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Abstract 
Understanding the temporal dynamics of mosquito populations underlying malaria transmission is key 

to optimising control strategies. We collate mosquito time-series catch data spanning 40 years and 117 

locations across India to understand the factors driving these dynamics. Our analyses reveal pronounced 

variation in dynamics across locations and between species. Many mosquito populations lacked the 

often-assumed positive relationship with rainfall, instead displaying patterns of abundance that were 

only weakly or even negatively correlated with precipitation and highlighting the role of temperature, 

proximity to perennial bodies of water and patterns of land use in shaping the dynamics and seasonality 

of mosquito populations. We show that these diverse dynamics can be clustered into “dynamical 

archetypes”, each characterised by distinct temporal properties and driven by a largely unique set of 

environmental factors. These results highlight that a complex interplay of factors, rather than rainfall 

alone, shape the timing and extent of mosquito population seasonality.  
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Background 

With an estimated 229 million cases and over 400,000 deaths across 87 endemic countries in 20191, 

malaria represents one of the most serious infectious diseases globally2. Nineteen countries in sub-

Saharan Africa along with India account for almost 85% of the global burden3, with Plasmodium 

falciparum most prevalent in African settings, and India alone accounting for almost 50% of the global 

Plasmodium vivax burden4. Transmission occurs via mosquito vectors belonging to the Anopheles 

genus – these vectors are heterogeneously distributed across the globe5,6, a feature that results in marked 

differences in the transmission dynamics of malaria across different ecological contexts. 

Much work has focussed on characterising the global spatial distribution (presence/absence) of these 

malaria vectors7,8. This work represents a vital input to surveillance and control programmes aimed at 

mitigating the impacts of vector borne diseases worldwide. By contrast, less attention has been paid to 

understanding the temporal patterns of vector abundance, and how these dynamics are shaped by the 

local environment. Mosquito populations are highly temporally dynamic, exhibiting substantial annual 

fluctuations in size9,10 that drive the temporal profile of malaria risk. Understanding the determinants of 

these dynamics is important given that the efficacy of many malaria control interventions (such as 

seasonal malaria chemoprevention11,12 and indoor-residual spraying13,14) depends on the timing of their 

delivery in relation to seasonal peaks in malaria risk. Effective utilisation of these interventions will be 

vital for achieving the goals of the World Health Organisation’s “High Burden, High Impact” strategy, 

which aims to substantially reduce/eliminate malaria in India and the ten African nations with the 

highest global burden15.  

Despite their importance, many questions remain surrounding the drivers of mosquito population 

dynamics. Rainfall is frequently considered a key determinant of mosquito temporal dynamics due to 

the requirement of an aquatic habitat for the early life cycle stages, with many species displaying a 

preference for transient, rain-fed pools of water in which to breed16. However, whilst a close relationship 

has been observed between rainfall occurrence, peaks in mosquito populations and malaria cases17 (e.g. 

Anopheles gambiae s.l.18–20 for African settings and Anopheles dirus s.l. across India and south-East 

Asia21), Anopheles funestus s.l. and Anopheles annularis s.l. populations frequently lack marked 

seasonal fluctuations in population abundance22,23 10,24,25. This brings into question how generalisable 

relationships between rainfall and mosquito population dynamics are. The influence of other factors 

such as temperature (which has a marked influence on many mosquito traits including larval 

development26, biting rates and mortality rates27) remains similarly unclear. Recent field-based work 

has suggested that considerations of both rainfall and temperature are necessary to understand seasonal 

patterns of malaria incidence28. However, these analyses have been restricted to a small number of 

settings across sub-Saharan Africa; leaving the influence of temperature regimen on mosquito 

population dynamics largely unexplored in other ecological settings.  
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Altogether, these results highlight outstanding questions surrounding the drivers of mosquito population 

dynamics. Using India as a case study, we collate a dataset of temporally disaggregated mosquito catch 

data from across the country to better understand variation in mosquito population dynamics and the 

factors underlying this variation. We use these data to characterise the temporal patterns displayed by 

different mosquito species complexes and identify pronounced heterogeneity in the extent and nature 

of seasonal dynamics, both between species complexes and across different locations. Exploring the 

drivers of these dynamics highlights the critical importance of both abiotic and species-specific factors 

in shaping temporal patterns of mosquito abundance. It also underscores the importance of considering 

both species composition and ecological structure when implementing malaria control interventions. 

Results 

Substantial Diversity in Mosquito Population Dynamics Within and Between Species: A total of 

272 time-series from 117 locations across India were identified through the systematic review, spanning 

seven species complexes that together represent the dominant malaria vectors in the country (Fig.1A). 

These time-series were then smoothed using a Negative Binomial Gaussian Process based framework 

(Fig.1B). Substantial variation in temporal dynamics was observed between different species 

complexes with many of the collated time-series lacking the close, positive correlation with rainfall 

typically assumed for mosquito populations. Whilst Anopheles dirus s.l. populations tended to peak 

during the monsoon period (typically June to September), many Anopheles fluviatilis s.l. populations 

by contrast peaked between November and February (the dry season across most of India), reaching 

their lowest density during the monsoon. Despite highly seasonal patterns of rainfall, a number of time-

series belonging to Anopheles annularis s.l. demonstrated perennial patterns of abundance. In addition 

to this variation between species complexes, we also observed extensive variation in temporal dynamics 

within a species complex. Across the 85 time-series collated for Anopheles culicifacies s.l., populations 

varied substantially in both the extent and timing of their seasonal peaks; this ranged from sharp peaks 

in the monsoon season to perennial characteristics more similar to those observed for Anopheles 

annularis s.l.. A range of dynamics were also observed for time-series belonging to Anopheles stephensi 

s.l., from peaks coincident with the monsoon season to bimodal dynamics displaying peaks both during 

and outside the rainy season.  

Statistical Characterisation of Mosquito Catch Time-Series Properties Reveals Distinct Temporal 

Patterns: An array of summary statistics were calculated for each time series in order to characterise 

their temporal properties (see Supplementary Methods and Supp Fig.2 for more information). This 

was followed by k-means clustering of the results, to assess whether the observed variation could be 

delineated into discrete groups, each characterised by distinct temporal patterns. We identified 4 groups 

(Fig.2A) – these included time-series peaking during the monsoon season (Cluster 1), displaying 

bimodal characteristics (Cluster 2), peaking in the dry season (Cluster 3) or displaying perennial 
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patterns of abundance (Cluster 4) (Fig.2B). Cluster assignment was robust to the choice of prior used 

in the time-series fitting and smoothing (Supp Fig.3). The distinct patterns displayed by each group 

were not due to differences in the timing and extent of rainfall across India – we observed a high positive 

cross-correlation product between rainfall and mosquito density for Cluster 1 (r=0.52), but a negative 

correlation for Cluster 3 (r=-0.41) and low correlation for Clusters 2 and 4 (r=-0.08 and 0.03 

respectively, Supp Fig.4). This suggests that the observed patterns represent genuine differences 

between species and across locations in how mosquito populations respond to rainfall.  

For some species complexes, the majority of their time-series belonged to a single cluster (Fig.2C) –

Anopheles dirus s.l time-series were restricted primarily to Cluster 1 (monsoon season peaking) whilst 

Anopheles fluviatilis s.l. time-series were almost exclusively found in Cluster 3 (dry season peaking). 

By contrast, time series belonging to Anopheles culicifacies s.l. appeared across all four clusters – 

indicating that different sibling species within the complex display distinct temporal dynamics or that 

mosquito populations belonging to the species complex are able to adopt a diverse array of temporal 

dynamics depending on the particular ecological setting. 

Mosquito Population Dynamics are Determined by a Complex Interplay of Abiotic and Biotic 

Factors: Using binary indicators for species complex (seven total, indicating which species complex a 

particular time-series belongs to) and a suite of ecological variables (25 total) as predictors, we fitted a 

multinomial logistic regression model to the cluster labels (i.e. which cluster each time-series had been 

assigned to) to explore potential factors underlying the observed variation in temporal dynamics. This 

framework produces one coefficient estimate for each cluster and predictor (a total of 4 coefficients per 

cluster and predictor), with that coefficient defining the strength of the association between a predictor 

and a particular cluster.  

Across the species complex regression coefficients, Anopheles culicifacies sl. and Anopheles subpictus 

s.l. demonstrated large and positive associations with Cluster 1 (monsoon peaking dynamics), whereas 

for Anopheles fluviatilis s.l., this relationship was strongly negative (the species-complex associated 

with Cluster 3 instead). To explore this variation more systematically, we employed a hierarchical 

clustering approach to examine the coefficient values across all species-complexes simultaneously and 

identified significant structuring (Fig.3A). In contrast to Anopheles culicifacies s.l. and Anopheles 

subpictus s.l. (which clustered together and showed a strong positive association with Cluster 1 and a 

strong negative association with Cluster 3), the binary indicator variable for Anopheles dirus s.l. 

displayed weak associations with all clusters, including for Cluster 1 which the majority of the collated 

time series for this species-complex had been assigned to. This suggests that the ecological features of 

the locations Anopheles dirus s.l. had been sampled in (as measured by the environmental covariates), 

rather than features intrinsic to species-complex itself (as captured by the species binary indicator), were 

the primary driver of the observed dynamics.  
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A number of environmental covariates also demonstrated cluster-specific associations (Fig.3B). Both 

temperature seasonality and total annual rainfall strongly associated with Cluster 1 (which possessed 

the dynamics most strongly correlated with rainfall, Supp Fig.4). By contrast, perennial dynamics 

(Cluster 4) strongly associated with the continuous presence of water bodies and negatively associated 

with both temperature seasonality and rain seasonality. Strong associations with landcover were 

observed for Cluster 2 (strongly negative for urbanicity) and Cluster 3 (strongly positive for woody 

savannas). In order to examine the broader patterns of association, we ranked the coefficients for each 

environmental variable within each cluster according to their magnitude, and selected the 15 with the 

strongest association in each cluster (positive or negative). The top 15 variables for each cluster were 

then compared to assess the extent of overlap, revealing that each cluster tended to associate with a 

unique set of ecological factors (Fig.3C). These mutually exclusive and cluster-specific patterns of 

association with environmental covariates were similarly borne out across an analysis of the correlation 

of all coefficients between clusters, which revealed them to be highly negatively correlated (Supp 

Fig.5).  

Predictive Mapping Highlights the Extensive Variation in Mosquito Dynamics Across India: We 

next integrated these results with spatial predictions of mosquito species complex presence/absence to 

produce predictive maps of mosquito population dynamics across India; specifically, to generate 

estimates of the probability that a given location contains ≥1 mosquito species complex displaying a 

particular temporal pattern (Fig.4). Our results predict that monsoon peaking dynamics (Cluster 1) are 

most likely in the North and Northeast (Fig.4A). This contrasts with the predicted spatial distribution 

of bimodal dynamics (Cluster 2), which are predicted to be more likely across central India and less 

likely in the Northeast. Dynamics involving peaks during the dry season tracks the predicted spatial 

distribution of Anopheles fluviatilis s.l. closely and are predicted to be most probable across central 

India (Fig.4C) – a similar pattern was observed for spatial predictions of perennial dynamics (Fig.4D). 

Together these results suggest that spatial variability in both species complex occurrence and 

environmental factors together generate the complex patterns of mosquito temporal dynamics observed 

across India.  
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Figure 1: Exploring Species Complex-Specific Patterns of Mosquito Population Dynamics. 

Negative Binomial Gaussian Processes incorporating a periodic kernel were fitted to each of the 272 

time-series collected from 118 locations across India collated as part of the systematic review. These 

fitted time-series (representing monthly catches over the course of a year) were then normalised and the 

results plotted here, disaggregated by species complex. (A) Map of India showing the different locations 

for which time-series data was available. Points represent a single collected time-series, coloured 

according to the species complex. (B) Normalised, Gaussian Process fitted time-series disaggregated 

by species complex. In all instances, pale lines represent a single time-series for that particular species 

complex, and the brighter line is the mean of all of the time-series belonging to that species complex, 

evaluated at that particular timepoint.  
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Figure 2: Characterisation and Clustering of Time-Series with Similar Temporal Properties. 

Statistical characterisation of the properties of each time series was followed by Principal Components 

Analysis and the results clustered using the k-means algorithm. (A) Results of the k-means clustering 

algorithm for 4 clusters, with a Principal Components Analysis applied for visualisation purposes. 

Colour of the points refers to cluster membership, coloured ellipsoids demarcate the 75th quantile of the 

density associated with each cluster. First 3 principal components are plotted, explaining 53%, 15% and 

14% of the overall variation, respectively. (B) The time-series belonging to each cluster. Pale lines 

represent individual time-series, brighter line represents the mean of all the time-series belonging to 

that cluster, evaluated at each timepoint. Characterisation and clustering in this way revealed distinct 

groups of time-series that share similar temporal properties. (C) The proportion of time-series for each 

species complex belonging to each cluster - different coloured bars indicate different species complexes 

(see legend) and y axis corresponds to the proportion of time-series (for a given species complex) 

belonging to that cluster.  
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Figure 3: Exploring Drivers of Mosquito Population Dynamics Using Multinomial Logistic 

Regression. A multinomial logistic regression-based approach using both species complex and a suite 

of environmental variables was used to explore the factors associated with different mosquito 

population dynamics. The output of this regression is a single coefficient describing the strength of 

the association per variable and cluster. (A) Hierarchical clustering of the regression results for each 

species complex, as defined by the set of coefficient values describing the strength of the association 

between that species complex and the particular cluster. (B) The strength of the association between 

each of the 25 environmental covariates used and the relevant temporal cluster. (C) Upset plot 

summarising the environmental variable coefficients. For each cluster, the 15 environmental 

covariates with the strongest association were selected and the extent of overlap in this top 15 

covariates compared across clusters; x-axis indicates the specific pairwise cluster comparison, y axis 

the number of shared top 15 covariates between the two clusters.   
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Figure 4: Predictive Maps of Mosquito Population Seasonality Across India. The results of the 

multinomial logistic regression were integrated with recently generated maps describing the probability 

of presence/absence for different anopheline species complexes (not shown). Together, these were used 

to generate estimates of a given area possessing at least one mosquito species complex with a particular 

temporal profile (as defined by the previously described clusters). (A) Results of this analysis for Cluster 

1 (the “monsoon peak” cluster) – red dots describe the locations in which a mosquito species complex 

with a temporal profile assigned to Cluster 1 were found. (B) As for A, but for the “bimodal” cluster. 

(C) As for A, but for the “peak in dry season” cluster. (D) As for A, but for the “perennial” cluster. In 

all cases, the map colour describes the probability of a given area containing one or more mosquito 

species complex displaying that pattern of temporal dynamics. The coloured points indicate locations 

where a mosquito species complex displaying temporal dynamics belonging to that cluster were 

empirically observed.    
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Discussion 

Understanding the temporal dynamics of malaria transmission represents an important input to effective 

deployment of control interventions. Here we leverage a collection of temporally disaggregated 

mosquito time-series catch data from across India to explore these dynamics and the comparative role 

of abiotic and species-specific factors in shaping them. Our results reveal extensive variation in 

mosquito population dynamics between species complexes and across locations, ranging from highly 

seasonal and rainfall-concordant dynamics through to perennial and rainfall-discordant dynamics. 

Analysis of this variation has revealed a complex interplay between biotic (species complex-specific 

drivers) and abiotic (the broader ecological structure of the environment) factors in shaping these 

dynamics. Importantly, the comparative importance of these factors depends intimately on the setting 

and mosquito species complex being considered.  

In a manner largely independent of the ecological setting, Anopheles fluviatilis s.l. populations typically 

peaked during the dry season. Whilst previous work has identified these dynamics38,39, our work 

highlights the consistency of this observation across locations, showing that these dynamics are largely 

restricted to Anopheles fluviatilis s.l. and highlight the capacity for the population dynamics of a 

regionally important malaria vector to significantly depart from local patterns of rainfall. These results 

align with previous work that has indicated streams and surrounding stagnant water as breeding sites 

for this species complex40 – such breeding sites are typically unsuitable during the monsoon season 

when flooding occurs but become increasingly suitable as the dry season ensues. By contrast, Anopheles 

culicifacies s.l. displayed a wide array of temporal dynamics depending on the sampling site. These 

ranged from peaking during the monsoon to bimodal and even perennial behaviour – a finding 

consistent with documented variation in the species complex’s breeding habits41–43. However, due to 

our inability to disaggregate time-series according to sibling species (which frequently show differences 

in their association with different types of breeding site44), the drivers of the observed variation in 

temporal dynamics for Anopheles culicifacies s.l. remains unclear – specifically, whether this diversity 

is driven by sibling species displaying distinct temporal dynamics or because Anopheles culicifacies s.l. 

temporal dynamics are more plastic and responsive to environmental factors than Anopheles fluviatilis 

s.l. (where the same dynamics were observed irrespective of the broader ecological structure of the 

surrounding environment).  

Our results also support a significant role for the environment in shaping mosquito population 

dynamics. Perhaps most notably, they highlight limited utility of considering rainfall alone when trying 

to understand and predict temporal patterns of mosquito abundance. Many of the populations studied 

here lacked the frequently assumed positive relationship with rainfall and instead displayed patterns of 

abundance that were only weakly or even negatively correlated. Rainfall is frequently considered a key 

driver of mosquito population dynamics but the role of temperature (which has a significant influence 
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on many individual mosquito life-history traits26,45) in shaping mosquito population dynamics is 

increasingly being recognised39. We identified a significant impact of temperature on population 

dynamics, with temperature seasonality strongly positively associated with the highly seasonal, 

monsoon peaking seasonal dynamics (Cluster 1). By contrast, both temperature seasonality and rainfall 

seasonality were negatively associated with perennial (Cluster 4) dynamics. Together, these results 

suggest a role for both in shaping annual patterns of mosquito abundance and underscores the 

importance of considering seasonal fluctuations in temperature, not just rainfall, when trying to 

understand seasonality in mosquito population dynamics. 

The perennial patterns of abundance observed for Cluster 4 were also strongly associated with flow 

accumulation and water area occurrence (acting as proxies for proximity to rivers and static bodies of 

water respectively). These factors were negatively associated with all other temporal profiles. This is 

consistent with reports indicating that static water sources may provide sites available for oviposition 

and mosquito breeding year round46,47 and highlights the importance of the local hydrological 

environment (which in the cases of large bodies of water is only partially dependent on patterns of 

rainfall) in shaping mosquito populations and their annual dynamics. We also observed a significant 

influence of landcover patterns on temporal dynamics. Urbanicity (measured by the two covariates 

Landcover and Distance to City) was consistently and positively associated with rainfall concordant, 

monsoon peaking dynamics (Cluster 1) and negatively associated with other temporal profiles. This is 

possibly due to the diverse array of physical features present in cities (ranging from tyres to wells and 

overhead tanks) that are able to hold water following rainfall, and which have previously been 

characterised as breeding sites for a range of mosquito species48,49. Overall, these results demonstrate 

clear structuring of the environmental factors shaping mosquito population dynamics and highlight that 

unique sets of ecological factors driving each of the different temporal profiles. 

It is important to note that factors other than mosquito dynamics are also involved in defining the 

temporal profile of malaria risk. Whilst an association between the size of mosquito populations and 

case numbers is well established50,51, the nature of this relationship remains less clear. Interactions 

between malaria endemicity52, mosquito abundance53 and vector competence28 can lead to non-linear 

dynamics that can be further modified by human behavioural factors such as migration or occupational 

practices54. Due to heterogeneity in mosquito sampling methods and limitations on the extent of 

entomological data describing relevant malaria metrics such as sporozoite positivity, we were unable to 

explore many of these factors. Similarly, the lack of disaggregation according to sibling species (which 

vary markedly in malaria vectorial efficiency) and accompanying epidemiological information (on 

malaria prevalence or incidence) precludes us from better resolving the comparative contributions of 

different mosquito species to transmission. This limits our ability to translate temporal patterns of 

mosquito populations into relevant metrics such as the Entomological Inoculation Rate (EIR). Whilst 

we mitigate this limitation somewhat by focussing our analyses specifically on dominant vector species-
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complexes previously established as relevant to malaria transmission in India55, it is not necessarily the 

case that each mosquito species analysed here is equally relevant to malaria transmission. Future work 

integrating these analyses with those exploring seasonality of case incidence (c.f. Nguyen et al.31) would 

therefore likely prove instructive.  

Overall, our work highlights that temporal variation in mosquito populations is driven by a complex 

interplay of biotic and abiotic factors, with the comparative importance of these depending intimately 

on the species complex and ecological setting being considered. In doing so, this work underscores the 

crucial importance of integrating both species composition and ecological structure into our 

understanding of the temporal profile of malaria risk – a crucial and operationally relevant input for 

optimising the delivery of malaria control interventions.  
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Methods  

Systematic Review of Indian Entomological Literature  

Web of Science and PubMed databases were searched on 17th October 2017 using the keywords “India” 

AND “Anophel*” to identify references with temporally disaggregated entomological data. We 

identified 1945 records with 1556 remaining after removing duplicates. Following Title and Abstract 

screening 281 records were retained for full text evaluation. We included records containing temporally 

disaggregated adult mosquito catch data with monthly (or finer) temporal resolution spanning at least 

12 months that had not been conducted as part of vector control intervention trials, and where sufficient 

information to geolocate the catch site was provided. 78 references were retained that yielded 117 

geolocatable areas across India. These references contained 272 time-series spanning the malaria 

vectors Anopheles annularis s.l., culicifacies s.l., dirus s.l., fluviatlis s.l., minimus s.l., stephensi s.l. and 

subpictus s.l.. See Supplementary Information for further details.  

Time-Series Fitting and Interpolation  

To smooth the noise in the mosquito catch data we fitted a Gaussian Process model to each of the 

extracted time-series, using a Negative Binomial likelihood to account for overdispersion in the data:  

𝜃𝜃,𝜎𝜎 ~ 𝜋𝜋(𝜃𝜃,𝜎𝜎) 

𝒇𝒇~ 𝐺𝐺𝐺𝐺(0,𝐾𝐾𝜃𝜃(𝑥𝑥)) 

𝑦𝑦𝑖𝑖  ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝑒𝑒𝑓𝑓(𝑥𝑥𝑖𝑖),𝜎𝜎� ∀𝑖𝑖 ∈ {1, … ,𝑁𝑁} 

where 𝒇𝒇 is a distribution of functions from a zero-mean Gaussian Process with covariance function 

𝐾𝐾𝜃𝜃, 𝑓𝑓(x) are function evaluations at times 𝑥𝑥 , 𝑦𝑦 are the observed mosquito counts indexed by timepoint 

𝑖𝑖, and 𝜎𝜎 and 𝜃𝜃 represent a vector of hyperparameters involved in defining the overdispersion of the 

Negative Binomial distribution and the functional form of the covariance function respectively. Given 

that mosquito population dynamics are typically characterised by repeating patterns occurring either 

seasonally or annually, a periodic kernel function was used to define the covariance between pairs of 

points, defined as: 

𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = 𝛼𝛼2exp �−
2
𝑙𝑙2
𝑠𝑠𝑠𝑠𝑠𝑠2 �

𝜋𝜋|𝑥𝑥 − 𝑥𝑥′|
𝑝𝑝

�� 

where 𝑝𝑝 represents the period over which we would expect points to show similar dynamics (i.e. a 

period of twelve would imply we expect points separated by 12 months to be most similar), 𝛼𝛼 specifies 

the magnitude of the covariance, and 𝑙𝑙 represents a lengthscale parameter further constraining the extent 

to which two values separated by a given time can co-vary. Weakly informative priors were used 
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although the results were not sensitive to the choice of prior (see Supp. Fig.4). Fitting was undertaken 

with the probabilistic programming language STAN29.  

Time-Series Characterisation and Clustering by Features  

Motivated by previous work providing a framework to statistically characterise the empirical structure 

of time-series data30 and work characterising the seasonality of malaria case incidence31, we calculated 

several summary statistics for each smoothed time-series to characterise their temporal properties. 

These include the Kullback-Liebler divergence (measuring the divergence of the time-series from a 

uniform distribution), the median of the period (𝑝𝑝) from the Negative Binomial Gaussian Process fitting 

(informing the dominant temporal modality present in the data), the proportion of points greater than 

1.65x the mean (measuring how peaked the time-series is), the distance of the first peak from January, 

and then 3 features arising from fitting 1 and 2 component Von-Mises distributions to the smoothed 

time-series: specifically, the mean of the 1 component Von-Mises distribution, the number of peaks 

(determined by comparing the quality of fit for 1 and 2 component Von-Mises distributions), and the 

weight (𝜔𝜔), specifying the comparative contributions of each component in the two-component fitting. 

See Supplementary Information for further details. From this we obtain a series of 7 real numbers 

describing the temporal properties of each time-series. We then applied a Principal Components 

Analysis to these results to identify a lower-dimensional representation of the structure present in the 

data amenable to visualisation and implemented k-means clustering to identify clusters of time-series 

with similar temporal features – i.e. this clustering assigns each smoothed time-series to one cluster. 

Statistical Modelling and Prediction of Seasonal Modality  

For each of the 117 study locations we extracted a suite of environmental variables derived from satellite 

data that together describe the location’s ecological structure. These include the BioClimatic variables 

(a suite of biological relevant covariates defined from monthly rainfall and temperature satellite data32), 

various measures of aridity33,34, a number of covariates describing the seasonality and extent of water 

bodies35, landcover36 and a number of other variables previously used in defining the global distribution 

of anopheline vectors37. A complete list of the covariates used is in Supplementary Table 2. These 

covariates (25 in total) and a covariate for anopheline species (1 for each time-series indicating which 

species it belonged to) were used as covariates in a penalised (L2) multinomial logistic regression model 

predicting the cluster (of time-series with similar temporal properties, assigned based on the results of 

the k-means clustering) a particular time-series belonged to. Fitting this model yielded regression 

coefficients describing the strength of association between a species complex/environmental variable 

and membership of a particular cluster – specifically, 1 coefficient per cluster and predictor, i.e. a total 

of k coefficients per predictor where k is the number of clusters. The results of these analyses were then 

integrated with recently produced maps of vector presence/absence (as part of work conducted with the 

Humbug Project (http://humbug.ac.uk/), funded through a Google Impact Challenge grant) to generate 
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predictive maps of mosquito population dynamics across India (see Supplementary Information for 

further detail).  
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