1 Association between Use of Qingfei Paidu Tang and Mortality in

2 Hospitalized Patients with COVID-19: A national retrospective

3 registry study

- 4
- ⁵ Lihua Zhang¹* PhD, Xin Zheng¹* PhD, Xueke Bai¹ MS, Qing Wang¹ MS, Bowang
- 6 Chen¹ PhD, Haibo Wang² MPH, Jiapeng Lu¹ PhD, Shuang Hu¹ PhD, Xiaoyan Zhang¹
- 7 MS, Haibo Zhang¹ MD, Jiamin Liu¹ MD, Ying Shi³ BMS, Zhiye Zhou³ MS, Lanxia
- 8 Gan³ BE, Xi Li^{1, 4¶} PhD, Jing Li^{1, 4, 5¶} PhD
- 9
- ¹⁰ ¹National Clinical Research Center for Cardiovascular Diseases, State Key
- 11 Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for
- 12 Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union
- 13 Medical College, Beijing, People's Republic of China
- ¹⁴ ²Clinical Trial Unit, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou
- 15 Province, People's Republic of China
- ¹⁶ ³ China Standard Medical Information Research Center, Shenzhen, People's Republic
- 17 of China
- ⁴Central China Subcenter of the National Center for Cardiovascular Diseases,
- 19 Zhengzhou, People's Republic of China
- ²⁰ ⁵ Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, People's
- 21 Republic of China.
- 22 *Joint first authors

23	[¶] Joint co	rrespondence	authors
----	-----------------------	--------------	---------

24 Correspondence:

- ²⁵ Jing Li, National Clinical Research Center for Cardiovascular Diseases, State Key
- 26 Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for
- 27 Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union
- 28 Medical College, Beijing, China. Electronic address: jing.li@fwoxford.org.

- 30 Xi Li, National Clinical Research Center for Cardiovascular Diseases, State Key
- 31 Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for
- 32 Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union
- 33 Medical College, Beijing, China. Electronic address: <u>xi.li@fwoxford.org</u>.
- 34
- 35
- Word count: 2911 (not including the abstract, references, tables, boxes, or figure
 legends).
- Number of tables and figures: 2 tables and 3 figures are included in this article.

40 ABSTRACT

41 Background

- 42 Qingfei Paidu Tang (QPT), a formula of traditional Chinese medicine, which was
- 43 suggested to be able to ease symptoms in patients with Coronavirus Disease 2019
- 44 (COVID-19), has been recommended by clinical guidelines and widely used to treat
- 45 COVID-19 in China. However, whether it decreases mortality remains unknown.

46 **Purpose**

- 47 We aimed to explore the association between QPT use and in-hospital mortality
- 48 among patients hospitalized for COVID-19.

49 Study design

50 A retrospective study based on a real-world database was conducted.

51 Methods

- 52 We identified patients consecutively hospitalized with COVID-19 in 15 hospitals
- ⁵³ from a national retrospective registry in China, from January through May 2020.
- 54 Data on patients' characteristics, treatments, and outcomes were extracted from the
- ⁵⁵ electronic medical records. The association of QPT use with mortality was evaluated
- using Cox proportional hazards models based on propensity score analysis.

57 Results

- 58 Of the 8939 patients included, 28.7% received QPT. The crude mortality was 1.2%
- 59 (95% confidence interval [CI] 0.8% to 1.7%) among the patients receiving QPT and
- 4.8% (95% CI 4.3% to 5.3%) among those not receiving QPT. After adjustment for
- 61 patient characteristics and concomitant treatments, QPT use was associated with a

62	relative reduction of 50% in in-hospital mortality (hazard ratio, 0.50; 95% CI, 0.37 to
63	0.66 $P < 0.001$). This association was consistent across subgroups by sex and age.
64	Meanwhile, the incidence of acute liver injury (8.9% [95% CI, 7.8% to 10.1%]vs.
65	9.9% [95% CI, 9.2% to 10.7%]; odds ratio, 0.96 [95% CI, 0.81% to 1.14%], P
66	=0.658) and acute kidney injury (1.6% [95% CI, 1.2% to 2.2%] vs. 3.0% [95% CI,
67	2.6% to 3.5%]; odds ratio, 0.85 [95% CI, 0.62 to 1.17], <i>P</i> =0.318) was comparable
68	between patients receiving QPT and those not receiving QPT. The major study
69	limitations included that the study was an observational study based on real-world
70	data rather than a randomized control trial, and the quality of data could be affected
71	by the accuracy and completeness of medical records.
72	Conclusions
73	QPT was associated with a substantially lower risk of in-hospital mortality, without
74	extra risk of acute liver injury or acute kidney injury among patients hospitalized with
75	COVID-19.
76	Key words Qingfei Paidu Tang; Mortality; COVID-19
77	Abbreviations
78	QPT: Qingfei Paidu Tang
79	COVID-19: Coronavirus Disease 2019
80	IQR: interquartile range
81	SMD: standard mean difference
82	IPTW: inverse probability treatment weighting
83	HR: hazard ratios

- 84 OR: odds ratios
- 85 CI: confidence interval
- 86
- 87

88 Introduction

89	Coronavirus Disease 2019 (COVID-19), caused by a novel severe acute respiratory
90	syndrome coronavirus type 2 (SARS-CoV-2), has posed a huge threat to global health
91	as the largest pandemic in a century. Nearly 50 million people worldwide have been
92	infected, of whom over 1.2 million died by middle November2020. ¹ The pandemic is
93	still evolving, effective treatments against COVID-19 are therefore urgently needed to
94	reduce the mortality of COVID-19.
95	Qingfei Paidu Tang (QPT), a traditional Chinese medicine, was formulated on the
96	basis of one of the classics of traditional Chinese medicine, Treatise on Febrile and
97	Miscellaneous Diseases (Shang Han Zabing Lun). ² It is a compound prescription
98	containing four traditional Chinese medicine prescriptions, each of which has been
99	widely applied as therapy of common cold, fever, influenza, and other virus
100	infection. ³⁻⁷ Basic research also found that QPT possessed properties such as antivirus,
101	^{8,9} anti-inflammation, ⁸⁻¹³ and immune regulation, ^{8,11-13} which might be beneficial for
102	patients with COVID-19. Moreover, several small observational studies in China have
103	suggested its potential effectiveness in relieving symptom (i.e., fever and cough) and
104	preventing disease progression in patients with COVID-19.14-17 Therefore, QPT has
105	been recommended in the Chinese guidelines for the treatment of Coronavirus
106	Disease 2019 (COVID-19) since early February 2020 and widely used in China. ¹⁸
107	However, it is unknown whether it could reduce the mortality of COVID-19.
108	Accordingly, using the data from a national retrospective registry, we sought to
109	evaluate the effectiveness and safety of QPT in COVID-19. Specifically, we

110 ł	nypothesized that	QPT use	would be	associated	with a	lower risk	c of in-hos	pital
-------	-------------------	---------	----------	------------	--------	------------	-------------	-------

- 111 mortality in patients with COVID-19, and tested it using propensity score analysis.
- 112 We also assessed whether there was an association of QPT with the incidence of acute
- 113 liver injury and acute renal injury during hospitalization.
- 114
- 115 Methods
- 116 Data Sources
- 117 In a government-mandated national registry, hospitalizations for COVID-19 in all the
- designated hospitals across China were registered retrospectively. Information relating
- 119 to patient characteristics, treatments, and outcomes, in the electronic medical records
- 120 (EMR), were required to be submitted to a system deployed by the National Health
- 121 Commission of China, in forms of either structured database for the front page, or
- unstructured text for the progress notes, lab test results, and physician's orders. By the
- 123 date of May 6th 2020, over 40 thousand COVID-19 cases from more than five
- 124 hundred hospitals have been included.

125 Ethical approval

- 126 The Ethics Committee at the the National Center for Cardiovascular Diseases
- 127 (NCCD)/Fuwai Hospital ethics committee approved this study and the Ethics
- 128 Committee at the First Affiliated Hospital, Sun Yat-sen University approved the
- 129 current analysis. Informed consent of individual patients was waived.
- 130

131 Study cohort

132	Among all the designated hospitals providing inpatient care for COVID-19 in the
133	national registry, we excluded hospitals that were ineligible for data extraction or
134	analysis for the following two reasons. First, the number of patients hospitalized with
135	COVID-19 was less than 100. Second, the number of patients receiving QPT in the
136	hospitals was less than 50. In the end, 15 hospitals were included in our study, all of
137	which were located in Hubei province.
138	Among eligible hospitals, we included all patients aged ≥ 18 years discharged
139	between January and May, 2020 with a confirmed diagnosis of COVID-19. We
140	identified these patients, according to International Classification of Diseases, Clinical
141	Modification codes revision 10 (U07.100, U07.100.00x, U07.100.00x001,
142	U07.100.00x002, U07.100.00x003), when available, or through principal diagnosis
143	terms noted at discharge. We excluded patients who were transferred out, since the
144	records of their hospitalizations were truncated. Patients who died or were discharged
145	within 24 hours of admission were also excluded from the analysis, because the
146	testing and treatments for them were likely to be influenced due to the short length of
147	hospital stay.
148	Data Extraction
149	For each patient, the demographic characteristics (age and sex), prior medical

- 150 histories/comorbidities (hypertension, diabetes, coronary heart disease, stroke, chronic
- kidney diseases, chronic obstructive pulmonary disease, and cancer), clinical status at
- admission (critical or not), and in-hospital death was obtained from the front-page

153	database or progress notes. The vital signs (heart rate, blood pressure, and respiratory
154	rate) at admission were extracted from the progress notes. The in-hospital medications
155	(QPT, Arbidol, Ribavirin, Oseltamivir, Ganciclovir, Lopinavir, Lianhuaqingwen,
156	Xuebijing, Diammonium Glycyrrhizinate, Methylprednisolone, Dexamethasone, and
157	Interferon) were extracted from the physician orders, progress notes, and nurse
158	records. The in-hospital acute liver injury and acute kidney injury were identified
159	based on the front-page database, progress notes, and lab test results.
160	We searched predefined keywords in unstructured text of the submitted medical
161	records using Python software (version 3.6) and MYSQL software (version 8.0), in
162	order to extract the data. Particularly, research clinicians randomly selected and
163	reviewed 5% of the medical records in the hospitals with QPT use rate under 20%, to
164	ensure the exhaustion of synonyms of this medication and completeness of data
165	extraction. Furthermore, to ensure the data accuracy, research clinicians adjudicated
166	the prior medical history/comorbidities based on the progress note.
167	Treatment and outcome measures
107	ireatment and butcome measures
168	As the treatment of interest in our analysis, QPT use was defined as receiving this

169 medication for no less than three days during the hospitalization, according to the

- 170 Chinese diagnosis and treatment protocol for COVID-19 (Trial Version 6) (i.e., one
- 171 formula a day, three formulas were defined as a course of treatment).¹⁸
- 172 Correspondently, the study cohort was categorized into two treatment groups –
- 173 patients receiving QPT and those not receiving QPT. Meanwhile, we also explored
- the effectiveness and safety of QPT between patients who ever received QPT during

175 hospitalization and those who did not.

176	The outcome measure of effectiveness was in-hospital mortality. The outcome
177	measure of safety included acute liver injury and acute kidney injury during
178	hospitalization. Acute liver injury was defined as documented acute liver injury, acute
179	liver renal insufficiency, acute liver failure, hepatic encephalopathy, or hepatic coma,
180	then adjudicated based on the elevation in aspartate aminotransferase, alanine
181	aminotransferase, or total bilirubin. Acute renal injury was defined as documented
182	acute renal failure, acute renal injury, or acute renal insufficiency, then adjudicated
183	based on the elevation in serum creatinine.

184 Statistical analysis

- 185 We described participant characteristics, treatments, and outcomes, with frequencies
- and percentages for categorical variables, while means \pm standard deviations or
- 187 median with interquartile range (IQR) for continuous variables. The difference
- 188 between groups was estimated by standard mean difference (SMD), and absolute
- values less than 0.1 was considered small differences.¹⁹

190 We conducted a statistical power analysis in advance, based on the projected

- sample size of this retrospective registry. Assuming the in-hospital mortality rate was
- 192 4% in patients not receiving QPT, a total sample size of 9000 can achieve a statistical
- 193 power of 80% at a 2-sided 0.05 significance level to detect a hazard ratio of 0.7 or
- 194 below, for the treatment with a 30% or greater prevalence.

195 We used inverse probability treatment weighting (IPTW) based on probability of

196 receiving treatment to make the characteristics between the two treatment groups

197	comparable. The probability of receiving QPT was estimated by multilevel logistic
198	regression that adjusted for baseline characteristics including demographics,
199	comorbidities, and prior histories extracted in previous referred (Table S1), with
200	hospital as random effect.
201	To assess the effectiveness of QPT, we obtained hazard ratios (HR) between
202	treatment groups with developing frailty proportional hazards models on in-hospital
203	death, accounted hospital as random effect, adjusted for other in-hospital medications,
204	and weighted with inverse probability of QPT use. We then plotted Kaplan-Meier
205	curve in patients receiving and those not receiving QPT. To assess the safety of QPT,
206	we obtained odds ratios (OR) with the multilevel logistic regression on acute liver
207	injury and acute renal injury, which handled random effect, adjustment, and weight,
208	using the similar approaches described earlier. We also added interaction items to
209	explore the heterogeneity of effectiveness across subgroups by age (<60, 60-69, or \geq
210	70 years), sex (male or female), and prior medical history/comorbidities (with any or
211	without). In each subgroup, we recalculated inverse probability and reweighting
212	separately, as aforementioned.
213	We conducted two sensitivity analysis. First, we matched propensity score
214	between patients receiving and not receiving QPT using the nearest-neighbour method,
215	to create two groups with similar characteristics and sample size. Second, we added
216	the propensity score as covariate in the frailty model without weighting, to account for
217	the difference between treatment groups.
218	In the submitted medical records, small proportions of blood pressure (1.7%),

219	heart rate (0.1%) , and respiratory rate (0.2%) were missing. Assuming that these data
220	were missing at random, we applied a multiple imputation method based on Markov
221	Chain Monte Carlo by PROC MI procedure in SAS to impute missing value. ²⁰
222	Two-tailed P values were reported with P<0.05 considered to indicate statistical
223	significance. All statistical analyses were performed with SAS software, version 9.4
224	(SAS Institute, Cary, NC).
225	

```
226 Results
```

227 Study Participants

- There were 9115 patients with COVID-19 admitted to the 15 designated hospitals in
- this study, with the numbers of cases in each included hospital ranging from 140 to
- 1856. After excluding 96 patients with age <18 years, 66 patients transferred out, and
- 14 patients with the length of stay less than 24 hours, 8939 eligible cases were
- included in the analysis (Figure 1). Of them, the average age was 55.9 ± 15.6 years,
- and 53.4% (4771) were women. 4.4% (390) patients were at critical state at admission,
- while 33.7% (3016) had hypertension, and 15.2% (1357) had diabetes.
- Of these patients, 2833 (31.7%) ever received QPT during hospitalization, with a
- median treatment duration of 6 (4 to 9) days. Half of the QPT users received the first
- formula within 5 days after hospitalization. The timing of QPT use after
- hospitalization was shown in Figure S1.
- In the study cohort, 2568 patients (28.7%) received QPT for no less than 3 days
- and 6371 (71.3%) did not. The patient characteristics of the two treatment groups

241	were provided in	Table 1. Unweigh	ted comparisons	showed that	patients who

- received QPT were younger (SMD>0.1). After adjustment for inverse probability of
- treatment weighting, all covariates were well balanced (i.e., standardized mean
- ²⁴⁴ differences were <0.1). The distributions of inverse probability score weights of
- treatment groups were shown separately in Figure S2.

246 **Outcomes**

- During hospitalization with a median length of stay of 15 (9 to 21) days, 334 (3.7%)
- patients died. The crude mortality was 1.2% (95% confidence interval [CI], 0.8% to
- 1.7%) among patients who received QPT and 4.8% (95% CI, 4.3% to 5.3%) among
- 250 patients who did not (Figure 2). In the unadjusted analysis, patients who received QPT
- were less likely to die than patients who did not receive QPT (hazard ratio, 0.17; 95%)
- 252 CI, 0.11% to 0.26%, P<0.001). In the Cox model with inverse propensity score
- weighting, all covariates in the Cox model were shown in Table S2. QPT use was
- associated with a lower mortality risk (adjusted hazard ratio, 0.50; 95% CI, 0.37 to

255 **0.66**, *P*<**0.001**).

262

3).

In terms of sex and age, no significant differences were observed among their subgroups in the associations between QPT treatment and in-hospital mortality (all *P* for interaction>0.05). Although significant heterogeneity in associations between QPT treatment and in-hospital mortality were detected between subgroups by prior medical history/comorbidities status (*P* for interaction=0.020), the significantly lower mortality risk for patient receiving QPT was observed in both these subgroups (Figure

263	Regarding the safety of QPT, patients who received QPT had a comparable
264	incidence of acute hepatic injury (crude rate, 8.9% [95% CI, 7.8% to 10.1%] vs 9.9%
265	[95% CI, 9.2% to 10.7%]; adjusted OR, 0.96 [95% CI, 0.81 to 1.14], P =0.658) and
266	acute kidney injury (crude rate, 1.6% [95% CI, 1.2% to 2.2%] vs. 3.0% [95% CI, 2.6%
267	to 3.5%]; adjusted OR, 0.85 [95% CI, 0.62 to 1.17], P =0.318), in comparison with
268	those who did not.
269	Furthermore, we also conducted the analysis of the effectiveness and safety of
270	QPT between patients who ever received QPT during hospitalization and those who
271	did not, and found similar results with those mentioned above (Table S3-4).
272	Sensitivity Analyses
273	In addition to the IPTW analysis, we matched 3492 patients based on their propensity
274	score (1746 patients receiving QPT and 1746 patients not receiving QPT). The two
275	groups were well-balanced in characteristics and concomitant treatments (Table S5,
276	Figure S3). The risk of mortality in patients who received QPT was significantly
277	lower than in those who did not receive QPT (1.1% [95% CI, 0.7% to 1.7%] vs 2.7%
278	[95% CI, 2.0% to 3.6%], HR, 0.42; 95%CI, 0.24 to 0.74; <i>P</i> = 0.002) (Table 2 and
279	Figure S4). In the meantime, patients receiving QPT had a comparable incidence of
280	acute kidney injury (1.1% [95% CI, 0.7% to 1.8%] vs. 1.9% [95% CI, 1.3% to 2.6%];
281	OR, 0.74 [95% CI, 0.40 to 1.35], $P = 0.327$) compared with the patients who did not,
282	but a lower risk of acute liver injury (5.4% [95% CI, 4.4% to 6.5%]vs. 8.1% [95% CI,
283	6.9% to 9.5%]; OR, 0.72 [95% CI, 0.54 to 0.96], <i>P</i> =0.025).

We also included the propensity score as an additional covariate in the models, in

285	which	patients	who	received	OPT	had a	l sig	nificantl	v le	ower 1	isk	of mor	talitv	' than

- those who did not receive QPT (adjusted HR, 0.24 95% CI, 0.15 to 0.37; *P*<0.001).
- 287 Meanwhile, patients receiving QPT had comparable incidence of acute liver injury
- 288 (OR, 0.93 [95% CI, 0.76 to 1.14], *P* =0.497) and acute kidney injury (OR, 0.74 [95%
- 289 CI, 0.50 to 1.10], P = 0.133) compared with the patients not receiving QPT.

290

291 **DISCUSSION**

- In this analysis based on a national registry of hospitalized patients with COVID-19,
- we first demonstrated that QPT use was associated with halving the risk of in-hospital

294 mortality, without significant increase in risk of adverse effects, such as acute liver

- injury or acute kidney injury. Our findings have provided new evidence and insights
- regarding the treatment of COVID-19.

297 Our study has extended the literature on the effectiveness of QPT for patients

with COVID-19. First, this is the first study assessing the association between the

- 299 QPT use and in-hospital mortality that is considered the most important and objective
- 300 outcome metrics, rather than surrogate indicators widely used before. Second, in
- 301 comparison with prior studies in China about QPT for COVID-19 treatment,¹⁴⁻¹⁷ our
- 302 study has involved an over ninety-time larger sample size that ensured sufficient
- 303 statistical power even for subgroup analysis. Third, using various propensity score
- approaches, we established control groups to enable appropriate comparisons in both
- 305 effectiveness and safety of QPT. Forth, this national registry included consecutive
- 306 patients from multiple Chinese hospitals, which represented the use and effectiveness

307 of QPT in real-world practice.

308	The effects of QPT on decreasing mortality of COVID-19 observed in our study
309	are supported by the mechanisms shown in prior experimental studies, which
310	included antivirus, ^{8,9} anti-inflammation, ⁸⁻¹³ immune regulation, ^{8,11-13} regulating
311	metabolism, ^{9,12} anti-platelet aggregation, ¹⁰ and organ protection. ^{11,13} QPT was
312	composed of four traditional Chinese medicine prescriptions, which were shown to
313	be separately effective in antivirus, ^{3,5} anti-inflammatory, ⁷ or immuno-modulating. ⁶
314	QPT has multiple components acting on the multiple pathways. Some studies
315	employed molecular network and network pharmacology to analyse the ingredients
316	of QPT, and found that the key active ingredients, including quercetin, luteolin,
317	kaempferol, naringenin, and isorhamnetin, could alleviate excessive immune
318	responses, by regulating the function of cytokines related pathways, such as tumour
319	necrosis factor signalling pathways and mitogen-activated protein kinases signalling
320	pathways. ¹¹⁻¹³ Further research is needed to fully investigate the underlying
321	mechanism of the effect of QPT.
322	In this study, we did not observe the elevated risk of acute liver injury or acute
323	kidney injury among patients receiving QPT. This is consistent with the previous
324	observational studies. ¹⁴⁻¹⁷ Moreover, our findings are particularly reassuring given the
325	complexity in comorbidities (such as hypertension, diabetes and chronic kidney
326	disease) and concomitant treatments (such as antivirals, corticosteroids and
327	immunomodulators) observed in our cohort. Nevertheless, long-term safety related to
328	QPT still needs to be verified in future studies.

329	This study has provided valuable evidence and prospects for the treatment of
330	COVID-19. Currently, there are globally nearly 7.5 million active cases that need
331	treatments. ¹ However, there is no evidence about any medication that could decrease
332	mortality in COVID-19 except for dexamethasone, which has been proved to be able
333	to reduce the 28-day mortality in those who received mechanical ventilation or
334	oxygen alone. ^{21,22} To the best of our knowledge, this is the first study implying that
335	QPT could reduce the mortality risk of patients with COVID-19. Our findings were
336	consistent across subgroups, and robust regardless of analytic methods. It is
337	encouraging that the use of QPT can probably prevent tens of thousands of deaths, if
338	our findings are further confirmed and applied globally.
339	Limitations
340	The results of our study should be interpreted in the context of several limitations.
341	First, due to the nature of observational study, we cannot exclude the influence of
342	residual confounders. However, after the IPTW, patients who received QPT had
343	higher rates of co-morbidities which was positively related to mortality risk,
344	compared with those who did not received QPT. Thus, the effectiveness we observed
0.45	

345

quality of data could be affected by the accuracy and completeness of medical records.

tended to be conservative. Second, our study was based on real-world data and the

347 Therefore, we only included the highly reliable variables on patient characteristics,

treatments, and outcomes in the analysis. Third, our study merely collected in-hospital

outcomes, therefore, we could not evaluate the long-term effectiveness and safety.

Finally, all the patients in our study were from China, and the beneficial effects of

351 QPT in other racially diverse populations still await further validation.

352	Concl	lusion
004	COL	usion

- Among the patients hospitalized for COVID-19, the use of QPT was associated with
- halving the risk of mortality, without raising the risk of acute liver injury or acute
- kidney injury. Further validation with randomized controlled trials is needed to
- support the use of QPT worldwide for COVID-19.
- 357
- 358
- 359

360 **Declarations**

361 Ethics approval

- 362 The Ethics Committee at the First Affiliated Hospital, Sun Yat-sen University
- approved the current analysis. Informed consent of individual patients was waived.
- 364 **Consent for publication**
- 365 Not applicable

366 Availability of data and materials

- ³⁶⁷ The data sharing needs to be approved by national registry, which is under the
- 368 supervision of National Health commission. However, on site data audit is allowed
- 369 under current regulation.

370 Competing interests

371 Dr Li reported receiving research grants, through Fuwai Hospital, from the People's

372 Republic of China for work to improve the management of hypertension and blood lipids

373	and to improve care quality and patient outcomes of cardiovascular disease; receiving
374	research agreements, through the National Center for Cardiovascular Diseases and Fuwai
375	Hospital, from Amgen for a multicenter clinical trial assessing the efficacy and safety of
376	omecamtiv mecarbil and for dyslipidemic patient registration; receiving a research
377	agreement, through Fuwai Hospital, from Sanofi for a multicenter clinical trial on the effects
378	of sotagliflozin; receiving a research agreement, through Fuwai Hospital, with the
379	University of Oxford for a multicenter clinical trial of empagliflozin; receiving a research
380	agreement, through the National Center for Cardiovascular Diseases, from AstraZeneca for
381	clinical research methods training outside the submitted work; and receiving a research
382	agreement, through the National Center for Cardiovascular Diseases, from Lilly for
383	physician training outside the submitted work. No other disclosures were reported.

384 Funding

- 385 This project was supported by the Chinese Academy of Medical Sciences
- Innovation Fund for Medical Science (2020-I2M-Cov19-003) and the National
- Natural Science Foundation of China under Grants (No. U1611261). The funder of
- the study had no role in study design, data collection, data analysis, data
- interpretation, or writing of the report.

390 Authors' contributions

- ³⁹¹ JL and XL conceived of the project and take responsibility for all aspects of it. JL and
- 392 XL designed the study. LHZ and XZ wrote the first draft of the manuscript, with
- ³⁹³ further contributions from JPL, XKB, HBZ, JML, BWC, QW, XYZ, HS, HBW, YS,
- 394 ZYZ and LXG. XKB and SH did the statistical analysis. YZW, ZYZ, ESS, WQ,
- BWC, YS and XYZ collected, extracted, processed, and cleaned the data. All authors

396	have read and	approved th	e submission	of this re	eview, v	which neither	r has been
-----	---------------	-------------	--------------	------------	----------	---------------	------------

- ³⁹⁷ published on any other peer-review platforms, nor is being considered for publication
- 398 elsewhere, in whole or in part, in any language.

399 Acknowledgements

- 400 We appreciate the Bureau of Medical Administration and Medical Service
- 401 Supervision, National Health Commission of China, for the approval and support on
- 402 collecting data. We appreciate all the COVID-19 designated hospitals for submitting
- 403 medical records, and China Standard Medical Information Research Center for the
- support in collecting and processing data. We appreciate the team in National Center
- 405 for Cardiovascular Diseases for their multiple contributions in data cleaning and
- 406 manuscript coordinating.
- 407

408

- 409
- 410

- 412
- 413
- 414

415 **REFERENCES**

- 416 1. World Health Organization. Coronavirus disease (COVID-19) pandemic.
- 417 https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed Nov 15 2020
- 418 2. .National Administration of Traditional Chinese Medicine.
- 419 <u>http://www.satcm.gov.cn/hudongjiaoliu/guanfangweixin/2020-03-05/13622.html</u>. Accessed Sep 22
- 420 2020
- 421 3. Shi KY, Han GX, Zhang WW, et al. Systematic Evaluation of Xiaochaihu Decoction Combined
- with Antiviral Agent in the Treatment of Chronic Hepatitis B. *Evaluation and Analysis of Drug-Use in Hospitals of China*. 2019; 19: 1039-1050.
- 424 4. Zheng CS, Wu YS, Bao HJ, et al. Understanding the polypharmacological anticancer effects of
- 425 Xiao Chai Hu Tang via a computational pharmacological model. *Exp Ther Med.* 2014; 7: 1777-1783..
- 426 5. Hsieh CF, Lo CW, Liu CH, et al. Mechanism by which ma-xing-shi-gan-tang inhibits the entry
 427 of influenza virus. *J Ethnopharmacol.* 2012;143:57-67.
- 428 6. Lin CC, Wang YY, Chen SM, et al. Shegan-Mahuang Decoction ameliorates asthmatic airway
- hyperresponsiveness by downregulating Th2/Th17 cells but upregulating CD4+FoxP3+ Tregs. J
 Ethnopharmacol. 2020; 253: 112656.
- 431 7. Yang Y, Zhang DM, Liu JH, et al. Wuling San protects kidney dysfunction by inhibiting renal
- 432 TLR4/MyD88 signaling and NLRP3 inflammasome activation in high fructose-induced
- 433 hyperuricemic mice. J Ethnopharmacol 2015; 169: 49-59.
- 434 8. Zhao J, Tian SS, Yang J, et al . Investigating the mechanism of Qing-Fei-Pai-Du-Tang for the
- treatment of Novel Coronavirus Pneumonia by network pharmacology. *Chinese Traditional and Herbal Drugs* 2020; 51: 829-835.
- 437 9. Chen J, Wang Y-k, Gao Y, et al. Protection against COVID-19 injury by qingfei paidu decoction
- 438 via anti-viral, anti-inflammatory activity and metabolic programming.
- 439 *Biomed Pharmacother* 2020; 129: 110281.
- 440 10. Yang R, Liu H, Bai C, et al. Chemical composition and pharmacological mechanism of Qingfei
- Paidu Decoction and Ma Xing Shi Gan Decoction against Coronavirus Disease 2019 (COVID-19): In
 silico and experimental study. *Pharmacol Res* 2020; 157: 104820.
- 11. Xu DY, Xu YL, Wang ZW, et al. Mechanism of Qingfei Paidu decoction on COVID-19 based
 on network pharmacology. *Pharmacol Clin Chin Materia Med* 2020; 36: 26-31.
- 445 12. Xu TF, He CG, Yang K. Network pharmacology-based study on material basis and mechanism
- 446 of Qingfei Paidu Decoction against Novel coronavirus pneumonia. . Natural Product Research and
- 447 Development 2020, <u>http://kns.cnki.net/kcms/detail/51.1335.Q.20200413.1918.018.html</u>. Accessed
 448 Sep 2 2020
- 449 13. Wu H, Wang JQ, Yang YW, et al. Preliminary exploration of the mechanism of Qingfei Paidu
- 450 decoction against novel coronavirus pneumonia based on network pharmacology and molecular
- 451 docking technology. Acta Pharmaceutica Sinica 2020; 55: 374–383.
- 452 14. Wang R, Yang SJ, Xie C, et al. Clinical efficacy of Qingfei Paidu Decoction in the treatment of
- 453 COVID-19. Pharmacology and Clinics of Chinese Materia Medica 2020; 36: 13-18.
- 454 15. Zhang LJ, Fan H, Chen R, et al. Rational usage of Qingfei Paidu Decoction from clinical
- 455 practice. Journal of Traditional Chinese Medicine 2020. Available from:
- 456 http://kns.cnki.net/kcms/detail/11.2166.R.20200326.1355.002.html. Accessed Sep 2 2020
- 457 16. Li KY, An W, Xia F, et al. Observation on clinical effect of modified Qingfei Paidu Decoction in

- treatment of COVID-19. *Chinese Traditional and Herbal Drugs* 2020; **51**: 2046-9.
- 459 17. Xin SY, Cheng XQ, Zhu B, et al. Clinical retrospective study on the efficacy of Qingfei Paidu
- decoction combined with Western medicine for COVID-19 treatment. *Biomed Pharmacother* 2020;
- 461 129: 110500.
- 462 18. National Health Commission of the People's Republic of China. Diagnosis and Treatment
- 463 Protocol for COVID-19 (Trial Version 6.0). 2020. Available from:
- 464 <u>http://www.nhc.gov.cn/yzygj/s7653p/202002/8334a8326dd94d329df351d7da8aefc2/files/b218cfeb1b</u>
 465 c54639af227f922bf6b817.pdf. Accessed Sep 02 2020.
- 466 19. Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment
- 467 weighting (IPTW) using the propensity score to estimate causal treatment effects in observational
- 468 studies. *Stat Med* 2015; 34:3661-3679.
- 469 20. Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological
- 470 and clinical research: potential and pitfalls. *BMJ (Clinical research ed)* 2009; 338: b2393-b.
- 471 21. Group RC, Horby P, Lim WS, et al. Dexamethasone in Hospitalized Patients with Covid-19
- 472 Preliminary Report. *N Engl J Med.* 2020. doi: 10.1056/NEJMoa2021436.
- 473 22. Wiersinga WJ, Rhodes A, Cheng AC, et al. Pathophysiology, Transmission, Diagnosis, and
- 474 Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020. 324:782-793.

475

476

478 Table 1. Baseline characteristics of patients by Qingfei Paidu Tang use

	No QPT	QPT	SMD before IPTW	SMD after IPTW
	N=6371	N=2568		
Demographic				
Women	3401 (53.4)	1370 (53.3)	-0.0007	0.0115
Age, years			0.1081	0.0263
< 60	3626 (56.9)	1594 (62.1)		
60-70	1511 (23.7)	555 (21.6)		
>70	1234 (19.4)	419 (16.3)		
Prior history/Comorbidities				
Hypertension	2191 (34.4%)	825 (32.1%)	-0.0481	0.0175
Diabetes	1014 (15.9%)	343 (13.4%)	-0.0724	0.0130
Coronary heart disease	475 (7.5%)	211 (8.2%)	0.0283	0.0284
Stroke	469 (7.4%)	140 (5.5%)	-0.0781	0.0602
Chronic kidney disease	159 (2.5%)	57 (2.2%)	-0.0182	0.0265
COPD	116 (1.8%)	41 (1.6%)	-0.0173	0.0312
Cancer	201 (3.2%)	84 (3.3%)	0.0066	0.0190
Clinical characteristics at admission				
SBP, median (IQR), mmHg	130(120, 140)	128(120, 140)	-0.0308	0.0466
DBP, median (IQR), mmHg	80(74, 89)	80(74, 88)	0.0256	0.0316
HR, median (IQR), breaths per min	84(78, 95)	84(78, 96)	0.0077	0.0340
RR >24 breaths per min	592 (9.3%)	195 (7.6%)	-0.0611	0.0713
Critical state at admission	274 (4.3%)	116 (4.5%)	0.0105	-0.0019
Medication				
Antiviral				
Arbidol	3447 (54.1%)	1969 (76.7%)	0.4884	0.2971
Ribavirin	1150 (18.1%)	585 (22.8%)	0.1175	-0.0707
Oseltamivir	1347 (21.1%)	666 (25.9%)	0.1131	-0.0627
Ganciclovir	323 (5.1%)	183 (7.1%)	0.0860	-0.1166
Lopinavir/Ritonavir	777 (12.2%)	371 (14.4%)	0.0663	-0.0494
Traditional Chinese medicine				
Lianhua Qingwen	3172 (49.8%)	1563 (60.9%)	0.2242	0.1008
Xuebijing	624 (9.8%)	503 (19.6%)	0.2793	0.0284
Diammonium glycyrrhetate	996 (15.6%)	315 (12.3%)	-0.0973	0.0253

	No QPT	QPT	SMD before IPTW	SMD after IPTW
	N=6371	N=2568		
Corticosteroids				
Methylprednisolone	1251 (19.6%)	490 (19.1%)	-0.0140	-0.1184
Dexamethasone	334 (5.2%)	133 (5.2%)	-0.0029	-0.0077
Immunomodulator				
Interferon-alpha	2242 (35.2%)	857 (33.4%)	-0.0383	-0.1823

Abbreviations: QPT, Qingfei Paidu Tang; IPTW, inverse probability of treatment weighting; SMD, standardized mean difference; IQR, inter-quartile range; HR, heart rate; RR, respiratory rate; COPD: chronic obstructive pulmonary disease

480

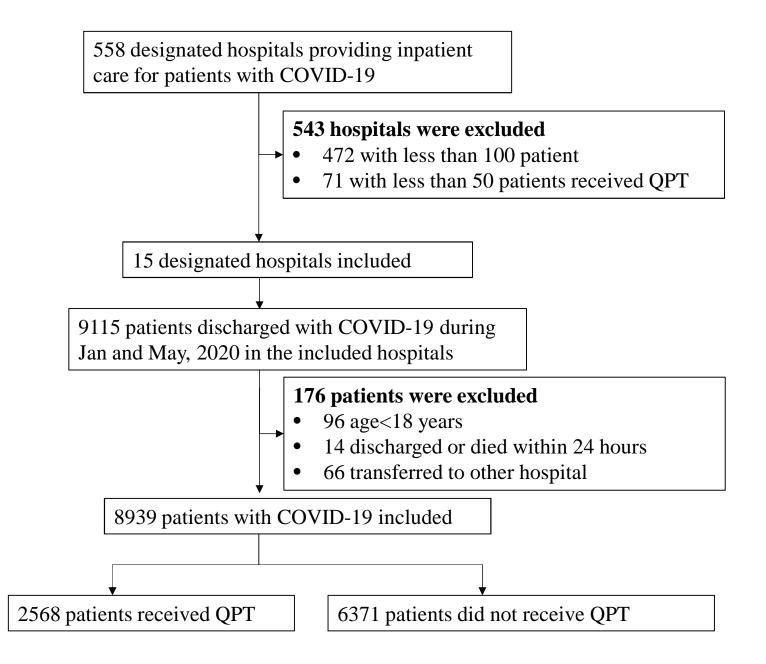
482 Table 2. Associations between Qingfei Paidu Tang use and mortality in the crude

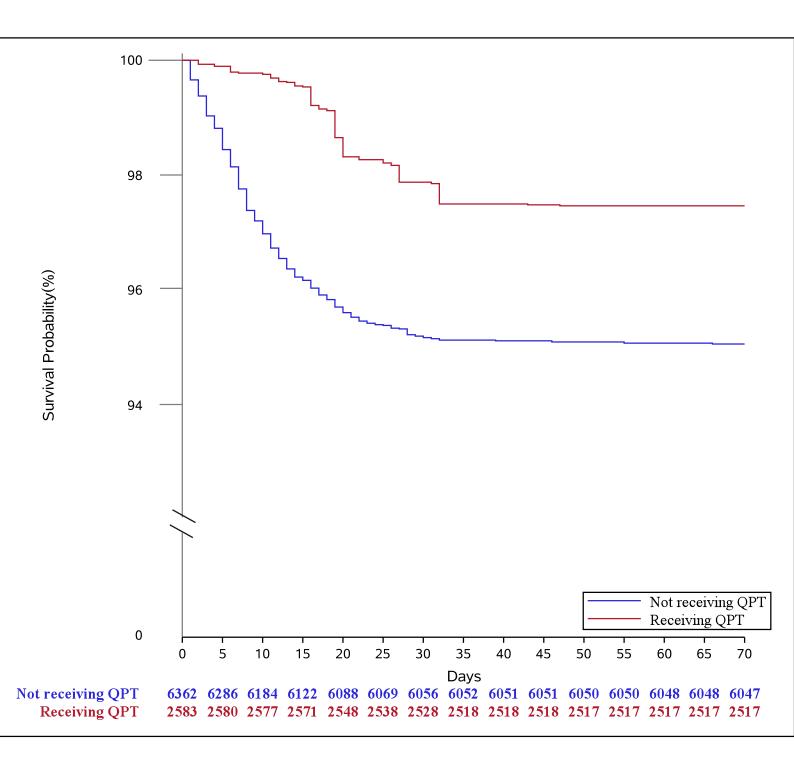
483 analysis, multivariable analysis, and propensity-score analyses

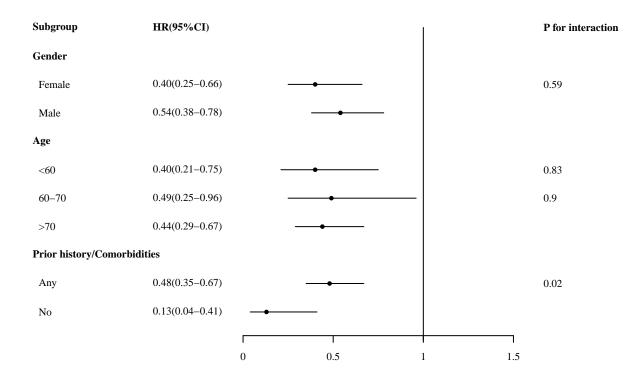
484

Analysis	Mortality
No. of events/no. of patients at risk (%)	
Qingfei Paidu Tang	30 (1.2)
No Qingfei Paidu Tang	304(4.8)
Crude analysis-hazard ratio (95% CI)	0.17(0.11-0.26)
Multivariable analysis- hazard ratio (95% CI)	0.23(0.15-0.36)
ropensity-score analysis- hazard ratio (95%	
With inverse probability weighting	0.50(0.37-0.66)
With matching	0.42(0.24-0.74)
Adjusted as a covariant	0.24(0.15-0.37)

Abbreviations: 95% CI, 95% confidence interval


485


486


487

489 FIGURE LEGENDS

- 490 **Figure 1. Flowchart of the study cohort**
- 491 COVID-19, coronavirus disease 2019; QPT, Qingfei Paidu Tang
- 492 Figure 2. Kaplan–Meier survival curves for in-hospital mortality in inverse
- 493 probability treatment weighting analysis
- 494 **QPT**, Qingfei Paidu Tang
- 495 Figure 3. Hazard ratios of in-hospital mortality across subgroups in inverse
- 496 **probability treatment weighting analysis**
- 497 HR, hazard ratio; 95% CI, 95% confidence interval.

