

2.57E-74    Non-Hispanic, % (N) 85.0 (9399) 76.3 (8222) 84.2 (10252) 75.7 (14301) 

   Missing, % (N) 10.1 (1121) 17.8 (1921) 9.4 (1141) 15.8 (2985) 

Smoking             

   Current, % (N) 8.0 (887) 6.9 (743) 

1.07E-50 

5.7 (690) 4.7 (881) 

5.34E-41 
   Former, % (N) 30.7 (3393) 34.9 (3757) 25.7 (3133) 26.5 (5000) 

   Never, % (N)  49.3 (5454) 51.9 (5591) 58.0 (7071) 62.4 (11789) 

   Missing, % (N) 12.0 (1322) 6.3 (680) 10.6 (1288) 6.5 (1230) 

Significance for age difference is via t-test.  The other three differences are compared via !! tests. 
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Table 1B. Baseline Clinical Characteristics of Derivation and Validation Cohorts 

Parameter 
Men Women 

Deriv. Cohort Valid. Cohort p Deriv. Cohort Valid. Cohort p 

Heart rate, bpm, mean (SD, NMISS) 73.6 (11.5, 1171) 72.5 (11.8, 222) 2.7E-12 76.5 (11.0, 1375) 75.8 (11.1, 812) 2.5E-08 

Systolic BP, mmHg, mean (SD, NMISS) 128.0 (13.4, 1092) 129.2 (13.5, 214) 3.7E-10 123.9 (14.3, 1170) 123.8 (14.7, 246) 5.1E-01 

Diastolic BP, mmHg, mean (SD, NMISS) 75.3 (8.4, 1092) 75.3 (9.7, 214) 8.2E-01 73.3 (7.9, 1170) 70.9 (8.5, 246) 4E-127 

BMI kg/m2, median (IQR, NMISS) 27.9 (25.1-31.5, 1759) 28.0 (25.3-31.5, 530) 8.5E-01 26.4 (22.7-31.3, 1811) 26.5 (22.9-31.4, 1200) 1.3E-01 

LDL mg/dL, mean (SD, NMISS) 96.6 (35.5, 8221) 99.2 (33.3, 3128) 8.3E-04 109.1 (35.9, 9529) 106.4 (32.6, 7359) 2.6E-04 

HDL mg/dL, mean (SD, NMISS) 47.8 (15.2, 4665) 51.6 (16.3, 3037) 3.6E-46 61.0 (19.4, 5918) 66.5 (20.3, 7143) 2.6E-70 

Triglycerides, mg/dL, mean (SD NMISS) 131.3 (96.6, 4660) 137.9 (98.5, 3003) 5.2E-05 115.6 (72.8, 5950) 115.9 (73.4, 7155) 8.0E-01 

eGFR mL/min/1.73m2, mean (SD, NMISS) 67.1 (23.2, 2322) 67.3 (21.1, 417) 4.3E-1 91.0 (26.7, 3140) 94.7 (24.8, 2564) 6.4E-28 

Ejection fraction, %, mean (SD, NMISS) 59.6 (14.8, 10130) 56.6 (12.3, 9192) 2.7E-07 64.3 (11.1, 11448) 61.1 (8.6, 17319) 1.4E-11 

Coronary artery disease, % (N) 18.3 (2026) 16.1 (1739) 2.0E-05 6.8 (824) 4.1 (777) 5.1E-25 

Heart failure, % (N) 9.3 (1028) 8.4 (909) 2.6E-02 5.0 (613) 3.3 (619) 9.2E-15 

Ischemic stroke, % (N) 3.6 (403) 3.2 (349) 1.0E-01 2.5 (309) 1.7 (328) 1.1E-06 

Type 2 diabetes mellitus, % (N) 18.8 (2083) 17.7 (1907) 3.0E-02 11.5 (1398) 10.8 (2032) 4.6E-02 

Hypertension, % (N) 51.4 (5678) 51.0 (5488) 5.5E-01 38.5 (4691) 34.2 (6460) 8.1E-15 

Atrial fibrillation, % (N) 10.9 (1210) 11.8 (1272) 4.4E-02 5.1 (617) 3.9 (734) 6.2E-07 

Aspirin, % (N) 44.2 (4888) 43.4 (4673) 2.2E-01 27.0 (3289) 22.9 (4329) 2.6E-16 

Statin, % (N) 45.7 (5057) 46.4 (5002) 3.0E-01 27.7 (3369) 23.8 (4493) 1.5E-14 

ACE inhibitor, % (N) 23.7 (2615) 26.0 (2798) 7.0E-05 13.7 (1664) 12.7 (2400) 1.4E-02 

Angiotensin receptor blocker, % (N) 12.7 (1401) 12.5 (1342) 6.4E-01 9.9 (1204) 8.8 (1665) 1.4E-03 

Beta blocker, % (N) 32.9 (3634) 34.2 (3685) 3.6E-02 23.4 (2853) 19.5 (3684) 1.1E-16 

Means are compared via t-test.  Proportions are compared via Z-test.
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Table 2A. Case Count in Derivation Cohort 

Outcome Age 
Women Men 

Cases Total Cases/1000 Cases Total Cases/1000 

ACS 

<45 3 2917 1.0  (-0.1 to 2.2) 11 1814 6.1  (2.5 to 9.6) 

45-60 21 3828 5.5  (3.1 to 7.8) 73 3475 21.0  (16.2 to 25.8) 

>60 88 5432 16.2  (12.8 to 19.6) 247 5759 42.9  (37.7 to 48.1) 

HF 

<45 39 2917 13.4  (9.2 to 17.5) 31 1814 17.1  (11.1 to 23.1) 

45-60 75 3828 19.6  (15.2 to 24.0) 146 3475 42.0  (35.3 to 48.7) 

>60 327 5432 60.2  (53.9 to 66.5) 459 5759 79.7  (72.7 to 86.7) 

IS 

<45 14 2917 4.8  (2.3 to 7.3) 16 1814 8.8  (4.5 to 13.1) 

45-60 32 3828 8.4  (5.5 to 11.2) 60 3475 17.3  (12.9 to 21.6) 

>60 187 5432 34.4  (29.6 to 39.3) 206 5759 35.8  (31.0 to 40.6) 

PCI/ 
CABG 

<45 6 2917 2.1  (0.4 to 3.7) 8 1814 4.4  (1.4 to 7.5) 

45-60 23 3828 6.0  (3.6 to 8.5) 88 3475 25.3  (20.1 to 30.5) 

>60 106 5432 19.5  (15.8 to 23.2) 294 5759 51.1  (45.4 to 56.7) 

Death 

<45 22 2917 7.5  (4.4 to 10.7) 21 1815 11.6  (6.7 to 16.5) 

45-60 94 3831 24.5  (19.6 to 29.4) 122 3476 35.1  (29.0 to 41.2) 

>60 414 5434 76.2  (69.1 to 83.2) 575 5765 99.7  (92.0 to 107.5) 

 

Table 2B. Case Count in Validation Cohort 

Outcome Age 
Women Men 

Cases Total Cases/1000 Cases Total Cases/1000 

ACS 

<45 5 6552 0.8  (0.1 to 1.4) 8 1711 4.7  (1.4 to 7.9) 

45-60 33 5595 5.9  (3.9 to 7.9) 57 3611 15.8  (11.7 to 19.9) 

>60 89 6889 12.9  (10.3 to 15.6) 194 5569 34.8  (30.0 to 39.7) 

HF 

<45 150 6552 22.9  (19.3 to 26.5) 27 1711 15.8  (9.9 to 21.7) 

45-60 115 5595 20.6  (16.8 to 24.3) 103 3611 28.5  (23.1 to 34.0) 

>60 413 6889 60.0  (54.3 to 65.6) 536 5569 96.2  (88.5 to 104.0) 

IS 

<45 33 6552 5.0  (3.3 to 6.8) 8 1711 4.7  (1.4 to 7.9) 

45-60 84 5595 15.0  (11.8 to 18.2) 49 3611 13.6  (9.8 to 17.3) 

>60 231 6889 33.5  (29.3 to 37.8) 225 5569 40.4  (35.2 to 45.6) 

PCI/ 
CABG 

<45 9 6552 1.4  (0.5 to 2.3) 7 1711 4.1  (1.1 to 7.1) 

45-60 34 5595 6.1  (4.0 to 8.1) 59 3611 16.3  (12.2 to 20.5) 

>60 86 6889 12.5  (9.9 to 15.1) 232 5569 41.7  (36.4 to 46.9) 

Death 

<45 27 6552 4.1  (2.6 to 5.7) 29 1711 16.9  (10.8 to 23.1) 

45-60 128 5595 22.9  (19.0 to 26.8) 142 3613 39.3  (33.0 to 45.6) 

>60 529 6895 76.7  (70.4 to 83.0) 651 5572 117  (108 to 125) 
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Number of patients in (A) derivation and (B) validation cohorts, and number of each type of outcome observed, 
as well as the fraction of patients with each outcome.  Fraction is reported as outcomes per 1000 patients, 
along with 95% confidence intervals for the fraction. 
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Table 3. Model performance, according to C-index 

Pred. 
Set Outcome 

C-Index, Internal Test Set C-Index, External Validation Set 

Women Men Women Men 

HEM 

ACS 0.632 (0.607 to 0.647) 0.594 (0.579 to 0.602) 0.619 (0.569 to 0.671) 0.596 (0.562 to 0.629) 

HF 0.757 (0.750 to 0.763) 0.783 (0.777 to 0.786) 0.732 (0.711 to 0.752) 0.803 (0.788 to 0.820) 

IS 0.702 (0.682 to 0.710) 0.653 (0.644 to 0.663) 0.636 (0.603 to 0.665) 0.681 (0.647 to 0.714) 

PCI/CABG 0.644 (0.615 to 0.656) 0.633 (0.626 to 0.638) 0.614 (0.560 to 0.669) 0.609 (0.576 to 0.641) 

death 0.780 (0.764 to 0.790) 0.796 (0.794 to 0.797) 0.762 (0.743 to 0.782) 0.784 (0.769 to 0.800) 

ACS/HF/IS 0.728 (0.722 to 0.731) 0.714 (0.712 to 0.715) 0.681 (0.663 to 0.699) 0.729 (0.714 to 0.745) 

ACS/HF/IS/death 0.741 (0.732 to 0.746) 0.735 (0.734 to 0.736) 0.709 (0.694 to 0.724) 0.744 (0.732 to 0.757) 

HEM 
AGE 

ACS 0.730 (0.691 to 0.747) 0.648 (0.631 to 0.662) 0.764 (0.728 to 0.799) 0.659 (0.629 to 0.688) 

HF 0.790 (0.778 to 0.794) 0.787 (0.782 to 0.790) 0.730 (0.706 to 0.753) 0.811 (0.795 to 0.827) 

IS 0.768 (0.760 to 0.774) 0.696 (0.685 to 0.702) 0.737 (0.712 to 0.763) 0.734 (0.704 to 0.762) 

PCI/CABG 0.732 (0.708 to 0.747) 0.682 (0.675 to 0.687) 0.753 (0.711 to 0.792) 0.675 (0.647 to 0.702) 

death 0.826 (0.818 to 0.832) 0.817 (0.816 to 0.818) 0.842 (0.826 to 0.856) 0.803 (0.788 to 0.818) 

ACS/HF/IS 0.779 (0.777 to 0.780) 0.727 (0.724 to 0.728) 0.718 (0.700 to 0.736) 0.755 (0.741 to 0.770) 

ACS/HF/IS/death 0.790 (0.783 to 0.794) 0.752 (0.751 to 0.753) 0.760 (0.747 to 0.774) 0.769 (0.757 to 0.780) 

HEM 
AGE 
HX 

ACS 0.809 (0.795 to 0.820) 0.769 (0.761 to 0.781) 0.839 (0.803 to 0.872) 0.762 (0.731 to 0.790) 

HF 0.824 (0.821 to 0.827) 0.839 (0.837 to 0.840) 0.756 (0.732 to 0.780) 0.854 (0.841 to 0.868) 

IS 0.786 (0.779 to 0.792) 0.722 (0.715 to 0.728) 0.748 (0.723 to 0.774) 0.747 (0.719 to 0.774) 

PCI/CABG 0.807 (0.794 to 0.815) 0.773 (0.766 to 0.779) 0.827 (0.785 to 0.865) 0.763 (0.736 to 0.788) 

death 0.833 (0.821 to 0.839) 0.821 (0.819 to 0.822) 0.849 (0.834 to 0.863) 0.804 (0.789 to 0.819) 

ACS/HF/IS 0.809 (0.806 to 0.811) 0.775 (0.772 to 0.777) 0.748 (0.730 to 0.765) 0.794 (0.780 to 0.806) 

ACS/HF/IS/death 0.811 (0.810 to 0.812) 0.782 (0.780 to 0.783) 0.780 (0.767 to 0.793) 0.788 (0.778 to 0.799) 

AGE 
HX 

ACS 0.803 (0.796 to 0.807) 0.775 (0.770 to 0.780) 0.828 (0.790 to 0.864) 0.764 (0.733 to 0.792) 

HF 0.787 (0.784 to 0.789) 0.771 (0.769 to 0.773) 0.707 (0.680 to 0.734) 0.813 (0.795 to 0.829) 

IS 0.766 (0.759 to 0.770) 0.705 (0.701 to 0.709) 0.742 (0.716 to 0.769) 0.736 (0.709 to 0.762) 

PCI/CABG 0.804 (0.798 to 0.812) 0.771 (0.762 to 0.775) 0.816 (0.775 to 0.855) 0.767 (0.740 to 0.791) 

death 0.768 (0.767 to 0.769) 0.741 (0.740 to 0.742) 0.798 (0.782 to 0.814) 0.732 (0.714 to 0.749) 

ACS/HF/IS 0.780 (0.779 to 0.781) 0.746 (0.746 to 0.747) 0.724 (0.704 to 0.743) 0.773 (0.758 to 0.787) 

ACS/HF/IS/death 0.767 (0.766 to 0.767) 0.735 (0.735 to 0.736) 0.740 (0.726 to 0.753) 0.748 (0.735 to 0.760) 

AGE 

ACS 0.706 (0.679 to 0.726) 0.650 (0.642 to 0.655) 0.744 (0.707 to 0.779) 0.656 (0.623 to 0.687) 

HF 0.698 (0.686 to 0.716) 0.655 (0.651 to 0.657) 0.644 (0.619 to 0.670) 0.718 (0.697 to 0.739) 

IS 0.729 (0.722 to 0.732) 0.659 (0.648 to 0.671) 0.713 (0.687 to 0.739) 0.704 (0.674 to 0.732) 

PCI/CABG 0.706 (0.685 to 0.726) 0.658 (0.651 to 0.665) 0.723 (0.682 to 0.766) 0.670 (0.642 to 0.696) 

death 0.741 (0.728 to 0.746) 0.714 (0.704 to 0.716) 0.777 (0.759 to 0.793) 0.712 (0.694 to 0.729) 

ACS/HF/IS 0.719 (0.712 to 0.721) 0.656 (0.652 to 0.657) 0.670 (0.652 to 0.689) 0.700 (0.685 to 0.716) 

ACS/HF/IS/death 0.722 (0.722 to 0.722) 0.670 (0.667 to 0.670) 0.702 (0.688 to 0.716) 0.699 (0.686 to 0.712) 
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 Mean and 95% confidence intervals for C-index.  For 7 outcomes modeled with 5 predictor sets (HEM, HEM-
AGE, HEM-AGE-HX, AGE-HX, and AGE).  The distribution of C-index on the derivation dataset is obtained by 
repeated k-fold cross validation.  The distribution on the validation dataset is obtained by bootstrapping inputs to 
a final model trained on the entire derivation dataset. 
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Table 4. Comparison of pairs of predictor sets according to C-index 

Pred. 
Set Outcome 

DC, Derivation Dataset DC, Validation Dataset 
Women Men Women Men 

A: 
HEM 
AGE 

 
B: 

AGE 

ACS 0.024 (-0.014 to 0.056) -0.001 (-0.017 to 0.016) 0.019 (0.005 to 0.033) « 0.003 (-0.012 to 0.019) 

HF 0.091 (0.075 to 0.103) « + 0.131 (0.125 to 0.137) « + 0.086 (0.072 to 0.100) « 0.092 (0.071 to 0.113) « 

IS 0.040 (0.030 to 0.052) « + 0.036 (0.021 to 0.048) « + 0.024 (0.009 to 0.039) « 0.029 (0.009 to 0.050) « 

PCI/CABG 0.026 (-0.013 to 0.048) 0.024 (0.016 to 0.034) « 0.030 (0.007 to 0.055) « 0.005 (-0.013 to 0.025) 

death 0.084 (0.073 to 0.100) « + 0.103 (0.100 to 0.113) « + 0.065 (0.051 to 0.079) « 0.091 (0.077 to 0.105) « 

ACS/HF/IS 0.060 (0.057 to 0.068) « + 0.070 (0.068 to 0.075) « + 0.048 (0.038 to 0.058) « 0.055 (0.042 to 0.069) « 

ACS/HF/IS/death 0.068 (0.061 to 0.072) « + 0.082 (0.080 to 0.085) « + 0.058 (0.049 to 0.068) « 0.070 (0.060 to 0.080) « 

A: 
AGE 
HX 

 
B: 

AGE 

ACS 0.097 (0.079 to 0.122) « + 0.126 (0.118 to 0.133) « + 0.084 (0.054 to 0.116) « 0.108 (0.077 to 0.141) « 

HF 0.089 (0.071 to 0.100) « + 0.116 (0.113 to 0.121) « + 0.062 (0.050 to 0.075) « 0.094 (0.077 to 0.112) « 

IS 0.038 (0.029 to 0.046) « + 0.046 (0.036 to 0.059) « + 0.030 (0.018 to 0.043) « 0.032 (0.017 to 0.050) « 

PCI/CABG 0.098 (0.077 to 0.118) « + 0.113 (0.100 to 0.121) « + 0.092 (0.062 to 0.125) « 0.097 (0.069 to 0.126) « 

death 0.027 (0.022 to 0.040) « + 0.026 (0.024 to 0.037) « + 0.021 (0.014 to 0.029) « 0.020 (0.012 to 0.029) « 

ACS/HF/IS 0.061 (0.059 to 0.067) « + 0.090 (0.089 to 0.094) « + 0.054 (0.044 to 0.063) « 0.073 (0.061 to 0.086) « 

ACS/HF/IS/death 0.045 (0.044 to 0.045) « + 0.066 (0.065 to 0.069) « + 0.038 (0.031 to 0.045) « 0.049 (0.040 to 0.058) « 

A: 
AGE 
HEM 

 
B: 

AGE 
HX 

ACS -0.073 (-0.116 to -0.055) « + -0.127 (-0.142 to -0.111) « + -0.065 (-0.098 to -0.034) « -0.105 (-0.137 to -0.075) « 

HF 0.003 (-0.007 to 0.009) 0.015 (0.011 to 0.020) « 0.023 (0.006 to 0.041) « -0.002 (-0.022 to 0.017) 

IS 0.002 (-0.006 to 0.010) -0.010 (-0.022 to -0.002) « -0.005 (-0.022 to 0.011) -0.003 (-0.026 to 0.019) 

PCI/CABG -0.072 (-0.095 to -0.057) « + -0.089 (-0.094 to -0.080) « + -0.062 (-0.097 to -0.030) « -0.091 (-0.120 to -0.064) « 

death 0.058 (0.050 to 0.064) « + 0.077 (0.075 to 0.078) « + 0.043 (0.029 to 0.058) « 0.071 (0.056 to 0.085) « 

ACS/HF/IS -0.001 (-0.003 to 0.001) -0.020 (-0.022 to -0.018) « + -0.006 (-0.018 to 0.007) -0.018 (-0.032 to -0.004) « 

ACS/HF/IS/death 0.023 (0.017 to 0.028) « + 0.017 (0.015 to 0.018) « + 0.021 (0.011 to 0.031) « 0.021 (0.010 to 0.032) « 

A: 
HEM 
AGE 
HX 

 
B: 

AGE 
HX 

ACS 0.006 (-0.009 to 0.016) -0.006 (-0.016 to 0.007) 0.011 (-0.004 to 0.026) -0.002 (-0.009 to 0.005) 

HF 0.037 (0.034 to 0.041) « + 0.067 (0.066 to 0.070) « + 0.049 (0.037 to 0.062) « 0.042 (0.029 to 0.056) « 

IS 0.020 (0.012 to 0.026) « 0.017 (0.009 to 0.024) « 0.006 (-0.008 to 0.020) 0.011 (-0.007 to 0.028) 

PCI/CABG 0.003 (-0.008 to 0.010) 0.002 (-0.005 to 0.005) 0.012 (-0.001 to 0.026) -0.003 (-0.013 to 0.006) 

death 0.065 (0.053 to 0.070) « + 0.080 (0.078 to 0.081) « + 0.050 (0.038 to 0.064) « 0.072 (0.059 to 0.086) « 

ACS/HF/IS 0.029 (0.026 to 0.030) « + 0.029 (0.026 to 0.030) « + 0.024 (0.016 to 0.033) « 0.020 (0.013 to 0.028) « 

ACS/HF/IS/death 0.045 (0.044 to 0.046) « + 0.046 (0.045 to 0.047) « + 0.040 (0.032 to 0.048) « 0.041 (0.033 to 0.049) « 

A: 
HEM 
AGE 
HX 

 
B: 

HEM 
AGE 

ACS 0.079 (0.061 to 0.115) « + 0.121 (0.105 to 0.145) « + 0.075 (0.044 to 0.107) « 0.103 (0.074 to 0.134) « 

HF 0.034 (0.030 to 0.045) « + 0.052 (0.049 to 0.057) « + 0.026 (0.016 to 0.037) « 0.044 (0.034 to 0.054) « 

IS 0.018 (0.014 to 0.024) « + 0.026 (0.018 to 0.033) « + 0.011 (0.005 to 0.018) « 0.014 (0.002 to 0.027) « 

PCI/CABG 0.075 (0.061 to 0.095) « + 0.091 (0.084 to 0.097) « + 0.074 (0.047 to 0.105) « 0.088 (0.062 to 0.115) « 

death 0.007 (-0.005 to 0.019) 0.004 (0.003 to 0.005) « 0.007 (0.002 to 0.011) « 0.002 (-0.002 to 0.005) 

ACS/HF/IS 0.030 (0.028 to 0.031) « + 0.049 (0.046 to 0.051) « + 0.030 (0.022 to 0.038) « 0.038 (0.030 to 0.048) « 

ACS/HF/IS/death 0.022 (0.017 to 0.028) « + 0.030 (0.028 to 0.031) « + 0.019 (0.014 to 0.025) « 0.020 (0.014 to 0.025) « 
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Mean and 95% confidence interval of the statistic DC = CA – CB, where CA is the C-index of an outcome 
modeled with predictor set A, and CB is the C-index for an outcome modeled with predictor set B.  An asterisk 
( « ) denotes that DC is significantly different from zero.  A plus sign ( + ) next to a derivation-set result denotes 
that that DC is also significantly different from zero in the validation set, and the effect is in the same direction 
as in the derivation dataset, i.e. the result in the derivation set is corroborated by the result in the validation 
set).  There were no cases where a validation-set result was significant, but in the opposite direction of a 
significant derivation-set result.  
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Table 5. HEM-AGE-HX parameter estimates for selected outcomes 

Predictor 
HF Hospitalization Ischemic Stroke Death 

Female Male Female Male Female Male 

b p b p b p b p b p b p 
HCT 0 1 0 0.999 0 1 0 1 0 0.999 0 0.999 

HGB -0.01 0.945 0 0.999 -0.078 0.534 -0.266 0.001 -0.468 0.029 -0.172 0.021 

MCH 0 1 0 0.999 0 1 -0.002 0.983 0 0.999 0 0.999 

MCHC 0 1 0 0.999 0 1 -0.014 0.875 0.14 0.1 0 0.999 

MCV 0.135 0.154 0 0.999 0 1 0 1 0.318 0.008 0 0.999 

MPV -0.046 0.299 0 0.999 0 1 0 1 -0.092 0.034 -0.005 0.892 

PLT -0.194 0.002 -0.049 0.157 -0.089 0.288 0.002 0.972 -0.105 0.009 -0.242 0 

RBC -0.053 0.704 -0.334 0 -0.211 0.061 0 1 -0.003 0.989 -0.357 0 

RDW 0.376 0 0.261 0 0.207 0.007 0.014 0.836 0.332 0 0.286 0 

WBC 0.043 0.321 0 1 0.051 0.166 0.082 0.001 0.081 0.006 0.02 0.354 

age 0.473 0 0.072 0.206 0.714 0 0.514 0 0.799 0 0.519 0 

Hx_CAD 0.548 0.005 0.249 0.034 0.408 0.192 0 1 0.479 0.024 0.166 0.237 

Hx_HF 2.149 0 1.576 0 0.578 0.066 0.207 0.221 0.792 0 0.539 0 

Hx_stroke 0 1 0.019 0.904 1.281 0 1.64 0 0 0.999 0.024 0.866 

HCT ´ age 0 1 0 0.999 0 1 0 1 0 0.999 0.053 0.163 

HGB ´ age -0.056 0.426 0 1 0 1 -0.088 0.168 0 0.999 0 0.999 

MCHC ´ age 0 1 -0.016 0.647 0.023 0.714 0 1 0 0.999 0 0.999 

MCH ´ age 0 1 0 0.999 0 1 0 1 -0.001 0.991 0 1 

MCV ´ age 0 1 0 1 -0.059 0.358 0.097 0.112 -0.034 0.74 0 0.999 

MPV ´ age 0.033 0.288 0 1 0.027 0.533 -0.001 0.978 0.06 0.042 0.022 0.481 

PLT ´ age 0.005 0.927 0 0.999 -0.006 0.939 0.066 0.269 0 1 0.101 0.01 

RBC ´ age -0.024 0.707 0 0.999 0 1 0 1 0.068 0.135 0 0.999 

RDW ´ age -0.04 0.302 0 0.999 -0.011 0.858 0 1 -0.049 0.181 -0.008 0.791 

WBC ´ age -0.02 0.51 0 1 0 1 -0.034 0.489 -0.014 0.541 0 1 

age ´ age 0.121 0.005 0 1 0 1 0.026 0.666 0.085 0.043 0.038 0.345 

Hx_CAD ´ age -0.007 0.96 0.093 0.341 -0.043 0.851 -0.104 0.398 -0.155 0.292 0.061 0.607 

Hx_HF ´ age -0.623 0 0 0.999 -0.329 0.159 0 1 -0.22 0.113 0.056 0.616 

Hx_stroke ´ age 0.236 0.042 0 0.999 -0.026 0.911 -0.482 0.005 0.127 0.256 0 1 

HEM-AGE-HX parameter estimates for selected outcomes. Parameter estimates, b, from the final models 
trained on derivation dataset.  Outcomes appear here if the HEM-AGE-HX predictors yield superior 
performance to AGE-HX predictors (see Table 7).  Predictor name that begin with "Hx" are binary variables for 
history of disease (no history = 0).
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Supplementary Figures  

 
Supplementary Figure 1. Distribution of time to events in derivation cohort. 
Time to 1st outcome, also time to right-censoring, for patients without outcomes in the observation period.  
Results broken down by the seven outcomes for female (A) and male (B) in this study.  Derivation cohort. 

A Female

B Male
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Supplementary Figure 2. Distribution of time to events in validation cohort.  

Time to 1st outcome, also time to right-censoring, for patients without outcomes in the observation period.  
Results broken down by the seven outcomes for female (A) and male (B) in this study.  

  

A Female

B Male
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Supplementary Figure 3A: Flow diagram for modeling CVD events in derivation cohort  

MGH patients and their data, used to model time-to-event for ACS, HF hospitalization, stroke, PCI/CABG 
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Supplementary Figure 3B: Flow diagram for modeling CVD events in validation cohort  

BWH patients and their data, used to model time-to-event for ACS, HF hospitalization, stroke, PCI/CABG 
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Supplementary Figure 4A: Flow diagram for modeling death in derivation cohort  

MGH patients and their data, used to model time-to-event for death 
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Supplementary Figure 4B: Flow diagram for modeling death in validation cohort  

BWH patients and their data, used to model time-to-event for death  
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Supplementary Tables 
 

Supplementary Table 1A. Performance of artificial-intelligence models for CVD-event 

adjudication. 

Event Sensitivity Specificity Precision 
ACS 0.76 0.97 0.59 
HF 0.94 0.91 0.58 
IS 0.80 0.97 0.64 

PCI/CABG 0.98 0.99 0.90 
 

Performance of classifier algorithms used to adjudicate outcomes for our study.  Classification thresholds were 

chosen to maximize F1 score. 

 

Supplementary Table 1B. Performance of ICD codes in predicting history of disease  

Past 
History Sensitivity Specificity 

ACS 0.78 0.95 
HF 0.68 0.95 
IS 0.95 0.93 

 

ICD codes can predict a patient's history of disease at the time of  their entry into the survival study.  
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Supplementary Table 2. Main effects, notation and description 

Predictor 
Symbol Description of predictor 

HCT hematocrit 
HGB hemoglobin concentration 
MCH mean corpuscular hemoglobin 

MCHC mean corpuscular hemoglobin concentration 
MCV mean corpuscular volume 
MPV mean platelet volume 
PLT platelet count 
RBC red blood cell count 
RDW red cell volume distribution width (C.V.) 
WBC white blood cell count 
age patient's age at time of entry into survival study 

Hx_CAD history of CAD or MI before entry into study 
Hx_HF history of HF before entry into study 

Hx_stroke history of stroke before entry into study 
 

Main effects of the proportional-hazards models referred to in this study.  All main effects are unitless in the 
proportional-hazards model.  Except for the three history predictors, all predictors are mean-centered and scaled 
by their standard deviation, as measured in the derivation cohort.  The history variables are binary (0 for no 
history; 1 for yes history of disease) and are not scaled or centered. 
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Supplementary Table 3. Terms used in the five predictor sets for survival models 

Predictor Set Terms in predictor set 

HEM HCT, HGB, MCH, MCHC, MCV, MPV, PLT, RBC, RDW, WBC 

HEM-AGE 
HCT, HGB, MCH, MCHC, MCV, MPV, PLT, RBC, RDW, WBC, age,  
HCT × age, HGB × age, MCHC × age, MCH × age, MCV × age, MPV × age, PLT × age, 
RBC × age, RDW × age, WBC × age, age × age 

HEM-AGE-HX 
HCT, HGB, MCH, MCHC, MCV, MPV, PLT, RBC, RDW, WBC, age, Hx_CAD, Hx_HF, Hx_stroke, 
HCT × age, HGB × age, MCHC × age, MCH × age, MCV × age, MPV × age, PLT × age, RBC × 
age, RDW × age, WBC × age, age × age, Hx_CAD × age, Hx_HF × age, Hx_stroke × age 

AGE-HX age, Hx_CAD, Hx_HF, Hx_stroke, age × age, Hx_CAD × age, Hx_HF × age, Hx_stroke × age 

AGE age, age × age, 

The elements in each list are the terms, Xi, in the linear predictor of the Cox proportional-hazards model.  
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Supplementary Table 4. Model performance, according to Brier score at 3 years 

Pred. 
Set Outcome 

Brier Score, Internal Test Set Brier Score, External Validation Set 

Women Men Women Men 

HEM 

ACS 0.006 (0.005 to 0.007) 0.023 (0.020 to 0.026) 0.010 (0.010 to 0.010) 0.031 (0.031 to 0.031) 

HF 0.032 (0.029 to 0.034) 0.051 (0.047 to 0.054) 0.036 (0.036 to 0.036) 0.054 (0.054 to 0.055) 

IS 0.016 (0.015 to 0.018) 0.024 (0.021 to 0.027) 0.020 (0.020 to 0.020) 0.028 (0.028 to 0.028) 

PCI/CABG 0.006 (0.005 to 0.008) 0.026 (0.023 to 0.029) 0.012 (0.012 to 0.012) 0.036 (0.036 to 0.036) 

death 0.031 (0.029 to 0.033) 0.057 (0.053 to 0.061) 0.042 (0.041 to 0.043) 0.057 (0.057 to 0.058) 

ACS/HF/IS 0.048 (0.045 to 0.051) 0.080 (0.075 to 0.084) 0.057 (0.057 to 0.057) 0.091 (0.091 to 0.091) 

ACS/HF/IS/death 0.065 (0.062 to 0.068) 0.104 (0.099 to 0.108) 0.077 (0.076 to 0.078) 0.113 (0.113 to 0.113) 

HEM 
AGE 

ACS 0.006 (0.005 to 0.007) 0.023 (0.020 to 0.026) 0.010 (0.010 to 0.010) 0.031 (0.031 to 0.031) 

HF 0.031 (0.028 to 0.033) 0.051 (0.047 to 0.055) 0.034 (0.034 to 0.035) 0.054 (0.054 to 0.054) 

IS 0.016 (0.014 to 0.018) 0.024 (0.021 to 0.027) 0.020 (0.020 to 0.020) 0.027 (0.027 to 0.027) 

PCI/CABG 0.007 (0.005 to 0.008) 0.026 (0.023 to 0.029) 0.012 (0.012 to 0.012) 0.036 (0.036 to 0.036) 

death 0.031 (0.029 to 0.033) 0.055 (0.052 to 0.059) 0.040 (0.039 to 0.041) 0.056 (0.055 to 0.056) 

ACS/HF/IS 0.046 (0.043 to 0.049) 0.079 (0.075 to 0.083) 0.054 (0.054 to 0.054) 0.090 (0.089 to 0.090) 

ACS/HF/IS/death 0.061 (0.058 to 0.063) 0.100 (0.096 to 0.104) 0.072 (0.071 to 0.073) 0.110 (0.110 to 0.111) 

HEM 
AGE 
HX 

ACS 0.006 (0.005 to 0.007) 0.023 (0.020 to 0.025) 0.010 (0.010 to 0.010) 0.030 (0.030 to 0.030) 

HF 0.029 (0.026 to 0.031) 0.046 (0.043 to 0.050) 0.032 (0.032 to 0.032) 0.050 (0.049 to 0.050) 

IS 0.016 (0.014 to 0.018) 0.023 (0.021 to 0.026) 0.020 (0.020 to 0.020) 0.027 (0.027 to 0.027) 

PCI/CABG 0.006 (0.005 to 0.007) 0.026 (0.023 to 0.028) 0.011 (0.011 to 0.012) 0.035 (0.035 to 0.035) 

death 0.028 (0.026 to 0.031) 0.055 (0.051 to 0.059) 0.039 (0.039 to 0.040) 0.054 (0.054 to 0.055) 

ACS/HF/IS 0.044 (0.041 to 0.047) 0.073 (0.069 to 0.077) 0.051 (0.051 to 0.051) 0.084 (0.084 to 0.085) 

ACS/HF/IS/death 0.059 (0.056 to 0.062) 0.097 (0.093 to 0.101) 0.068 (0.068 to 0.068) 0.106 (0.106 to 0.106) 

AGE 
HX 

ACS 0.006 (0.005 to 0.007) 0.023 (0.020 to 0.025) 0.010 (0.010 to 0.010) 0.030 (0.030 to 0.030) 

HF 0.029 (0.027 to 0.032) 0.048 (0.044 to 0.051) 0.033 (0.033 to 0.033) 0.051 (0.051 to 0.051) 

IS 0.016 (0.014 to 0.018) 0.023 (0.021 to 0.026) 0.020 (0.020 to 0.020) 0.027 (0.027 to 0.027) 

PCI/CABG 0.006 (0.005 to 0.007) 0.025 (0.023 to 0.028) 0.011 (0.011 to 0.011) 0.035 (0.035 to 0.035) 

death 0.030 (0.028 to 0.032) 0.059 (0.055 to 0.062) 0.041 (0.040 to 0.041) 0.059 (0.059 to 0.059) 

ACS/HF/IS 0.044 (0.042 to 0.047) 0.076 (0.072 to 0.079) 0.052 (0.052 to 0.053) 0.087 (0.086 to 0.087) 

ACS/HF/IS/death 0.061 (0.058 to 0.064) 0.102 (0.098 to 0.107) 0.072 (0.072 to 0.072) 0.112 (0.112 to 0.112) 

AGE 

ACS 0.006 (0.005 to 0.007) 0.023 (0.020 to 0.026) 0.010 (0.010 to 0.010) 0.031 (0.031 to 0.031) 

HF 0.032 (0.030 to 0.035) 0.055 (0.051 to 0.059) 0.037 (0.037 to 0.037) 0.058 (0.058 to 0.058) 

IS 0.016 (0.015 to 0.018) 0.024 (0.021 to 0.027) 0.020 (0.020 to 0.020) 0.028 (0.028 to 0.028) 

PCI/CABG 0.006 (0.005 to 0.008) 0.026 (0.023 to 0.029) 0.012 (0.012 to 0.012) 0.036 (0.036 to 0.036) 

death 0.032 (0.030 to 0.035) 0.062 (0.058 to 0.067) 0.044 (0.044 to 0.044) 0.064 (0.064 to 0.064) 

ACS/HF/IS 0.049 (0.046 to 0.052) 0.086 (0.081 to 0.090) 0.060 (0.060 to 0.060) 0.097 (0.097 to 0.097) 

ACS/HF/IS/death 0.068 (0.065 to 0.071) 0.116 (0.112 to 0.121) 0.083 (0.083 to 0.083) 0.126 (0.126 to 0.126) 
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Model performance, according to Brier score.  Mean and 95% confidence intervals for Brier score at 3 
years.  For 7 outcomes modeled with 5 predictor sets (HEM, HEM-AGE, HEM-AGE-HX, AGE-HX, and AGE).  
The distribution of C-index on the derivation dataset is obtained by repeated k-fold cross validation.  The 
distribution on the validation dataset is obtained by bootstrapping inputs to a final model trained on the entire 
derivation dataset. 
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Supplementary Table 5. Comparison of pairs of predictor sets according to 3-year Brier Score 

Pred. 
Set 

Outcome 
DB, Derivation Dataset DB, Validation Dataset 

Women Men Women Men 

A: 
HEM 
AGE 

 
B: 

AGE 

ACS 0.000 (-0.000 to 0.000) 0.000 (-0.000 to 0.000) -0.000 (-0.000 to -0.000) « 0.000 (-0.000 to 0.000) 

HF -0.003 (-0.003 to -0.002) « + -0.004 (-0.004 to -0.004) « + -0.001 (-0.002 to -0.001) « -0.004 (-0.005 to -0.003) « 

IS -0.001 (-0.001 to -0.000) « + -0.000 (-0.001 to -0.000) « + -0.000 (-0.000 to -0.000) « -0.000 (-0.000 to -0.000) « 

PCI/CABG -0.000 (-0.000 to 0.000) -0.000 (-0.000 to -0.000) « 0.000 (-0.000 to 0.000) -0.000 (-0.000 to 0.000) 

death -0.004 (-0.005 to -0.003) « + -0.009 (-0.009 to -0.008) « + -0.001 (-0.001 to -0.001) « -0.007 (-0.008 to -0.006) « 

ACS/HF/IS -0.006 (-0.006 to -0.005) « + -0.007 (-0.007 to -0.006) « + -0.003 (-0.004 to -0.002) « -0.007 (-0.008 to -0.006) « 

ACS/HF/IS/death -0.011 (-0.012 to -0.009) « + -0.016 (-0.016 to -0.015) « + -0.007 (-0.009 to -0.006) « -0.017 (-0.019 to -0.014) « 

A: 
AGE 
HX 

 
B: 

AGE 

ACS -0.000 (-0.000 to -0.000) « + -0.001 (-0.001 to -0.001) « + -0.000 (-0.000 to -0.000) « -0.000 (-0.001 to -0.000) « 

HF -0.004 (-0.004 to -0.003) « + -0.007 (-0.007 to -0.007) « + -0.003 (-0.004 to -0.002) « -0.007 (-0.009 to -0.006) « 

IS -0.001 (-0.001 to -0.001) « + -0.001 (-0.001 to -0.000) « + -0.000 (-0.001 to -0.000) « -0.001 (-0.001 to -0.000) « 

PCI/CABG -0.000 (-0.000 to -0.000) « + -0.002 (-0.002 to -0.001) « + -0.000 (-0.000 to -0.000) « -0.001 (-0.001 to -0.000) « 

death -0.003 (-0.003 to -0.003) « + -0.005 (-0.005 to -0.005) « + -0.002 (-0.003 to -0.002) « -0.004 (-0.005 to -0.003) « 

ACS/HF/IS -0.007 (-0.007 to -0.007) « + -0.010 (-0.010 to -0.010) « + -0.005 (-0.006 to -0.004) « -0.010 (-0.012 to -0.008) « 

ACS/HF/IS/death -0.011 (-0.011 to -0.011) « + -0.014 (-0.014 to -0.014) « + -0.007 (-0.008 to -0.006) « -0.014 (-0.016 to -0.012) « 

A: 
AGE 
HEM 

 
B: 

AGE 
HX 

ACS 0.000 (0.000 to 0.000) « + 0.001 (0.001 to 0.001) « + 0.000 (0.000 to 0.000) « 0.000 (0.000 to 0.001) « 

HF 0.001 (0.001 to 0.002) « + 0.003 (0.003 to 0.003) « + 0.002 (0.001 to 0.002) « 0.003 (0.002 to 0.005) « 

IS 0.000 (-0.000 to 0.000) 0.000 (0.000 to 0.000) « + 0.000 (-0.000 to 0.000) 0.000 (0.000 to 0.001) « 

PCI/CABG 0.000 (0.000 to 0.000) « + 0.001 (0.001 to 0.001) « + 0.000 (0.000 to 0.000) « 0.001 (0.000 to 0.001) « 

death -0.000 (-0.001 to 0.001) -0.004 (-0.004 to -0.003) « + 0.001 (0.001 to 0.002) « -0.003 (-0.004 to -0.002) « 

ACS/HF/IS 0.001 (0.001 to 0.002) « + 0.003 (0.003 to 0.004) « + 0.002 (0.001 to 0.003) « 0.003 (0.002 to 0.005) « 

ACS/HF/IS/death -0.000 (-0.001 to 0.001) -0.002 (-0.002 to -0.001) « + -0.000 (-0.001 to 0.001) -0.003 (-0.005 to -0.001) « 

A: 
HEM 
AGE 
HX 

 
B: 

AGE 
HX 

ACS 0.000 (0.000 to 0.000) « 0.000 (-0.000 to 0.000) -0.000 (-0.000 to 0.000) 0.000 (-0.000 to 0.000) 

HF -0.001 (-0.001 to -0.001) « -0.001 (-0.002 to -0.001) « + -0.000 (-0.001 to 0.000) -0.001 (-0.002 to -0.000) « 

IS 0.000 (-0.000 to 0.000) -0.000 (-0.000 to 0.000) 0.000 (-0.000 to 0.000) 0.000 (-0.000 to 0.000) 

PCI/CABG 0.000 (-0.000 to 0.000) -0.000 (-0.000 to 0.000) 0.000 (-0.000 to 0.000) 0.000 (0.000 to 0.000) « 

death -0.001 (-0.002 to -0.001) « + -0.005 (-0.005 to -0.004) « + -0.001 (-0.002 to -0.001) « -0.004 (-0.005 to -0.002) « 

ACS/HF/IS -0.002 (-0.002 to -0.001) « -0.002 (-0.002 to -0.002) « + -0.000 (-0.001 to 0.000) -0.002 (-0.003 to -0.001) « 

ACS/HF/IS/death -0.004 (-0.004 to -0.004) « + -0.006 (-0.006 to -0.006) « + -0.002 (-0.003 to -0.001) « -0.006 (-0.007 to -0.004) « 

A: 
HEM 
AGE 
HX 

 
B: 

HEM 
AGE 

ACS -0.000 (-0.000 to -0.000) « + -0.001 (-0.001 to -0.001) « + -0.000 (-0.000 to -0.000) « -0.000 (-0.001 to -0.000) « 

HF -0.002 (-0.003 to -0.002) « + -0.004 (-0.005 to -0.004) « + -0.002 (-0.003 to -0.002) « -0.005 (-0.006 to -0.004) « 

IS -0.000 (-0.000 to 0.000) -0.000 (-0.000 to -0.000) « + -0.000 (-0.000 to 0.000) -0.000 (-0.001 to -0.000) « 

PCI/CABG -0.000 (-0.000 to -0.000) « + -0.001 (-0.001 to -0.001) « -0.000 (-0.000 to -0.000) « -0.000 (-0.001 to 0.000) 

death -0.001 (-0.002 to -0.000) « + -0.001 (-0.001 to -0.001) « -0.002 (-0.003 to -0.002) « -0.000 (-0.001 to 0.000) 

ACS/HF/IS -0.003 (-0.003 to -0.003) « + -0.005 (-0.006 to -0.005) « + -0.002 (-0.003 to -0.002) « -0.006 (-0.007 to -0.004) « 

ACS/HF/IS/death -0.004 (-0.005 to -0.003) « + -0.004 (-0.005 to -0.004) « + -0.002 (-0.002 to -0.001) « -0.003 (-0.004 to -0.002) « 
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Mean and 95% confidence interval of the statistic DS = SA – SB, where SA is the right-censored Brier score for 
an outcome modeled with predictor set A, and SB is the right-censored Brier score for an outcome modeled 
with predictor set B.  Observations and predictions are compared at 3 years after a patient's entry into study.  
Note that DS < 0 means that predictor set A performs better than predictor set B.  This is in contrast to Table 
7A, where DC < 0 means predictor set A performs worse than predictor set B.  An asterisk ( « ) denotes that DB 
is significantly different from zero.  A plus sign ( + ) next to a derivation-set result denotes that that DB is also 
significantly different from zero in the validation set, and the effect is in the same direction as in the derivation 
dataset, i.e. the result in the derivation set is corroborated by the result in the validation set).  There were no 
cases where a validation-set result was significant, but in the opposite direction of a significant derivation-set 
result. 
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Supplementary Table 6. Comparison of random survival forest model to Cox proportional 
hazards on the basis of C-index 
 

Pred. 
Set Outcome 

Superiority of RSF to Cox 
Women Men 

HEM 

ACS 0.023 0.016 

HF 0.018 0.011 

IS 0.003 0.007 

PCI/CABG 0.050 0.007 

death 0.022 0.009 

ACS/HF/IS 0.016 0.007 

ACS/HF/IS/death 0.022 0.009 

HEM 
AGE 

ACS 0.012 0.013 

HF 0.015 0.008 

IS 0.000 -0.014 

PCI/CABG 0.020 -0.002 

death 0.012 0.001 

ACS/HF/IS 0.010 0.006 

ACS/HF/IS/death 0.017 0.006 

HEM 
AGE 
HX 

ACS 0.002 0.011 

HF 0.020 0.004 

IS 0.000 -0.008 

PCI/CABG 0.015 0.002 

death 0.008 0.003 

ACS/HF/IS 0.008 0.003 

ACS/HF/IS/death 0.010 0.004 

AGE 
HX 

ACS 0.009 0.004 

HF -0.001 0.000 

IS -0.006 -0.009 

PCI/CABG 0.022 0.003 

death -0.003 -0.004 

ACS/HF/IS -0.004 -0.001 

ACS/HF/IS/death -0.003 -0.002 

AGE 

ACS 0.024 0.000 

HF 0.010 -0.005 

IS -0.009 0.004 

PCI/CABG 0.021 0.003 

death -0.002 -0.006 

ACS/HF/IS -0.008 -0.003 

ACS/HF/IS/death -0.007 -0.004 
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Comparison of random survival forest to penalized Cox proportional hazards.  Metric is the quantity DC = CRSF – 
CCOX. CRSF is the mean test-set C-index obtained during k-fold cross validation. CRSF is measured using  the best 
hyperparameter set of 32 sets, selecting on the basis of mean test-set C-index.  CCOX is the mean C-index 
obtained by repeated k-fold cross validation and reported in Table 6A.  Unlike Table 7A and 7B, comparison in 
Table 9 is not done on the basis of each fold of k-fold cross validation.  Table 9 simply shows the difference 
between two means. 
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