
Implications of delayed reopening in controlling the

COVID-19 surge in Southern and West-Central USA

Raj Dandekar1, 6, *, Emma Wang2, George Barbastathis3, 4, and Chris Rackauckas5

1Department of Computational Science and Engineering, Massachusetts Institute
of Technology, Cambridge, MA 02139, USA

2Department of Electrical Engineering and Computer Sciences, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA

3Department of Mechanical Engineering, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

4Singapore-MIT Alliance for Research and Technology (SMART) Centre,
Singapore 138602

5Department of Applied Mathematics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

6Lead Contact
*Correspondence: rajd@mit.edu

September 10, 2021

1 SUMMARY

In the wake of the rapid surge in the Covid-19 infected cases seen in Southern and West-Central
USA in the period of June-July 2020, there is an urgent need to develop robust, data-driven models
to quantify the effect which early reopening had on the infected case count increase. In particular,
it is imperative to address the question: How many infected cases could have been prevented,
had the worst affected states not reopened early? To address this question, we have developed a
novel Covid-19 model by augmenting the classical SIR epidemiological model with a neural network
module. The model decomposes the contribution of quarantine strength to the infection timeseries,
allowing us to quantify the role of quarantine control and the associated reopening policies in the
US states which showed a major surge in infections. We show that the upsurge in the infected
cases seen in these states is strongly co-related with a drop in the quarantine/lockdown strength
diagnosed by our model. Further, our results demonstrate that in the event of a stricter lockdown
without early reopening, the number of active infected cases recorded on 14 July could have been
reduced by more than 40% in all states considered, with the actual number of infections reduced
being more than 100,000 for the states of Florida and Texas. As we continue our fight against
Covid-19, our proposed model can be used as a valuable asset to simulate the effect of several
reopening strategies on the infected count evolution; for any region under consideration.

2 BACKGROUND

The Coronavirus respiratory disease 2019 originating from the virus “SARS-CoV-2”1,2 has led
to a global pandemic, leading to more than 50 million confirmed global cases in more than 200
countries as of November 13, 2020.3 In the United States, the first infections were detected in
Washington State as early as January 20, 2020,4 and now it is being reported that the virus had
been circulating undetected in New York City as early as mid-February.5 As of September 21,
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(a) Arizona (b) Florida (c) Louisiana

(d) Nevada (e) Oklahoma (f) South Car-
olina

(g) Tennessee (h) Texas (i) Utah

Figure 1: Active infected cases over time as of July 14, 2020, shown with a 7-day moving average, for the
Southern and West-Central states considered in the present study.

Table 1: Reopening details for different states considered in the present study

State Reopening date Reopening details
1. Arizona May 15 June 17: Mask regulations strengthened,

June 29: Partial reversal of reopening
2. Florida May 4 June 3: Phase 2 of reopening
3. Louisiana May 15 June 5: Phase 2 of reopening
4. Nevada May 9 May 26: Phase 2 of reopening
5. Oklahoma April 24 May 15: Phase 2 of reopening,

June 1: Phase 3 of reopening
6. South Carolina May 4 May 4: Stay at home order lifted,

further facilities reopened till May 18
7. Tennessee April 30 May 22: Phase 2 of reopening.
8. Texas May 1 May 18: Phase 2 of reopening,

June 3: Phase 3 of reopening
9. Utah May 1 May 1: Gradual reopening

2020, the United States has ≈ 6.9 million infected cases since the virus began to spread.

Since the second week of June, a second surge of Covid-19 was seen in the United States,6 with
rapidly increasing daily infected cases, hospitalization rates and death rates.7,8 Initially driven
by disastrous situations in the states of Arizona, South Carolina, Texas, Florida and Georgia,6

the surge in cases was also later seen in several other Southern and West-Central states.9 This
surge can be seen in figure 1 which shows the active infected cases over time as of July 14, 2020
with a 7-day moving average for 9 states. States which reopened early show a generally strong
co-relation with the rise in the infected cases over the 3-month period from late April to mid July
2020.9 For example, states which opened before May 15 showed daily infected case increments
of: Florida (1393 %), Arizona (858 %), South Carolina (999 %), Alabama (547 %), Oklahoma
(477 %), Tennessee (279 %), Georgia (245 %), Mississippi (215 %), Nevada (697 %), Texas (680
%) and Utah (287 %); while states which reopened after May 29 showed values of: Michigan (16
%), Pennsylvania (−26 %), New York (−52 %), New Jersey (−32 %) and Illinois (−54 %). Thus,
although early reopening seems to be co-related to the second surge of cases seen in the USA, there
is a need for robust, data-driven quantification of the effect of early reopening on the growth of
infected count data. More importantly, it is of utmost importance to answer the question: How
many infected cases could have been prevented, had the worst affected states not reopened early?
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In an effort to address this question, we have developed a machine learning-aided epidemio-
logical model. The novelty of our model arises from the fact that it allows us to decompose the
contribution of quarantine/lockdown strength evolution to the infected data timeseries for the re-
gion under consideration. This enables us to simulate the effect of varying quarantine strength
evolutions and hence varying reopening strategies on the infected count data. We define reopening
as beginning when a state allows its stay-at-home order to expire, or, in the case of states that
never issued a stay-at-home order, when a state first starts allowing non-essential businesses, such
as dine-in restaurants and hair salons, to reopen.10,11 The reopening details for the states con-
sidered in the study are shown in table 1. Considering nine US states which showed a significant
surge in cases since the last month, we demonstrate that our model shows a drop in the quarantine
strength evolution when these states were reopened. Furthermore, we show that maintaining a
strict lockdown without early reopening would have led to about 500,000 fewer infected cases in
all these states combined.

3 METHODS

3.1 QSIR Model

(a)

(b)

Figure 2: (a) Schematic of the augmented QSIR model considered in the present study. (b) Schematic of
the neural network architecture used to learn the quarantine strength function Q(t).

Standard SIR model

The SIR (Susceptible - Infected - Recovered) is governed by the following set of ODEs

dS

dt
= −β S(t) I(t)

N
(1)

dI

dt
= β S(t) I(t)

N
− γI(t) (2)

dR

dt
= γI(t). (3)

where β, γ are the contact and recovery rates respectively. We use this framework as our baseline
model to be augmented with an neural network module. We do not consider the possibility
of recovered individuals being reinfected.12 We also do not consider the waning of immunity
associated with Covid-19 as discovered in recent studies.13
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QSIR model: ODE formulation

The QSIR ODE model formulation is similar to the one studied previously,14 and is briefly ex-
plained in this section. The equations governing the QSIR model are as follows

dS

dt
= −β S(t) I(t)

N
(4)

dI

dt
= β S(t) I(t)

N
− (γ +Q(t)) I(t)

= β S(t) I(t)
N

− (γ +NN(W,U)) I(t) (5)

dR

dt
= γI(t) + δT (t) (6)

dT

dt
= Q(t) I(t) − δT (t) = NN(W,U) I(t) − δT (t). (7)

The SIR model is augmented by introducing a time varying quarantine strength rate term Q(t)
represented by a neural network15 and a quarantined population T (t), which is prevented from
having any further contact with the susceptible population. Thus, the term I(t) denotes the ac-
tive infected population (Actively infected = Cumulative infected - Recovered) still having contact
with the susceptibles, as done in the standard SIR model, while the term T (t) denotes the infected
population who are effectively quarantined and isolated.

Augmented QSIR Model: Initial Conditions
The starting point t = 0 for each simulation was the day at which 500 infected cases was crossed,
i.e. I0 ≈ 500. The number of susceptible individuals was assumed to be equal to the population of
the considered region. Also, in all simulations, the number of recovered individuals was initialized
from data at t = 0 as defined above. The quarantined population T (t) is initialized to a small
number T (t = 0) ≈ 10.

Augmented QSIR Model: Parameter estimation
The data for the infected, recovered case counts was obtained from the publicly maintained repos-
itory by the Center for Systems Science and Engineering at John Hopkins University. The loss
function is defined as

LNN(W,β, γ, δ) =
∣∣log(I(t) + T (t)) − log(Idata(t))∣∣2

+ ∣∣log(R(t)) − log(Rdata(t))∣∣2
(8)

Parameter optimization for W,β, γ, δ was performed by minimizing the loss function defined in
Equation 8 using the approach employed in prior studies14,16,17 using an ADAM optimizer18 with
a learning rate of 0.01. For most of the states under consideration, W,β, γ, δ were optimized by
minimizing the loss function given in (8). For states with a low recovered count: Arizona, Florida,
Nevada and Texas, we employed a two stage optimization procedure to find the optimal W,β, γ, δ.
In the first stage, (8) was minimized. For the second stage, we fix the optimal γ, δ found in the
first stage to optimize for the remaining parameters: W,β based on the loss function defined just
on the infected count as L(W,β) = ∣∣log(I(t)+T (t))− log(Idata(t))∣∣2. Such an approach was found
to be optimal for analyzing low recovered count data in previous studies.14

In all states considered in the present study, we trained the model using data starting from the
dates when the 500th infection was recorded in each region and up to July 14, 2020. For each state
considered, Q(t) denotes the rate at which infected persons are effectively quarantined and isolated
from the remaining population, and thus gives composite information about (a) the effective testing
rate of the infected population as the disease progresses and (b) the intensity of the enforced
quarantine as a function of time.
This QSIR ODE framework applied on the infected and recovered data is used to estimate the
quarantine strength function Q(t) in a particular state as shown in the first and second columns
of figure 3.
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QSIR Model: SDE formulation

The ODE modelling framework described above is a deterministic approach to model transfer
of species (here: people) from one compartment to another through different reaction channels.
Such a deterministic approach ignores any random fluctuations during species transfer from one
compartment to the other. To include such stochastic effects and thus get a measure of the model
uncertainty, we note that the augmented SIR framework derives from the chemical master equation
which descibes the time evolution of the probability of such a system of interacting species to be
in a given state at a given time (details in Supplementary Information). Although the chemical
master equation cannot be solved analytically, under certain conditions, it can be distilled down
to a stochastic differential equation (SDE) which captures the fluctuations in species transfer as
random walks. Such an SDE, also known as the Chemical Langevin Equation, is thus based on the
underlying ODE framework (macroscopic picture) and also includes stochastic effects reminiscent
of microscopic modelling. In fact, in the Supplementary Information, we show that the microscopic
simulation, macroscopic ODE formulation and the Chemical Langevin Equation (which acts as a
bridge between the two) are all equivalent to each other.

The equivalent stochastic formulation or the Chemical Langevin equation for the augmented
SIR model is

dS = − [β S(t) I(t)
N

]dt −
¿
ÁÁÀ[β S(t) I(t)

N
]dW1(t) (9)

dI = [β S(t) I(t)
N

− γI(t) −Q(t)I(t)]dt

+
√

β S(t) I(t)
N

dW1(t) −
√
γI(t)dW2(t) −

√
Q(t)I(t)dW3(t) (10)

dR = [γI(t) + δT (t)]dt +
√
γI(t)dW2(t) +

√
δT (t)dW4(t) (11)

dT = [Q(t) I(t) − δT (t)]dt +
√
Q(t)I(t)dW3(t) −

√
δT (t)dW4(t) (12)

In (9), Wi(t) ∼ N(0, t) is a normally distributed random variable with mean zero and vari-
ance t or dWi(t) ∼ N(0, dt). It should also be noted that each Wi(t) represents an independent
Brownian motion. The simulations were performed using the Catalyst.jl software in Julia using
the LambaEM algorithm based on.19 1000 trajectories were simulated for each state.

This QSIR SDE framework along with the simulated quarantine functions for no reopening is
used to predict the new infected case count and hence estimate the reduction in the number of
infected cases under the simulated no-reopening quarantine function. The results are shown as 5%
and 95% quantiles in the third column of figure 3.

Mean Absolute Percentage Error

The Mean Absolute Percentage Error (MAPE) is defined as

MAPE =
100

N
∗∑

[I(t) + T (t) +R(t)] − [Idata(t) +Rdata(t)]
[Idata(t) +Rdata(t)]

(13)

where N is the number of observations.

4 RESULTS

The first stage of our analysis is using our model,14 called the QSIR model to diagnose the un-
derlying quarantine strength evolution Q(t) in the regions under consideration. By applying the
QSIR model to more than 70 countries globally, we have established the validity of Q(t) in ac-
curately diagnosing the on-the-ground quarantine situation in majorly affected European, South

5

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2020.12.01.20242172doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.01.20242172
http://creativecommons.org/licenses/by-nd/4.0/


American and Asian countries.14 A slow growth of Q(t) without a significant increase indicates
relaxed quarantine policies, a sharp transition point in Q(t) is indicative of a sudden ramp-up of
quarantine measures, and an inflection point corresponds to the time when the quarantine response
was the most rapid in the region under consideration. The results of our model applied globally
to all continents are hosted publicly at covid19ml.org.

In this study, to perform the quarantine diagnosis to analyze the implications of delayed reopen-
ing, we applied the QSIR model to 9 US states which showed a significant surge in the infected case
count in the last month: Arizona, Florida, Louisiana, Nevada, Oklahoma, South Carolina, Ten-
nessee, Texas and Utah. Figure 3 shows representative results for Arizona, Nevada, South Carolina
and Tennessee. The plots for the remaining states are provided in the Supplementary Information.
Figures 3 a, d, g, j show the comparison of the infected and recovered count estimated by our model
with the actual data. A reasonable agreement is seen for all states, with the model being able to
capture the rise in infections seen in the tail end of the timeseries. The QSIR model details are pro-
vided in the Methods section; Mean Absolute Percentage Error (MAPE) values for the model along
with the epochs required for convergence for each state are provided in Supplementary Information.

Figures 3 b, e, h, k show the quarantine strength evolution Q(t) as learnt by the neural network
module, which shows a decline whose starting point corresponds well to the time when these states
began reopening, as seen from table 1 and the green dotted line in the figures 3 b, e, h, k. In
some states, the decline in Q(t) starts later than the reopening date; possibly corresponding to the
Phase 2 or Phase 3 of reopening (table 1) or because of the time delay for population level changes
to be seen in the infected count evolution, after reopening. Q(t) trained by our model shows a
significant drop after early reopening in all Southern and West-Central states that showed a surge
in cases last month; whereas the North-Eastern states of New York, New Jersey and Illinois, which
reopened late and showed no surge in infections, did not show a drop in Q(t) (Table 2 and fig-
ures in Supplementary Information). Thus, the upsurge in the infected cases seen in these states is
strongly co-related with a drop in the quarantine/lockdown strength Q(t) diagnosed by our model.
This is indicative of two things: (a) the Southern and West-Central states reopened early, which
led to a relaxed imposition of quarantine/lockdown measures in these states and consequently a
surge in infections was seen, and (b) the North-Eastern states of New York, New Jersey and Illi-
nois reopened late, and even after reopening, a relatively low contact rate was maintained amongst
the population, leading to a relatively high magnitude of the imposed quarantine strength, which
prevented a surge of infections in these states.

After confirming that our model is able to accurately depict the co-relation between the surge in
infections and early reopening in these states through the diagnosed Q(t), we proceed to the second
stage of our analysis. In the second stage, we use the diagnosed Q(t) to address the question: How
many infected cases would have been reduced, had the worst affected states not reopened early? To
answer this question, we simulate the ”no-reopening” strategy by assuming that Q(t) is maintained
at the value it was before reopening, without decreasing. This simulated Q(t) is shown in Figures
3 b, e, h, k. The flexibility of our model allows us to run our model with this simulated Q(t) for all
states considered. To quantify the aleatory uncertainty resulting from random fluctuations in the
model, we utilized the chemical Langevin equation extension to the QSIR model whose definition
and justification is described in the Methods and Supplemental Information section. This allows us
to estimate bootstrapped confidence intervals resulting from 1000 simulations of such a stochastic
model, and thus quantify the effect of such a ”no-reopening policy” on the epidemic spread. The
infected count evolution for the simulated Q(t) without reopening is shown in Figures 3 c, f, i,
l (5% and 95% quantiles are shown). We can see that, for all these states, instead of seeing a
spike in infections, we would have seen a plateau in the infected case count evolution. The number
and the percentage of infected cases that would have been prevented by July 14 had these states
not reopened are shown in Table 3. It is evident that the number of infections could have been
reduced by more than 40% in all states considered, with the actual number of infections reduced
being more than 100,000 for the states of Florida and Texas. Even the less populated states of
Louisiana, South Carolina and Tennessee show mean infected case reduction values of 44%,84%
and 47% respectively, which correspond to 36,000,51,000, and 31,000 infected cases reduced.
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Figure 3: For the states of Arizona, Nevada, South Carolina and Tennessee, figure shows: (a, d, g, j)
Model recovery of infected and recovered case count as of 14 July, 2020. (b, e, h, k) Quarantine strength
function as discovered by our trained model (with reopening). This is shown along with the quarantine
strength function which we use to simulate strict quarantine without reopening after stay-at-home order
was imposed. (c, f, i, l) Estimated infected count if strict quarantine and lockdown measures were followed
without reopening (5% and 95% quantiles are shown) as compared to the values corresponding to the
actual early reopening scenario.
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Table 2: Drop in quarantine strength function, Q(t) after reopening as discovered by our trained model.
Q(t) trained by our model shows a significant drop for all Southern and West-Central states which showed
a surge in cases from reopening; whereas the North-Eastern states which showed no surge don’t see a drop
in Q(t).

State Reopening date % increase in daily cases Maximum % decrease
since reopening in Q(t) after reopening

1. Arizona May 15 +858 +22
2. Florida May 4 +1393 +10
3. Louisiana May 15 +193 +30
4. Nevada May 9 +697 +25
5. Oklahoma April 24 +477 +29
6. South Carolina May 4 +999 +71
7. Tennessee April 30 +279 +44
8. Texas May 1 +680 +29
9. Utah May 1 +287 +39
10. New York May 29 −52 −45
11. New Jersey June 9 −32 −60
12. Illinois May 29 −54 −8

Table 3: Infected count reduction by 14 July, 2020, if states had not reopened early, as estimated by our
model.

State % decrease Mean Case reduction Mean case
(5% - 95% quantiles) % decrease case reduction

1. Arizona 35 − 62 49 44000 − 79000 63000
2. Florida 20 − 75 49 57000 − 218000 144000
3. Louisiana 37 − 50 44 31000 − 41000 36000
4. Nevada 32 − 68 51 10000 − 20000 15000
5. Oklahoma 46 − 69 58 10000 − 15000 13000
6. South Carolina 83 − 86 84 50000 − 52000 51000
7. Tennessee 41 − 53 47 27000 − 36000 31000
8. Texas 41 − 51 46 115000 − 143000 129000
9. Utah 35 − 47 41 11000 − 14000 12000

5 CONCLUSION

In this study, we have developed a novel methodology to quantify the effect of early reopening on
the infected case count surge seen during the period of June-July 2020. We have proposed a ma-
chine learning model, called the QSIR model, rooted firmly in fundamental epidemiology principles
which has the following attributes: (a) it is highly interpretable with few free parameters rooted in
an epidemiological model, (b) it relies on only Covid-19 data and not on previous epidemics and (c)
it can decompose the infected timeseries data to reveal the quarantine strength/policy variation,
Q(t), in the region under consideration. To demonstrate the validity of our model in capturing
the actual quarantine policy evolution in a particular region, the model has been applied to 70
countries globally. The quarantine strength behaviour learnt from the model accurately mimics
the on-the-ground situation in majorly affected European, South American and Asian continents.
The results for this global analysis are hosted at covid19ml.org.14

After confirming our belief in the model through a global analysis, we apply the model to
the Southern and West-Central US states which have shown a massive surge in Covid-19 infected
cases since June 2020. We demonstrate that the Q(t) extracted by our model shows a significant
drop in value for the Southern and West-Central states which reopened early and showed a surge
in infections. The time at which Q(t) starts to decline generally agrees well with the reopening
date for the states considered. Since the decline in Q(t) is strongly co-related to the surge of
infections and also the reopening date for states which reopened early, we can then simulate the
effect of ”no-reopening” by maintaining the Q(t) at a constant level after reopening, instead of

8

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2020.12.01.20242172doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.01.20242172
http://creativecommons.org/licenses/by-nd/4.0/


declining. We show that maintaining a steady imposition of quarantine/lockdown control would
have played a massive role in bringing down the infected count by more than 40% in all states con-
sidered, with the infections reduced reaching more than 100,000 for the states of Florida and Texas.

We have proposed a novel machine learning methodology, rooted in fundamental epidemiolog-
ical models; which is able to recover the real time quarantine strength evolution for any region
under consideration. As the pandemic evolves and we continue our fight against Covid-19; and for
future outbreaks, our globally applicable methodology can be a valuable asset for researchers and
policy makers to simulate several reopening strategies, counterfactual scenarios and analyze their
impact on the infected count evolution. Our findings highlight that as we continue the fight against
Covid-19, it is imperative to reduce the contact between susceptible and infected individuals in
public places by formulating robust safety guidelines. Such guidelines implemented and maintained
in the affected states would ensure a high level of quarantine strength associated with that state
and can prevent a future surge or wave in the Covid-19 infected count timeseries.

Validation of the model robustness and parameter identifiability have been mentioned in the
Supplementary Information. We have also compared an equivalent of the effective reproduction
number called the Covid spread parameter in our study, with other studies to further validate
the results of our modelling approach. The Covid spread parameter is defined by (a) the infected
individuals and (b) the recovered individuals from both the infected and the quarantined states;
since both of those effectively don’t further contribute to the infection spread.14

The results of our model should be taken in the context of its assumptions. Ideally, one needs to
consider the shifting US testing policies for the time period under consideration. Since the testing
efforts did not show a significant increase during and after the reopening in the US states in the
time period considered within the present study20,21 and we did not want to burden our model with
additional parameters to fit; testing compartments have not been included in the present study.
Additionally, several studies in literature22–25 have attempted to incorporate underreporting of
infected/recovered cases in their modelling paradigm. Most of these studies use previously known
estimates of testing data, serology data or Infection-Fatality-Rate(IFR). In these studies involving
multiple parameters, a number of parameters are assumed to fixed at the start of the simulation
from prior studies. These parameters include and are not limited to: time between onset of infec-
tions and symptoms, transmission duration, rate at which hospitalized patients recover,25 mean
duration from symptom onset to recovery22 or even the IFR ratio.22 A second class of studies uses
antibody testing from collected serum samples to estimate the actual number of infected cases.26

As the pandemic unfolds and starts spreading, the first information available is the number
of infected, recovered and deaths (for example: the John Hopkins public repository for Covid-19
tracking). Unless we have serum sample data information or we can confidently rely on prior
studies for assessment of certain parameters, accurate information of the underreporting factor is
difficult to obtain in real time. One of the goals of the present modelling methodology is to assist
researchers and policy makers with quarantine diagnosis information in real time, with no reliance
on parameters derived from prior studies.

Finally, the model is based on the SIR framework, which assumes a constant, age-independent
contact and recovery rate between the infected and susceptible populations. Additionally, we do
not consider the spatial heterogeneity in the infected count within a particular state and assume
the governing dynamics to be only time-dependent. Consideration of these second-order aspects
would further refine the model and would be the subject of future studies.

9

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2020.12.01.20242172doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.01.20242172
http://creativecommons.org/licenses/by-nd/4.0/


6 Supplementary Information

Model-diagnosed quarantine strength for North-Eastern US states

Figure 4 shows the application of the model to the north-eastern states of New York, New Jersey
and Illinois along with the diagnosed quarantine strength function Q(t) for these states. These
states do not show a decline in Q(t). This corresponds well to the delayed reopening and generally
stronger quarantine measures employed in the North-Eastern US states. Since Q(t) does not
decrease, these states did not show a surge in infections starting June 2020, unlike their Southern
and West-Central counterparts. The difference in these results between the North-Eastern and
Southern, West-Central states indicates two things: (a) it strengthens the validity of our proposed
model in capturing the real-time reopening scenario in different states through the evolution of the
diagnosed Q(t), and, more importantly, (b) it further validates the role played by early reopening
in reducing Q(t) and subsequently leading to a surge of new infected cases in the Southern and
West-Central US states.

Impact of early reopening on the states of Louisiana, Florida, Oklahoma,
Texas and Utah

Figure 5, 6 implements a similar analysis to study the effect of early reopening for the states of
Louisiana, Nevada, Oklahoma, Texas and Utah, as done for the states of Arizona, Nevada, South
Carolina and Tennessee. Similar to the states considered in the main text, we see that all of
these states show a decline in Q(t) starting around the time when these states were reopened.
If these states were not reopened early, a large number of infections would have been reduced as
demonstrated in Table 1 of the main text.

Equivalence between the ODE model and the Chemical Langevin SDE
model

This analysis heavily borrows from the pioneering work done by Gillespie.27 In this section, we
will establish that the deterministic ODE model and the stochastic Chemical Langevin equation
originate from a common expression: the chemical master equation,28 and are closely linked to one
another. Following is the notation we will use, in accordance with27 We consider N compartments:
S1, S2 . . . SN and R reaction channels: R1,R2 . . .RM in a fixed volume Ω. In our case, we have
N = 4 (S, I,R,T ) compartments and R = 4 reaction channels. We denote the dynamical state of
the system at any time t as X(t) = (X1(t),X2(t) . . .XN(t)) where

• Xi(t) : total number of Si molecules (in our case: individuals) in the system.

• Propensity function aj(x)dt : probability that a reaction Rj will occur somewhere in Ω in
the next time interval [t, t+dt] for j = 1,2 . . .M .

• State change vector νj whose ith component is defined by νj,i: change in the number of Si

molecules produced by one Rj reaction for i = 1,2 . . .N , j = 1,2 . . .M . In our case νj,i = ±1.

From the definition of aj(x)dt, we can write the probability of the system being in state x
at time t + dt (we take the sum of all mutually exclusive ways either through one reaction or no
reaction in [t, t+dt]):

P (x, t + dt∣x0, t0) = P (x, t∣x0, t0)
⎡⎢⎢⎢⎣
1 −

M

∑
j=1

aj(x)dt
⎤⎥⎥⎥⎦
+

M

∑
j=1

[P (x − νj , t∣x0, t0)aj(x − νj)dt] , (14)

Taking the limit of (14) as dt -¿ 0 leads to the chemical master equation

BP (x, t∣x0, t0)
Bt

=
M

∑
j=1

[aj(x − νj)P (x − νj , t∣x0, t0) − aj(x)P (x, t∣x0, t0)] (15)

.

10

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2020.12.01.20242172doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.01.20242172
http://creativecommons.org/licenses/by-nd/4.0/


Macroscopic picture: Deterministic model relation to the chemical master equation:

Multiplying the chemical master equation (15) by xi and summing over all x, we obtain for the
mean of Xi(t)

d⟨Xi(t)⟩
dt

=
M

∑
j=1

νji⟨aj(X(t))⟩ (i = 1,2 . . .N) (16)

Thus, whenever fluctuations are not important, the species populations evolve deterministically
according to the following set of ordinary differential equations

dXi(t)
dt

=
M

∑
j=1

νjiaj(X(t)) (i = 1,2 . . .N) (17)

(17) is the basis for the classical SIR epidemiological equations, and we see how they evolve
from the chemical master equation (15).

dS

dt
= −β S(t) I(t)

N
(18)

dI

dt
= β S(t) I(t)

N
− (γ +Q(t)) I(t)

= β S(t) I(t)
N

− (γ +NN(W,U)) I(t) (19)

dR

dt
= γI(t) + δT (t) (20)

dT

dt
= Q(t) I(t) − δT (t) = NN(W,U) I(t) − δT (t). (21)

The ODE system used in the present study shown in (5-8), is of the form (17).

Microscopic picture: Stochastic Simulation Algorithm and its relation to the master
equation:

Another consequence of the master equation (15) is the existence and form of the next-reaction
density function p(τ, j∣x, t), which is defined as

• p(τ, j∣x, t)dτ = probability that given X(t) = x, the next reaction in Ω will occur in [t+ τ, t+
τ + dτ ], and will be an Rj reaction

Since ∑j aj(x)dt is the probability that some reaction occurs in the time interval dt, the prob-
ability that a time interval τ is spent without any reaction occuring is given by the exponential
distribution: Exp(∑j aj(x)τ). Thus, we obtain for p(τ, j∣x, t)

p(τ, j∣x, t) = aj(x)Exp(
M

∑
k=1

ak(x)τ) (0 ≤ τ <∞; j = 1,2 . . .M) (22)

(22) is the basis for the stochastic simulation algorithm in which Monte-Carlo techniques are
used to construct unbiased realizations of the process X(t). A typical algorithm for stochastic
simulation of this kind, is the Gillespie Algorithm29 which can be viewed as a discrete space
continuous time Markov jump process, with exponentially distributed jump times.

Chemical Langevin Equation: Bridging the gap between macroscopic and microscopic
models:

Let the state of the system X(t) at the current time t be xt. Let Kj(xt, τ) be the number of Rj

reactions that occur in the time interval [t, t+dt]. Thus, the number of Si molecules in the system
at time t + τ will be

Xi(t + τ) = xti +
M

∑
j=1

Kj(xt, τ)νji (i = 1,2 . . .N) (23)
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27 approximated Kj by imposing the following conditions

• Condition 1: No propensity function change This condition requires τ to be small
enough so that none of the propensity functions aj(x) change noticeably. The propensity
functions then satisfy

aj(X(t′)) ≈ aj(xt) ∀t ∈ [t, t + τ],∀j ∈ [1,M] (24)

Due to this condition, Kj(xt, τ) will be a statistically independent Poisson random variable
Pj(aj(xt), τ). Thus (23) simplifies to

Xi(t + τ) = xti +
M

∑
j=1

νjiPj(aj(xt), τ) (i = 1,2 . . .N) (25)

• Condition 2: Large number of reaction occurrences: This condition requires τ to
be large enough so that the expected number of occurrences of each reaction channel Rj in
[t, t + τ ] is much larger than 1. Thus

⟨Pj(aj(xt), τ)⟩ = aj(xt)τ ≫ 1, ∀j ∈ [1.M]. (26)

This condition enables us to approximate each Poisson variable Pj(aj(xt), τ) by a normal
random variable with the same mean and variance.

Thus, (25) further simplifies to

Xi(t + τ) = xti +
M

∑
j=1

νjiNj(aj(xt)τ, aj(xt)τ) (i = 1,2 . . .N) (27)

where N(m,σ2) denotes the normal random variable with mean m and variance σ2. Using
N(m,σ2) = m + σN(0,1), denoting the time interval τ by dt and the unit normal random
variable Nj(0,1) as Nj(t), we obtain

Xi(t+ dt) =Xi(t)+
M

∑
j=1

νjiaj(X(t))dt+
M

∑
j=1

νjia
1/2
j (X(t))Nj(t)(dt)1/2 (i = 1,2 . . .N) (28)

(28) can be written as a stochastic differential equation as

dXi(t)
dt

=
M

∑
j=1

νjiaj(X(t)) +
M

∑
j=1

νjia
1/2
j (X(t))Γj(t) (29)

where Γj(t) are temporally uncorrelated, statistically independent Gaussian white noise pro-
cesses.

(29) is the Langevin equation, and it derives from the master equation provided that Condi-
tion 1 and Condition 2 are satisfied.

The Langevin equation (29) form of the ODE system (5-8) leads to the stochastic differential
equation used in the current study

dS = − [β S(t) I(t)
N

]dt −
¿
ÁÁÀ[β S(t) I(t)

N
]dW1(t) (30)

dI = [β S(t) I(t)
N

− γI(t) −Q(t)I(t)]dt +
√

β S(t) I(t)
N

dW1(t) −
√
γI(t)dW2(t) −

√
Q(t)I(t)dW3(t)

(31)

dR = [γI(t) + δT (t)]dt +
√
γI(t)dW2(t) +

√
δT (t)dW4(t) (32)

dT = [Q(t) I(t) − δT (t)]dt +
√
Q(t)I(t)dW3(t) −

√
δT (t)dW4(t) (33)

In (30), Wi(t) ∼ N(0, t) is a normally distributed random variable with mean zero and variance t
or dWi(t) ∼ N(0, dt). It should also be noted that each Wi(t) represents an independent Brownian
motion.
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Figure 4: For the states of New York, New Jersey and Illinois, figure shows: (a, c, e) Model recovery of
infected and recovered case count trained until 14 July, 2020. (b, d, f) Quarantine strength function as
discovered by our trained model

Comparison of the macroscopic, microscopic and Langevin SDE model for our study

Figure 7a shows that the microscopic Stochastic Simulation Gillespie Algorithm and the ODE
model presented in Equation (6-9) in the main text show a good agreement with each other.
Figure 7b shows the comparison of the Chemical Langevin SDE model shown in (30) ran for 1000
trajectories and the ODE model; which also show a good agreement. Thus, we have shown the
equivalence between the microscopic, macroscopic and the Chemical Langevin model for our study.
This equivalence allows us to add fluctuating components to the standard deterministic SIR model
as shown in (30) and quantify the uncertainty resulting from these fluctuations.

Model specifications for each state

Table 4 shows the Model Mean Absolute Percentage Error (MAPE), epochs needed for convergence
and number of parameters optimized for the different states considered.

Parameter Inference: Gaussian Process Residue Model

In order to validate the robustness of the model and the uniqueness of the parameters recovered by
the model, we consider a Gaussian Process residue model for uncertainty quantification. Gaussian
Processes have emerged as a useful tool for regression, classification, clustering and uncertainty
quantification.30,31

In the present study, we fit a Gaussian Process regression model between the error resulting from
the best fit model and the infected data. For the prior over the function space, we use a mean of
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Figure 5: For the states of Louisiana, Nevada and Oklahoma: (a, d, g) Model recovery of infected and
recovered case count as of 14 July, 2020. (b, e, h) Quarantine strength function as discovered by our
trained model (with reopening). This is shown along with the quarantine strength function which we use
to simulate strict quarantine without reopening after stay-at-home order was imposed. (c, f, i) Estimated
infected count if strict quarantine and lockdown measures were followed without reopening as compared
to the values corresponding to the actual early reopening scenario.

Table 4: Mean Absolute Percentage Error (MAPE) values are shown along with the number of epochs
required for and the number of parameters optimized, for all states considered.

State Model MAPE Epochs Parameters
optimized

1. Arizona 5.4% 105 54
2. Florida 18.7% 105 54
3. Louisiana 12% 125 54
4. Nevada 3.14% 185 54
5. Oklahoma 7.9% 125 54
6. South Carolina 11.7% 125 54
7. Tennessee 6.9% 125 54
8. Texas 10.4% 245 54
9. Utah 3.79% 125 54
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(d) Utah
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Figure 6: For the states of Texas and Utah: (a, d) Model recovery of infected and recovered case count as
of 14 July, 2020. (b, e) Quarantine strength function as discovered by our trained model (with reopening).
This is shown along with the quarantine strength function which we use to simulate strict quarantine
without reopening after stay-at-home order was imposed. (c, f) Estimated infected count if strict quarantine
and lockdown measures were followed without reopening as compared to the values corresponding to the
actual early reopening scenario.
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Figure 7: (a) Comparison of the microscopic Stochastic Simulation Gillespie Algorithm and the ODE model
presented in Equation (6-9) in the main text. (b) Comparison of the Chemical Langevin SDE model shown
in (30) ran for 1000 trajectories (5%and95% quantiles are shown) and the ODE model.
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Figure 8: [Gaussian Process Residue Regression Model] Gaussian Process residue model fitted to the
infected case count shown for Arizona.

zero and variance described by a Squared Exponential Kernel with a lengthscale of 1 and a signif-
icantly high signal standard deviation of O(104) which allows for noisy estimates of the posterior.
Such a fitted model for the infected count for a region under consideration (Arizona), is shown
below in figure 8. Subsequently, we sample 500 error residues from this model and superimpose
them on the best fit predictions to simulate 500 samples of the infected case count data. Finally, we
apply our model described on these 500 samples of data, and recover the parameters Q(t), β, γ, δ
from each of them.
Figures 9, 10 shows the inferred parameters for 500 realizations of the Gaussian process residue
model superimposed on the best fit model prediction applied to all states considered, and shown
for (a) the quarantine strength function Q(t), (b) the contact rate β and (c) the recovery rate γ+δ.
It can be seen that for all realizations, Q(t) is seen to follow a similar behaviour, which lies close
to the best fit model prediction. In addition, the inferred histograms for the contact rate β and
the recovery rate γ + δ show a peak which is close to the best fit model prediction. This further
validates the robustness of the model for other regions considered and strengthens the uniqueness
of the parameters recovered by the model. A total of 12 million iterations (60000 iterations for
each realization of the Gaussian process residue model × 500 realizations) were performed on the
MIT Supercloud cluster to generate parameter histograms for each state considered.

Model validation: Calculation of the effective reproduction number

Following a previous study,14 we define the Covid spread parameter as follows:

Cp(t) = [ β

Q(t) + γ + δ ]S(t)/N (34)

where S(t) is the susceptible population and N is the total population. This definition of the
Covid spread parameter Cp(t) is equivalent to the effective reproduction number Reff(t) in the
context of the QSIR model. We included both γ, δ in the definition of Cp(t) since both these
parameters eventually contribute to the recovered population and we wanted to include effects of
both. Another viable option to define Cp(t) could be to just use γ in the denominator of Cp(t).

Figure 11 shows the comparison of the Covid spread parameter, as defined in Equation 34 with
and without reopening for all US states considered in the present study. For all the states, we can
see that without reopening, a diminished effective reproduction number is seen, indicating moving
in the right direction of halting the infection spread.

To further validate the Covid spread parameter variation and its relation to the effective re-
production number, we compare the variation in Cp to the Reff obtained through a prominent
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Figure 9: [Parameter Inference for US states] Inferred parameters for 500 realizations of the Gaussian
process residue model superimposed on the best fit model prediction applied to the region considered for
demonstration, and shown for (a) the quarantine strength function Q(t), (b) the contact rate β and the
recovery rate γ + δ. A total of 12 million iterations were performed on the MIT Supercloud cluster to
generate parameter histograms for one state.
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Figure 10: [Parameter Inference for US states] Inferred parameters for 500 realizations of the Gaussian
process residue model superimposed on the best fit model prediction and shown for the quarantine strength
function Q(t) (left column), the contact rate β (middle column) and the recovery rate γ + δ (right column)
for the US states considered in the present study. A total of 12 million iterations were performed on the
MIT Supercloud cluster to generate parameter histograms for each region.
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(a) Arizona (b) Nevada (c) South Carolina

(d) Florida (e) Louisiana (f) Oklahoma

(g) Texas (h) Tennessee (i) Utah

Figure 11: The comparison of the effective reproduction number, as defined in Equation 34 with and
without reopening, shown for all US states considered in the present study

Covid-19 forecasting model used by the CDC, USA.20,21 For all of the 9 states which we consid-
ered, the time at which an upsurge is seen in Cp due to early reopening corresponds very well to
the exact time at which an upsurge is seen in Reff .20,21 In addition, we show the comparison
between Cp values estimated from our study and Reff values obtained from20,21 from reopening
till one month post that; in table 5. For the states of Arizona, Nevada, Louisiana, Florida, Texas
and Tennessee, these values lie close to each other. This further validates the results of our study
and the quantitative metrics derived therein.
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Region Cp range Reff range
(Our study) (Ref.20)

Arizona 1.1 − 1.4 1.15 − 1.3
Florida 1 − 1.1 1.07 − 1.64
Nevada 1.05 − 1.5 1.19 − 1.5

Louisiana 0.7 − 1 0.88 − 1.62
Texas 0.6 − 0.7 1.08 − 1,3

Tennessee 0.5 − 0.65 0.97 − 1.07
Table 5: Cp and Reff value ranges from reopening till one month post that, for 6 states considered in our
study; lie close to each other.
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