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Abstract

Surveillance is the key of controling the COVID-19 pandemic, and it typically

suffers from reporting delays and thus can be misleading. Previous methods

for adjusting reporting delays are not particularly appropriate for line list

data, which usually have lots of missing values that are non-ignorable for

modeling reporting delays. In this paper, we develop a Bayesian approach

that dynamically integrates imputation and estimation for line list data.

We show this Bayesian approach lead to accurate estimates of the epidemic

curve and time-varying reproductive numbers and is robust to deviations

from model assumptions. We apply the Bayesian approach to a COVID-19

line list data in Massachusetts and find the reproductive number estimates

correspond more closely to the control measures than the ones based on

the reported curve.
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1 Introduction

Surveillance plays a pivotal role in controlling the COVID-19 pandemic

and has been used to provide guidance for government responses to the

pandemic [1, 2]. A prerequisite for effective surveillance is to have daily case

counts that are ideally defined based on infection dates (called the incidence

curve) or, at a minimum, symptom onset dates (called the epidemic curve),

which are biologically meaningful [3, 4, 5]. However what is most frequently

recorded are case reporting dates, which tend to be either the date when

an infected individual was tested, tested positive, or reported to public

health authorities. The processes that impact the timing of case reporting

date, namely obtaining and reporting test results, vary due to a large

number of factors, including individual healthcare seeking behaviors, testing

availability, or other factors that are not related to disease pathogenesis [6, 7].

This means that the reported curve (daily counts based on case reporting

dates) have artificial noise that blurs the underlying epidemiological signal

best described by infection dates, or secondarily by symptom onset dates

[8, 9]. It also means that it is challenging to obtain timely estimates of the

reproductive number as the most recently reported cases likely represent

infection events that occurred some time in the past [10]. As these reported

curves are often used to estimate reproductive numbers for surveillance and

determining the efficacy of interventions, it is important that these cases

are reported as close to the actual infection dates as possible [11, 12].

Infection dates are the most epidemiologically meaningful dates as they

directly inform infection events and the reproductive numbers. However,

obtaining infection dates is very challenging because infection events are

not directly observable [12]. This is especially the case for COVID-19

due to significant pre-symptomatic transmission [13]. Typically, infection

dates can only be obtained based on a strong parametric assumption about

the distribution of incubation period, which is challenging to estimate

[12, 14, 15]. On the other hand, symptom onset dates are more readily

observed and in many settings captured for a subset of cases [3]. While

symptom onset dates are not as helpful as infection dates, they are still

linked to the epidemiology of infectious disease and are typically more

proximate to infection events than case reporting dates [3, 16]. This makes
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the epidemic curve more informative than the reported curve for estimating

reproductive numbers [17]. In practice, the major barrier for getting the

epidemic curve is that symptom onset dates are still missing for many cases.

This makes imputation of reporting delays, which are defined as the lags

between symptom onset dates and case reporting dates for individual cases

[8, 9, 10], a prerequisite for estimating the epidemic curve. In this paper,

we rely on line list data which contains individual case reporting dates and

symptom onset dates for some to impute individual reporting delays for all

individuals.

Based on observed and imputed reporting delays, there are two steps to

recover the epidemic curve from the reported curve. The first step is

back-calculation which requires one to back-calculate symptom onset date

based on case reporting date for each case [3]. Therefore, the epidemic

curve is estimated by the daily case counts based on symptom onset dates

rather than case reporting dates. The second step is nowcasting, which

is needed because of the reported curve is right truncated, i.e., any case

that is reported after the final reporting date (but potentially has symptom

onset before the final reporting date) is unavailable for analysis [5]. The

consequence of this right truncation issue is that the back-calculated counts

of cases that show symptoms on days close to the final reporting date are

likely incomplete as some of those cases are actually reported after the final

reporting date and unavailable for back-calculation [17]. Hence, nowcasting

is the task of modeling and appropriately increasing those case counts. The

idea of back-calculation and nowcasting is illustrated by Fig 1.

Most previous work estimates the epidemic curve either by the one-step

approach where one models the reporting delay distribution and/or case

counts directly [5, 18], or by the two-step approach where one imputes

missing reporting delays first (the imputation step) and then recovers the

epidemic curve based on the imputed values (the estimation step) [3]. The

reporting delay distribution is usually modeled based on the reporting

triangle, a summary of the empirical distributions of reporting delays based

on symptom onset dates. [5, 18, 19]. Since the reporting triangle does not

take missing reporting delays into account, the one-step approach is based

on observed reporting delays only and typically is time invariant. With such
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t−l t T−l+1 T

1−Back−calculation

2−Nowcasting

Figure 1: Illustration of back-calculation and nowcasting. Assuming

t and T are the first and last reporting day in a line-list data, one needs to

first back-calculate the daily case counts that cover the period from day

t− l to day T based on reporting delays, where l is the maximum reporting

delay. The next step is nowcasting, which is to upscale the back-calculated

counts for the period from day T − l + 1 to day T .

limitations, the two-step approach is generally preferred for a line list data

where the missing reporting delays are non-ignorable. In this approach,

the imputation step usually assumes symptom onset dates are missing at

random conditional on case reporting dates and other available covariates

in a line list data [3]. Usually, the imputed reporting delays in the two-

step approach are not dynamically updated by the model of the reporting

delay distribution, and they may be biased and have large variance. More

importantly, making inference about the estimated epidemic curve would

be difficult for the two-step approach since the variance associated with the

imputation step is not taken into account by the estimation step.

In this paper, we develop a Bayesian framework that dynamically integrates

the imputation step and the estimation step. Our Bayesian framework has

five components: (1) inference of the reporting delay distribution based

on case reporting dates; (2) imputation of missing reporting delays; (3)

back-calculation; (4) nowcasting; and (5) reproductive number estimation

using the EpiEstim method [20, 21]. The Bayesian framework is simple to
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implement and suitable for estimating the epidemic curve. We demonstrate

the robustness of our framework by simulating an epidemic wave similar to

the first COVID-19 outbreak under various conditions, such as changes in

reporting delay distribution, violation of model assumptions, and incomplete

surveillance data. We also demonstrate that the 95% Bayesian credible

intervals have good coverage rate even under moderately undesirable condi-

tions and therefore can lead to reliable inferences. We apply this Bayesian

method to COVID-19 data in Massachusetts show that this method creates

estimates of the epidemic curve and the reproductive number consistent

with the COVID-19 dynamics in Massachusetts.

2 Materials and methods

2.1 Imputation of the missing reporting delays

For a line list data, we denote individual case reporting date and symptom

onset date as ri and oi, respectively, for individuals i = 1, . . . , n. Therefore,

an individual reporting delay is defined as di = ri − oi and we assume

di ∈ [0, l] for the missing di. Moreover, we assume reporting starts from day

1 and ends at day T in the line list data. We use t to denote dates and t

could be a negative integer. The maximum delay l can be decided based on

the observed reporting delays as well as prior knowledge about the reporting

system. The entire reporting period (from day 1 to day T in the line list

data) can be thought of as the composition of consecutive small reporting

periods, such that the reporting delay distribution is stable during each

small reporting period. For example, for COVID-19 line list data we can

define each week as the small reporting period under the assumption that

the reporting delay distribution is unlikely to change sharply within each

week. Then, we define X1 as the n× p matrix containing the indicators of

the small reporting periods and X2 as the indicator of whether a case is

reported on weekends, assuming there are p small reporting periods in total

(for instance p is the number of weeks in the study period). The reporting

delay distribution is then modeled for a single spatial region based on case
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reporting dates:

d ∼ NB(µ, r), µ = eX1β+X2γ (1)

where r and µ are the size (dispersion) and mean parameters for negative

binomial distribution.

Sometimes a reporting system improves over time and the reporting delays

are significantly shortened after a specific date tc. In this case, Eq (1) is

modified as:

d ∼ NB(µ, r11t<tc + r21t≥tc), µ = eX1β+X2γ (2)

where 1A is the indicator of whether the condition A is met. In this

formulation, Eq (2) has two dispersion parameters: r1 corresponds to dates

prior to tc and r2 corresponds to dates equal or later than tc. Based on

Eq (1), the posterior distribution for imputing the missing reporting delays

is:

f(β, r, dmiss|dobs, X1, X2) ∝ f(β)f(γ)f(r)f(dmiss)f(dobs|β, γ, r, dmiss, X1, X2)

(3)

where dmiss represents all the missing di and dobs represents all the observed

di. Using uninformative priors for β, γ, r, and dmiss, imputation of dmiss is

done via the following Gibbs sampler:

1. sample from f(dmiss|β, γ, r,X1, X2)

2. sample from f(β|γ, r, dmiss, β, dobs, X1, X2)

3. sample from f(γ|r, dmiss, β, dobs, X1, X2)

4. sample from f(r|dmiss, β, γ, dobs, X1, X2)

where f(dmiss|β, γ, r,X1, X2) is a truncated negative binomial distribution

whose upper bound is l. The above posterior distribution and Gibbs sampler

are similarly defined for Eq (2).

In reality, the reporting delay distribution is most likely defined based on

symptom onset dates rather than case reporting dates. Since symptom

onset dates are the target of imputation, it is impossible to build a model

conditional on them. By defining the small reporting periods and modeling
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the reporting delay distribution for each of these periods, we aim to estimate

the reporting delay distribution within each of these periods and thus

collectively approximate the underlying reporting delay distribution defined

by symptom onset dates. Intrinsically, our approach is data mining rather

than statistical modeling of the reporting delay distribution.

2.2 Estimation of the epidemic curve and reproductive

numbers

Back-calculation is straightforward given the imputed dmiss and dobs. The

back-calculated counts N̂t, i.e., the case counts based on symptom onset

dates in a line list data, is computed as:

N̂t =

n∑
i=0

1ri−di=t, t = −l + 1, . . . , T. (4)

where 1ri−di=t is the indicator of whether the ith case showed symptoms

on day t. Assuming the line list data includes all symptomatic cases, we

can take N̂t as the estimate of Nt, the true number of cases who showed

symptoms on day t, up to day t = T − l. Due to right-truncation N̂t likely

underestimates Nt for t = T − l + 1, . . . , T . To address this, we correct N̂t

via a non-parametric nowcasting approach:

Ñt =
N̂t

P̂ (d ≤ T − t)
, t = T − l + 1, . . . , T. (5)

P̂ (d ≤ T − t) =

∑n
i=1 1ri−di≥tc · 1di≤T−t∑n

i=1 1ri−di≥tc
(6)

where Ñt is the final estimate of Nt and Ñt = N̂t for t = −l + 1, . . . , T − l.

If tc is not provided, it implies there is no change in the reporting system

and the indicator 1ri−di≥tc is always 1. In this case, P̂ (d ≤ T − t) is the

empirical cumulative density function of the line list data.

With the epidemic curve estimates Ñt, t = −l + 1, . . . , T , the time-varying

reproductive number estimates R̂t can be obtained based on EpiEstim

[20, 21] with a sliding window size τ :

R̂t =
(
∑t
k=t−τ Ñk) + 1

(
∑t
k=t−τ Λk(pj)) + 0.2

(7)

Λk(pj) =

min(k,s)∑
j=1

Ñk−jpj (8)
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The serial interval distribution is needed for computing R̂t: s is the maxi-

mum length of serial interval and pj is the probability of a serial interval of

j days. Since both the epidemic curve estimate Ñt and reproductive number

estimates R̂t depend on the imputed reporting delays dmiss, Ñt and R̂t are

computed based on the posterior sample of dmiss and updated by the Gibbs

sampler for imputation, as well. Therefore, the final output of our Bayesian

algorithm is a posterior sample of Ñt and R̂t. Statistical inference based on

their Bayesian credible intervals incorporates the uncertainty about dmiss.

2.3 Overview of simulation study

We simulated a local epidemic similar to COVID-19 using a branching

process with the parameters based on COVID-19 literature [11, 14, 22, 23].

From this, we created a line list data based on the simulated epidemic

wave (see details in appendix). By definition, the branching process started

at day 1 and cases reported after day 60 were excluded in the line list

data. For simulation scenarios, we vary three factors: data availability, the

maximum reporting delay l assumption, and changes in the reporting delay

distribution. We considered three possibilities regarding data availability: 1)

complete data, 2) delayed surveillance initiation, and 3) real time estimation.

The first scenario is ideal with the line list data covering the entire epidemic

wave. In the second scenario, the line list data is only available after a

certain date during the epidemic wave, possibly due to delays in initiating

surveillance. In this case, we explored four different starting dates for the

line list data to reflect various degrees to which earlier reports were lost

and explore the impact of these delays on our approach. Third, we focus

on estimation in the midst of the epidemic wave, which means the final

reporting date in the line list data is prior to the end of the epidemic wave.

We chose two different final reporting dates for the line list data: 1) before

the peak of the reported curve, and 2) after the peak.

We also tested the case where we assumed l was 20 days for estimation when

l actually was 25 days. We considered three possible scenarios regarding

the changing dynamics of the reporting delay distribution over time. First,

the reporting delay distribution remained unchanged and there was no

8
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improvement throughout the epidemic wave. The average reporting delay

was 9 days in this case. Second, the reporting delay distribution sharply

improved to an average of 4 days in the middle of the epidemic wave

(tc = day 30 based on symptom onset dates). Third, the reporting delay

distribution was constantly and gradually improving during the epidemic

wave. The average reporting delay gradually decreased from 9 days at the

beginning to 4 days at the end of the epidemic wave.

We simulated 1000 line list datasets for each of the 18 different simulation

scenarios. On average, the line-list data included about 5000 cases over 54

days. We randomly made the symptom onset dates missing for 60% of the

cases, a percentage that was consistent with CDC line list data.

2.4 Line list data of COVID-19 cases in Massachusetts

We apply our method to a CDC line list data for Massachusetts with 85,627

COVID-19 cases. 823 cases were excluded from analysis due to negative

reporting delays, which cannot be handled by our model. We excluded

5 cases with unusually large reporting delays reported before March 4,

2020. We set the maximum reporting delay to 60 days, marking 102 cases

with longer reporting delays (ranging from 61 days to 117 days) as missing.

Based on the data, these 102 reporting delays were clear outliers, potentially

due to data entry errors. The final line list data contained 84,799 cases

reported from March 4, 2020 to May 14, 2020 with symptom onset dates

missing for 61.3% of the cases. Each of the 11 weeks was defined as the small

reporting period for model estimation. The data and code are available at

https://github.com/tenglongli/backandnow.
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3 Results

3.1 Simulation results: complete line list data and de-

layed surveillance initiation

To ensure convergence of the Markov Chain Monte Carlo (MCMC) algo-

rithm, the posterior sample was obtained based on 21,000 MCMC iterations

with 1000 burn-in iterations for each of the 1000 simulated datasets. For all

reproductive number estimation, the serial interval was assumed to follow

the gamma distribution with the shape equal to 4.29 and the rate equal

to 1.18 [14, 24], and the maximum serial interval was assumed to be 14

days. The median and 95% Bayesian credible intervals of the posterior

samples of Ñt and R̂t were extracted for each simulated dataset. The known

epidemic curve and estimated reproductive numbers for each dataset served

as the simulation benchmarks. To demonstrate the difference between the

epidemic and reported curves, the reported curve and the reproductive

number estimates based on it were also obtained for each dataset. The

estimates were evaluated by two metrics: 1) the actual coverage rate of the

95% Bayesian credible interval based on 1000 simulated datasets, and 2)

the root mean square error (RMSE) calculated as follows:

RMSE =

√√√√ 1

m

m∑
j=1

(xj − yj)2 (9)

where m is the number of simulated datasets. xj and yj are the estimate

and benchmark for jth dataset.

As expected, the estimated epidemic curve and reproductive numbers were

much closer to the simulation benchmark than the reported curve and the

corresponding reproductive number estimates. With complete line list data,

our model estimated true epidemic curve and the reproductive number well

and was not sensitive to the changes in the reporting delay distribution (Fig

2). The estimates were not sensitive to the assumption about the maximum

delay l across all simulation scenarios. For example, we illustrated the

impact of the maximum delay assumption for complete line list data. (Fig

7, Fig 8 and Fig 9). Therefore, we only discuss the results obtained under

the correct maximum delay assumption in the main text henceforth.

10

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.08.20238154doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.08.20238154
http://creativecommons.org/licenses/by-nc/4.0/


Our estimates under the scenario where the reporting delay distribution

improved sharply at day 30 during the epidemic wave (Fig 2 C-D) was

comparatively worse than other two scenarios (i.e., when the reporting delay

distribution was either not improved or gradually improved), as manifested

by the underestimation of the reporting delays between day 15 and day

40 during the epidemic wave. The underestimation was mainly due to the

overlap of the two reporting delay distributions for cases reported from

day 30 to day 50 (most of whom had symptom onsets from day 15 to

day 40). Our model struggled to separately estimate the two distributions

during this period because it is built on case reporting dates rather than

symptom onset dates. We also used both the Eq (1) and Eq (2) for

imputation and estimation. The two models performed similarly when the

reporting delay distribution was unchanged or gradually improved. However,

Eq (2) did result in a slightly better fit than Eq (1) when the reporting

delay distribution sharply improved, likely due to having two dispersion

parameters.

Table 1 lists the coverage rate of 95% Bayesian credible interval and the

RMSE for our estimates. The average coverage rate of our epidemic curve

estimates was 0.83 when there was an abrupt improvement for the reporting

delay distribution and was 0.91 when there was gradual or no change in the

reporting delay distribution. The average coverage rates of the reproductive

number estimates was slightly lower than the average coverage rates of

the epidemic curve estimates in general, likely due to the additional error

brought by EpiEstim [21]. Compared to Eq (1), Eq (2) had higher coverage

rates and RMSE of the epidemic curve estimates when the reporting delay

distributions sharply improved at day 30 (coverage rate: from 0.83 to 0.90;

RMSE: from 9.69 to 8.04). The gain of using Eq (2) was even larger for

the reproductive number estimates in this case: the coverage rate increased

from 0.58 to 0.74 and the RMSE decreased from 0.07 to 0.05. For the other

two scenarios, Eq (2) was comparable to Eq (1). Overall, the Bayesian

credible interval was tight (indicated by the small RMSE) with acceptable

coverage rate (around 0.9) given appropriate model choice, when the line

list data was complete for the epidemic wave.

We also checked the coverage rate and RMSE of the case count estimates
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on each day based on symptom onset dates, in order to evaluate the

performance of our model from a temporal perspective (Fig 10 and Fig

11). Overall, the coverage rate was negatively correlated with the RMSE,

consistent with of our other results. The coverage rate of our estimate was

consistently over 0.9 except the last several days when the reporting delay

distribution did not sharply improve during the epidemic wave. There are

three reasons for this. First, back-calculation performed well in our model

and led to accurate estimates of daily case counts. Second, nowcasting

led to good estimates until the last few days, suggesting our nowcasting

framework is valid. Third, nowcasting led to poor estimates for the last

several days as the case counts of those days suffered most from the right

truncation issue, i.e., most of those case counts were to be reported after

the final reporting date (day 60) of the line-list data and thus unavailable

for analysis. Therefore, the poor nowcasting performance was excusable

given the right truncation issue was the worst for the last several days.

Table 1: Performance measures for complete data. The results were averaged over all simulated datasets

and dates for both the epidemic curve (Curve) and the reproductive numbers (Rt). The results format: coverage

rate (RMSE). Model 1 refers to the model in Eq (1) and model 2 refers to the model in Eq (2).

Improvement Maximum Delay
Model 1 Model 2

Curve Rt Curve Rt

No Correct
0.92

(7.48)

0.89

(0.05)

0.92

(7.72)

0.87

(0.05)

Incorrect
0.91

(7.94)

0.85

(0.05)

0.90

(8.13)

0.85

(0.05)

Sharp Correct
0.83

(9.69)

0.58

(0.07)

0.90

(8.04)

0.74

(0.05)

Incorrect
0.79

(10.59)

0.59

(0.07)

0.88

(8.66)

0.70

(0.05)

Gradual Correct
0.90

(7.69)

0.85

(0.05)

0.92

(7.23)

0.89

(0.05)

Incorrect
0.89

(7.87)

0.84

(0.05)

0.92

(7.37)

0.88

(0.05)

For delayed surveillance initiation, we assume four different starting dates

for the line list data: day 11, day 21, day 31, and day 41 (see appendix for
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more details). To enhance comparability of the results based on the line-list

data with different starting dates, we only used the Eq (1) for estimation.

In general, we estimate the epidemic curve well from the starting date

onward (Fig 3). For reproductive number estimation, the estimates become

reliable τ + 1 days after the starting date, since EpiEstim needs at least

τ + 1 days’ observations to produce unbiased estimates. For example, if the

starting date is day 11 and τ = 6 one should expect the epidemic curve

and reproductive number estimates to converge to their benchmarks from

day 11 and day 18 respectively. In general, estimation accuracy decreases

with longer delays (Table 2). For individual daily case counts, the coverage

rate (Fig 12) and the RMSE (Fig 13) were acceptable after the starting

date, and the impact on the nowcasted case counts was minimal. We still

observe that the estimated epidemic curve and reproductive numbers were

far better than the reported curve and its associated reproductive numbers,

unless there was a severe loss of early reporting (eg. if the starting date

was day 31 or 41).

3.2 Simulation results: real time estimation

We chose day 28 (before the peak) or day 38 (after the peak) as the final

reporting dates for the line-list data. As in the previous section, we only

used Eq (1) for estimation to ensure comparability of the results. When

using 28 days of data, we consistently underestimated the epidemic curve

and the reproductive numbers (Fig 4). The average coverage rates were

low (epidemic curve: 0.52, reproductive number: 0.37) and the RMSE were

large (epidemic curve: 34.45, reproductive number: 0.15). By comparison,

the average coverage rates were much higher if the final reporting date was

day 38 (epidemic curve: 0.81, reproductive number: 0.74), and in this case

the RMSE were much lower (epidemic curve: 16.67, reproductive numbers:

0.07) (Table 3).

Interestingly, our model had the best performance when there was gradual

improvement in the reporting delay distribution, especially if the final

reporting date was day 38 for the line list data. In this case, the coverage

rates and RMSE of the estimates were very close to those for complete
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Table 2: Performance measures for data with no early report. The results were averaged over all

simulated datasets and dates for both the epidemic curve (Curve) and the reproductive numbers (Rt). The

line-list data could start on day 11 (Data 1), day 21 (Data 2), day 31 (Data 3) or day 41 (Data 4). The results

format: coverage rate (RMSE).

Improvement Maximum Delay
Data 1 Data 2 Data 3 Data 4

Curve Rt Curve Rt Curve Rt Curve Rt

No Correct
0.91

(7.79)

0.85

(0.07)

0.71

(13.61)

0.59

(0.30)

0.52

(37.97)

0.41

(0.58)

0.36

(67.50)

0.20

(0.67)

Incorrect
0.90

(8.48)

0.82

(0.07)

0.70

(14.04)

0.56

(0.28)

0.52

(37.90)

0.40

(0.51)

0.36

(66.82)

0.20

(0.57)

Sharp Correct
0.83

(10.16)

0.60

(0.08)

0.62

(16.08)

0.29

(0.25)

0.48

(39.98)

0.30

(0.56)

0.35

(71.52)

0.14

(0.60)

Incorrect
0.79

(10.98)

0.60

(0.08)

0.61

(16.73)

0.34

(0.24)

0.46

(40.20)

0.33

(0.50)

0.35

(71.04)

0.18

(0.52)

Gradual Correct
0.89

(8.29)

0.82

(0.07)

0.68

(14.55)

0.51

(0.29)

0.49

(42.01)

0.33

(0.61)

0.34

(70.82)

0.13

(0.77)

Incorrect
0.89

(8.19)

0.82

(0.06)

0.68

(14.65)

0.51

(0.28)

0.49

(41.69)

0.33

(0.55)

0.33

(70.39)

0.14

(0.69)

data, and the coverage rates were consistently around 0.9 for all individual

daily case counts (Fig 14, Fig 15). In the other two scenarios, the coverage

rates and RMSE were much worse and very unstable. This is because our

model approximated the gradually improving reporting delay distribution

well as it was built on the small reporting periods, which could be perceived

as smoothing windows and lead to good local estimates. This is also

because most part of the epidemic curve and reproductive number estimation

was done by nowcasting (Fig 4), which benefits from gradually improved

reporting delays. When there was no improvement in the reporting delay

distribution, underestimation is worse due to more extreme right truncation.

When there was a sharp improvement for the reporting delay distribution,

we observed an erratic sudden jump of the daily count estimates, which

likely resulted from nowcasted case counts being overweighted as reporting

delays tended to be underestimated, a pattern that had been observed for

the complete data.
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Table 3: Performance measures for an ongoing epidemic wave. The results were averaged over all

simulated datasets and dates for both the epidemic curve (Curve) and the reproductive numbers (Rt). The

line-list data could end on day 28 (Data 1) or day 38 (Data 2). The results format: coverage rate (RMSE).

Improvement Maximum Delay
Data 1 Data 2

Curve Rt Curve Rt

No Correct
0.50

(37.74)

0.31

(0.17)

0.82

(15.69)

0.79

(0.06)

Incorrect
0.45

(40.14)

0.31

(0.17)

0.74

(17.83)

0.78

(0.06)

Sharp Correct
0.50

(37.67)

0.31

(0.17)

0.67

(23.60)

0.56

(0.10)

Incorrect
0.46

(40.20)

0.31

(0.17)

0.62

(24.68)

0.54

(0.11)

Gradual Correct
0.55

(27.95)

0.48

(0.12)

0.93

(10.73)

0.86

(0.05)

Incorrect
0.52

(29.43)

0.52

(0.11)

0.92

(11.19)

0.86

(0.05)

3.3 COVID-19 in Massachusetts

We estimated the epidemic curve based on the COVID-19 line list data

in Massachusetts and compared it with the reported curve (Fig 5). The

estimated epidemic curve was much smoother than the reported curve,

which indicates that most of the fluctuations were artificial. Based on the

epidemic curve, we estimate that the COVID-19 outbreak started in early

March in Massachusetts, and the daily count of cases showing symptoms

began to decline around mid April with a slight increase around May 10.

We estimated time-varying reproductive numbers assuming the distribution

of serial interval is Gamma(4.29, 1.18) and τ = 6. The reproductive number

estimates decreased from above 2 at the start of the outbreak to below 1.5

when lockdown that was enacted on March 17 (Fig 6). The stay-at-home

order (issued by the Governor on March 23) further reduced the reproductive

number below 1. The reopening plan was unveiled on May 11, at which

point the reproductive number began to increase again. The reproductive

number estimates based on the estimated epidemic curve corresponded

15

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.08.20238154doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.08.20238154
http://creativecommons.org/licenses/by-nc/4.0/


more closely to these control measures than those based on the reported

curve.

4 Discussion

Reproductive numbers are urgently needed for monitoring the progression

of the COVID-19 pandemic, and they should be estimated based on reliable

epidemic curve estimates, rather than the reported curve, to ensure minimal

loss of the epidemiological signal. We introduce a Bayesian approach to

estimate the epidemic curve and time-varying reproductive numbers from

line list data. This approach has two unique advantages over other similar

approaches. First, it is built on line list data which contains individual

reporting delays that allow the estimation of the reporting delay distribution

to be data-oriented and time-dependent. Second, it integrates the tasks of

estimation of the reporting delay distribution, imputation of the reporting

delay as well as estimation of the epidemic curve and reproductive numbers

into one Bayesian framework, making those three tasks interdependent. As

a result, our approach more accurately estimates uncertainty and is more

efficient than other approaches that perform the three tasks independently.

The results suggest the Bayesian approach is robust to unfavorable changes

in data availability and misspecification of the reporting delay or the

maximum delay assumption. Under typical assumptions, the Bayesian

approach produces accurate estimates (low RMSE) and reliable inference

(high coverage rate).

Unsurprisingly, the model performance does rely on data availability, and

it will be inadequate based on insufficient data. For a single epidemic wave,

our model estimates both the epidemic curve and reproductive numbers well

if line list data is available for the whole epidemic wave, though one should

be cautious about the model choice if the reporting system has significantly

improved over time. If there are severe delays in initiating surveillance, our

model will likely underestimate the case counts of the days prior to the

starting date of surveillance, and the Rt estimates will eventually converge

at a rate consistent with the serial interval. If estimation is performed

in the midst of an outbreak, the Bayesian approach will underestimate

16

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.08.20238154doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.08.20238154
http://creativecommons.org/licenses/by-nc/4.0/


the epidemic curve before the peak of the reported curve but performs

substantially better after the peak. This suggests that, in the case of single

epidemic wave, we need to wait until the peak of the reported curve has

passed to ensure there is sufficient data for estimating the reproductive

number using this approach. We stress that, if a line list data contains

multiple epidemic waves, the Bayesian estimates are at least accurate for all

except the last epidemic wave. To safely estimate the last epidemic wave,

one still needs to wait until the majority of its cases are reported.

The model is sensitive to sharp changes in the reporting delay distribution.

If the reporting delay distribution remains unchanged or changes gradually,

our model generally performs well. Nowcasting performance is actually

improved when the reporting delay distribution improves over time, due to

shorter reporting delays. However, if there is a sharp improvement for the

reporting delay distribution, our model will generate inaccurate estimates

during the period when the two underlying reporting delay distributions

overlap, resulting in underestimation of reporting delays. In this case, it

would be beneficial to use Eq (2) to fit the reporting delay distribution

instead. In general, we recommend using Eq (2) for the reporting delay

distributions with changes and Eq (1) for those without changes.

Our model generates a posterior sample of time-varying reproductive number

estimates, based on the epidemic curve estimates. We use EpiEstim to

compute time-varying reproductive numbers, conditional on the maximum

length and distribution of serial interval. We choose EpiEstim because it is

more appropriate for real-time analysis and tracking of temporal changes

(such as impact of a policy), compared to other alternatives [17]. We

recommend using an integrated approach that includes both inference of

the reporting delays and estimation of reproductive numbers, to incorporate

all sources of uncertainty in modeling, since we are better able to estimate

variability due to estimation from this multistage process. We note a few

limitations of our approach that are inherited from the EpiEstim estimator.

First, the maximum length of serial interval s and the sliding window

size τ are subjective choices [21]. Second, it is possible to have negative

serial intervals for COVID-19 which is currently not allowed by EpiEstim

[25]. Third, it is most accurate to estimate reproductive numbers from
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the incidence curve rather than the epidemic curve for EpiEstim [21, 26].

However, infection events would be very hard, if not impossible, to observe

for the current pandemic and thus strong parametric assumptions are

likely needed [12, 14], which is beyond the scope of this paper. Fourth,

reproductive number estimates will be less trustworthy if the fraction of

infection observed is not constant over time [3, 20, 27]. For COVID-19, this

is likely the case considering the evolution of testing and the significant

proportion of asymptomatic transmission [28], requiring further adjustment

of the data.

Empirically, there are some important issues to consider in properly imple-

menting our method. First, our model is region-specific, i.e., one need to fit

our model to line list data of a single region to avoid systematic differences

between regions. The region is defined such that each region is deemed to

have its own reporting system (and thus its unique reporting delay distri-

bution). For example, if the reporting system differs at the county level,

we should use line list data of each county (rather than each state) for our

model. Second, the reporting period in our model needs to be carefully and

properly defined, as our model is essentially a moving-window smoothing

method. As with most other moving-window smoothing methods, the model

performance depends on the moving-window size, which in our case is the

reporting period size [17]. The moving-window size is known for its pivotal

role in the bias-variance trade-off and thus should be neither too small nor

too large for estimating the reporting delay distribution [5]. Third, our

model cannot handle negative reporting delays which are possible for the

current COVID-19 pandemic due to contact tracing, though our assumption

of non-negative reporting delays is consistent with the literature [3, 14].

Overall, we provide an useful tool to estimate timely reproductive number

estimates based on a Bayesian approach that integrates reporting delay

imputation, back-calculation and nowcasting, all of which are interdependent

and critical for reproductive number estimation. Our approach is robust to

reasonable deviations from the model assumptions. Most importantly, it

is more epidemiological meaningful than estimates based on the reported

curve and thus a better option for surveillance of the COVID-19 pandemic.
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[19] Maëlle Salmon, Dirk Schumacher, Klaus Stark, and Michael Höhle.
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Figure 2: The model fit for complete data. For all graphs: the black

solid curve corresponds to estimates based on the known epidemic curves

and the black dashed curve corresponds to estimates based on the reported

curves. The grey-shaded region superimposed on the curve depicts the 95%

Bayesian credible interval and the grey-shade region on the right indicates

the region of nowcasting. The colored curves represent different model

choices. All values were averaged over 1000 simulated datasets with the

correct l. A: The epidemic curve estimates if the reporting delay distribution

was unchanged. B: The reproductive number estimates if the reporting

delay distribution was unchanged. C: The epidemic curve estimates if the

reporting delay distribution was sharply improved. D: The reproductive

number estimates if the reporting delay distribution was sharply improved.

E: The epidemic curve estimates if the reporting delay distribution was

gradually improved. F: The reproductive number estimates if the reporting

delay distribution was gradually improved.
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Figure 3: The model fit for data with no early report. For all graphs:

the black solid curve corresponds to estimates based on the known epidemic

curves and the black dashed curve corresponds to estimates based on the

reported curves. The grey-shaded region superimposed on the curve depicts

the 95% Bayesian credible interval and the grey-shade region on the right

indicates the region of nowcasting. The colored curves represent different

starting dates for the line-list data. All values were averaged over 1000

simulated datasets with the correct l. A: The epidemic curve estimates

if the reporting delay distribution was unchanged. B: The reproductive

number estimates if the reporting delay distribution was unchanged. C:

The epidemic curve estimates if the reporting delay distribution was sharply

improved. D: The reproductive number estimates if the reporting delay

distribution was sharply improved. E: The epidemic curve estimates if the

reporting delay distribution was gradually improved. F: The reproductive

number estimates if the reporting delay distribution was gradually improved.
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Figure 4: The model fit for an ongoing epidemic wave. For all graphs:

the black solid curve corresponds to estimates based on the known epidemic

curves and the black dashed curve corresponds to estimates based on the

reported curves. The grey-shaded region superimposed on the curve depicts

the 95% Bayesian credible interval. The colored curves represent different

ending dates for line-list data, and their nowcasting regions are displayed

as the gray-shaded areas with boundary lines in their corresponding colors.

All values were averaged over 1000 simulated datasets. All values were

averaged over 1000 simulated datasets with the correct l. A: The epidemic

curve estimates if the reporting delay distribution was unchanged. B:

The reproductive number estimates if the reporting delay distribution

was unchanged. C: The epidemic curve estimates if the reporting delay

distribution was sharply improved. D: The reproductive number estimates

if the reporting delay distribution was sharply improved. E: The epidemic

curve estimates if the reporting delay distribution was gradually improved.

F: The reproductive number estimates if the reporting delay distribution

was gradually improved.
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Figure 5: Estimated epidemic curve of COVID-19 in Mas-

sachusetts. The estimated epidemic curve was calculated based on weekly

smoothing window and l = 60. The line-list data started on March 4, 2020

and ended on May 14, 2020. The earliest possible date that a case showed

symptoms was February 1, 2020 and nowcasting started from March 16,

2020. The dashed curve represents the reported curve.
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Figure 6: Estimated time-varying reproductive number of COVID-

19 in Massachusetts. The estimates were calculated based on EpiEstim

and a posterior sample of epidemic curve estimates. We identify the

dates for four key policies: large gathering banned (March 13, 2020), lock-

down (March 17, 2020), stay-at-home order (March 23, 2020) and the plan

of reopening (May 11, 2020). By comparison, the reproductive number

estimates based on the reported curve are described by the dashed curve.
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Figure 7: Impact of the maximum delay assumption for complete

data when the reporting delay distribution was unchanged. For all

graphs: the black solid curve corresponds to estimates based on the known

epidemic curves and the black dashed curve corresponds to estimates based

on the reported curves. The grey-shaded region superimposed on the curve

depicts the 95% Bayesian credible interval and the grey-shade region on

the right indicates the region of nowcasting. The colored curves represent

different model choices. All values were averaged over 1000 simulated

datasets.
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Figure 8: Impact of the maximum delay assumption for complete

data when the reporting delay distribution was sharply improved.

For all graphs: the black solid curve corresponds to estimates based on the

known epidemic curves and the black dashed curve corresponds to estimates

based on the reported curves. The grey-shaded region superimposed on

the curve depicts the 95% Bayesian credible interval and the grey-shade

region on the right indicates the region of nowcasting. The colored curves

represent different model choices. All values were averaged over 1000

simulated datasets.
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Figure 9: Impact of the maximum delay assumption for complete

data when the reporting delay distribution was gradually im-

proved. For all graphs: the black solid curve corresponds to estimates

based on the known epidemic curves and the black dashed curve corre-

sponds to estimates based on the reported curves. The grey-shaded region

superimposed on the curve depicts the 95% Bayesian credible interval and

the grey-shade region on the right indicates the region of nowcasting. The

colored curves represent different model choices. All values were averaged

over 1000 simulated datasets.
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Figure 10: Coverage rates of all estimated daily counts of symp-

tom onset cases for complete data. For all graphs: The colored curves

represent different model choices and the grey-shaded region indicates the

nowcasting region. The coverage rates were calculated based on 1000 simu-

lated datasets. A: The coverage rates given the reporting delay distribution

was unchanged and l was correct. B: The coverage rates given the reporting

delay distribution was unchanged and l was incorrect. C: The coverage

rates given the reporting delay distribution was sharply improved and l

was correct. D: The coverage rates given the reporting delay distribution

was sharply improved and l was incorrect. E: The coverage rates given the

reporting delay distribution was gradually improved and l was correct. F:

The coverage rates given the reporting delay distribution was gradually

improved and l was incorrect.
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Figure 11: RMSE of all estimated daily counts of symptom onset

cases for complete data. For all graphs: The colored curves represent

different model choices and the grey-shaded region indicates the nowcasting

region. The RMSE were calculated based on 1000 simulated datasets. A:

The RMSE given the reporting delay distribution was unchanged and l was

correct. B: The RMSE given the reporting delay distribution was unchanged

and l was incorrect. C: The RMSE given the reporting delay distribution

was sharply improved and l was correct. D: The RMSE given the reporting

delay distribution was sharply improved and l was incorrect. E: The RMSE

given the reporting delay distribution was gradually improved and l was

correct. F: The RMSE given the reporting delay distribution was gradually

improved and l was incorrect.
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Figure 12: Coverage rates of all estimated daily counts of symptom

onset cases for data with no early report. For all graphs: The colored

curves represent different starting dates for line-list data and the grey-shaded

region indicates the nowcasting region. The coverage rates were calculated

based on 1000 simulated datasets. A: The coverage rates given the reporting

delay distribution was unchanged and l was correct. B: The coverage rates

given the reporting delay distribution was unchanged and l was incorrect.

C: The coverage rates given the reporting delay distribution was sharply

improved and l was correct. D: The coverage rates given the reporting delay

distribution was sharply improved and l was incorrect. E: The coverage

rates given the reporting delay distribution was gradually improved and l

was correct. F: The coverage rates given the reporting delay distribution

was gradually improved and l was incorrect.
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Figure 13: RMSE of all estimated daily counts of symptom onset

cases for data with no early report. For all graphs: The colored curves

represent different starting dates for line-list data and the grey-shaded region

indicates the nowcasting region. The RMSE were calculated based on 1000

simulated datasets. A: The RMSE given the reporting delay distribution

was unchanged and l was correct. B: The RMSE given the reporting delay

distribution was unchanged and l was incorrect. C: The RMSE given the

reporting delay distribution was sharply improved and l was correct. D:

The RMSE given the reporting delay distribution was sharply improved and

l was incorrect. E: The RMSE given the reporting delay distribution was

gradually improved and l was correct. F: The RMSE given the reporting

delay distribution was gradually improved and l was incorrect.
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Figure 14: Coverage rates of all estimated daily counts of symptom

onset cases for an ongoing epidemic wave. For all graphs: The

colored curves represent different ending dates for line-list data, and their

nowcasting regions are displayed as the gray-shaded areas with boundary

lines in their corresponding colors. The coverage rates were calculated based

on 1000 simulated datasets. A: The coverage rates given the reporting

delay distribution was unchanged and l was correct. B: The coverage rates

given the reporting delay distribution was unchanged and l was incorrect.

C: The coverage rates given the reporting delay distribution was sharply

improved and l was correct. D: The coverage rates given the reporting delay

distribution was sharply improved and l was incorrect. E: The coverage

rates given the reporting delay distribution was gradually improved and l

was correct. F: The coverage rates given the reporting delay distribution

was gradually improved and l was incorrect.
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Figure 15: RMSE of all estimated daily counts of symptom onset

cases for an ongoing epidemic wave. For all graphs: The colored curves

represent different ending dates for line-list data, and their nowcasting

regions are displayed as the gray-shaded areas with boundary lines in

their corresponding colors. The RMSE were calculated based on 1000

simulated datasets. A: The RMSE given the reporting delay distribution

was unchanged and l was correct. B: The RMSE given the reporting delay

distribution was unchanged and l was incorrect. C: The RMSE given the

reporting delay distribution was sharply improved and l was correct. D:

The RMSE given the reporting delay distribution was sharply improved and

l was incorrect. E: The RMSE given the reporting delay distribution was

gradually improved and l was correct. F: The RMSE given the reporting

delay distribution was gradually improved and l was incorrect.
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