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Abstract  13 

OBJECTIVE. We implement a model-based approach to identify the optimal allocation of a COVID-19 14 

vaccine in the province of Alberta, Canada.   15 

METHODS. We develop an epidemiologic model to evaluate allocation strategies defined by age and 16 

risk target groups, coverage, effectiveness, and cost of vaccine. The model simulates hypothetical 17 

immunization scenarios within a dynamic context, capturing concurrent public health strategies and 18 

population behaviour changes.  19 

RESULTS. In a scenario with 80% vaccine effectiveness, 40% population coverage, and prioritisation 20 

of those over the age of 60 at high-risk of poor outcomes, active cases are reduced by 17% and net 21 

monetary benefit increased by $263 million dollars, relative to no vaccine. Concurrent 22 

implementation of policies such as school closure and senior contact reductions have similar impacts 23 

on incremental net monetary benefit ($352 vs. 292 million, respectively) when there is no 24 

prioritisation given to any age or risk group. When older age groups are given priority, the relative 25 

benefit of school closures is much larger ($214 vs. 118 million). Results demonstrate that the rank 26 

ordering of different prioritisation options varies by prioritisation criteria, vaccine effectiveness and 27 

coverage, and concurrently implemented policies.  28 

CONCLUSIONS. Our results have three implications: (i) optimal vaccine allocation will depend on the 29 

public health policies in place at the time of allocation and the impact of those policies on population 30 

behaviour; (ii) outcomes of vaccine allocation policies can be greatly supported with interventions 31 

targeting contact reduction in critical sub-populations; and (iii) identification of the optimal strategy 32 

depends on which outcomes are prioritised. 33 
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Introduction 1 

Coronavirus disease 2019 (COVID-19) is a severe, novel virus that has spread globally. On 30 January 2 

2020, the World Health Organization (WHO) declared a Public Health Emergency of International 3 

Concern and declared a Pandemic on 11 March 2020 [1]. As of 12 March 2021, there have been over 4 

118 million confirmed cases and more than 2.6 million deaths worldwide [1]. 5 

While there are several non-pharmaceutical interventions (NPIs) available to reduce transmission 6 

among populations, the introduction of effective vaccines is expected to significantly improve 7 

decision makers ability to protect health care systems and the economy whilst gaining control of 8 

community transmission of COVID-19. Recommended NPIs for COVID-19 mitigation include hand 9 

hygiene, mask wearing, physical distancing in various locations, travel restrictions, testing, contact 10 

tracing, isolation of cases, and quarantine of close contacts. As vaccines become available, a key 11 

challenge for decision makers will be how to concurrently allocate limited vaccine stockpiles, and 12 

select optimal combinations of NPIs to mitigate the health risks of COVID-19 while meeting 13 

population needs to access the health system for diagnosis and treatment of other conditions, 14 

minimising the loss of economic activity, and promoting social well-being.  15 

There are currently more than 200 COVID-19 vaccination products in development, with several in 16 

phase III trials, and several have been approved for use in Canada [2, 3]. These vaccines may reduce 17 

disease burden by preventing infection in exposed individuals, reducing severity of infection in 18 

infected individuals, and/or preventing secondary infections. Within individual health systems, 19 

decision makers will need to prioritise access to initially limited vaccine stockpiles [4-6]. Discussions 20 

on how to make these prioritisation decisions are well advanced in both the policy and research 21 

realms [7-14]. In addition to supply constraints, optimal vaccine allocation will also depend upon 22 

population factors such as disease risk, capacity to benefit from vaccine, likelihood of transmission, 23 

vaccine effectiveness and vaccine uptake.  24 

The optimal allocation of vaccines will also vary according to the objectives of decision makers. 25 

Health economic models of the effectiveness and cost effectiveness of different combinations of 26 

NPIs and vaccines can enable more informed vaccine allocation decisions, by capturing the dynamic 27 

relationship between vaccine characteristics, allocation strategies, NPIs, and population behaviours. 28 

Whilst hundreds of models have been developed internationally to support decision making and 29 

public health messaging, only a handful of evaluations of vaccine allocation and prioritization 30 

strategies have been published to date [13, 15-18]. Only one of the studies evaluates scenarios with 31 

concurrent public health mitigation strategies [13]. None of the studies consider interventions 32 

targeting individuals by both age and risk group, with well-defined vaccine allocation policies or 33 

health economic outputs, limiting their value to decision makers.  34 

The aim of this paper is to introduce a model-based evaluation of vaccine allocation, analysing 35 

strategies defined by age and risk target groups, coverage, and effectiveness, within a dynamic 36 

context considering other public health strategies and population behaviour change. Several 37 

potential outcomes can be selected as the objective outcome for the optimization problem. Here we 38 

consider total number of cases, hospitalizations, and incremental net monetary benefit (NMB). The 39 

NMB framework synthesizes multiple model outcomes: mortality, morbidity, and cost of illness. We 40 

evaluate hypothetical retrospective scenarios to test a NMB approach to vaccine allocation.   41 

 42 

1. Methods 43 
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We developed the COVID-19 Risk Assessment Model (CRAM), a transmission dynamic ordinary 1 

differential equation compartmental susceptible-exposed-infected-recovered (SEIR) model. We 2 

calibrated CRAM to the time variant state of public health interventions and human behaviour, using 3 

data from Alberta, Canada. To evaluate the risks and outcomes associated with each strategy, 4 

scenarios are characterised by a combination of public health interventions that change over time, in 5 

comparison to a baseline scenario. Using CRAM we can estimate active cases, hospitalisations, total 6 

cost, Quality Adjusted Life Years (QALYs), and NMB. CRAM was programmed in Wolfram 7 

Mathematica, version 12.1.  8 

2.1  Model Structure 9 

CRAM is stratified into 16 age groups (five-year ranges up to 75+ years). Each of these 16 groups is 10 

divided further into two risk groups (high-risk and not high-risk), where risk is based on probability of 11 

a poor outcome due to COVID-19. An additional group is used to represent the Long-Term Care (LTC) 12 

population, which is made up of a subset of high-risk individuals aged 75 years and older. This results 13 

in 33 non-null age-risk groups.  14 

CRAM has five overarching compartments: Susceptible (which includes Susceptible; Susceptible, No 15 

Distancing; Vaccine; and Vaccine Failure), Exposed, Infected (composed of Pre-Symptomatic; LTC; 16 

Community; Hospital; and Pre-Isolation), Isolation, and Recovered (comprised of Immunised; 17 

Recovered; and Dead) (see Figure 1). The model structure was developed to produce outcomes of 18 

interest to decision-makers and to leverage the highest quality data available in real-time during the 19 

COVID-19 pandemic. Model inputs are provided in Section 2.2. 20 

A fraction of the population is initially allocated to the Exposed compartment, with the remaining 21 

population allocated to the Susceptible compartment. Susceptible individuals are vaccinated subject 22 

to unique scenarios defined by the following characteristics: (i) program start date, (ii) number of 23 

doses available, (iii) the daily immunization delivery capacity and (iv) age and risk group prioritisation 24 

policy. Vaccine prioritisation policies allow access to different age and risk groups on different dates. 25 

Once vaccinated, after the period required to develop antibodies, individuals move either to the 26 

Immunised compartment (with no probability of infection or transmission), or to the Vaccine Failure 27 

compartment (with equal probability of infection and transmission to others in the susceptible 28 

compartment) as a function of the vaccine effectiveness. Vaccine Failures remain susceptible.   29 

Susceptible individuals are exposed to the virus as a function of the force of infection which is 30 

determined by the transmissibility of the virus, seasonal variations in transmission, number of 31 

persons infected, and rate of contact between individuals across age groups. Susceptible individuals 32 

exposed to the virus move to the Exposed compartment and following the latent period move from 33 

the Exposed to Infected. 34 

Depending on public health guidance, some individuals may move from the Susceptible 35 

compartment to the Susceptible, No Distancing compartment which allows for higher rates of 36 

contact. For example, children who are not high-risk move to the Susceptible, No Distancing 37 

compartment to reflect the higher rates of contact from in-person education. 38 

On entry to the Infected compartment, individuals are Pre-Symptomatic. That is, cases in the 39 

community that are shedding virus but not experiencing or displaying symptoms. At the end of the 40 

pre-symptomatic period, individuals are allocated to Community or Hospital compartments, 41 

dependent on their age and risk group. If a case isolation policy is in place, a subset of the 42 

Community compartment will move to the Pre-Isolation and subsequently the Isolation 43 

compartments, where they remain for the remaining infectious period. All cases contribute to the 44 
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force of infection prior to moving to the Isolation compartment, but individuals in the Isolation 1 

compartment do not contribute to the force of infection. The Isolation compartment represents the 2 

isolation of cases but not the isolation of close contacts.  3 

Entry into LTC and Hospital varies by age group, with individuals from the LTC age-risk group moving 4 

from the pre-symptomatic to the infected LTC compartment. Individuals move from the LTC 5 

compartment at the end of the infectious period to either the Recovered or Dead compartments. 6 

Entry into the Hospital compartment is a function of age and risk, fit by an exponential regression on 7 

admissions by age, and adjusted for risk by an odds ratio. The Hospital compartment includes COVID 8 

inpatient cases and those admitted to intensive care units (ICUs). At the end of either the infectious 9 

period or the hospital length of stay (LOS), individuals move from the Community, LTC or Hospital 10 

compartment to either the Recovered, or Dead compartment, at a proportion dependent upon their 11 

risk group. 12 

We used a synthetic contact matrix disaggregated into four locations: home, workplace, school, and 13 

other, where other comprises all remaining possible locations [19]. Disaggregating the total contact 14 

matrix by location allows for adjustments in contact rates reflecting policy interventions. For 15 

example, we can apply work-based interventions to specific age groups by adjusting the work 16 

contact matrix at various points in time.  The total contact matrix is generated by summing the 17 

contacts for each age group across each of the matrices. Contact reductions for seniors aged 75 18 

years and older and for high-risk individuals are applied directly to the total contact matrix. 19 

Outcomes (cases, hospitalizations, deaths) are tabulated from 01 October, 2020 to 06 February, 20 

2021, spanning 92 days. The Electronic Supplementary Material (ESM) reports model equations and 21 

assumptions. 22 

Figure 1. CRAM Structure 23 

24 

Fig1 ‘Isolation’ compartment is infectious, but does not contribute to the force of infection. Figure intended for colour 25 

printing 26 
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2.2  Model Inputs 1 

CRAM was parameterised wherever possible with data from Alberta, including estimates for the 2 

total population by age group and risk of severe outcome, hospitalisation rate by age group, and LOS 3 

for hospitalised cases. Alberta’s population is the youngest of all Canadian provinces, making age 4 

distribution important to capture in the model [20]. Odds ratios for the risk of hospitalisation were 5 

estimated by risk group using logistic regression. Active cases in the model include both diagnosed 6 

and undiagnosed cases, fitted using seroprevalence data provided by Alberta Health. Details of all 7 

model inputs are provided in Table 1. 8 

Data from the Google Community Mobility report [21] were used as key inputs for contact 9 

reductions in workplaces and other locations. A rapid expert elicitation exercise was conducted to 10 

obtain estimates for unknown model parameters. We adapted elicitation methods and training 11 

materials from the Sheffield Elicitation Framework (SHELF) [22] to undertake rapid elicitations for 12 

the reduction in contacts for seniors aged 75 years and older, high-risk individuals, reduction in 13 

contacts in home locations, and expected return-to-school rates and in-school contact reductions by 14 

age group. Detailed results of the elicitations are reported in the ESM. 15 
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Table 1. Epidemiologic Parameters 

Symbol Parameter name Baseline value Description and source 

� Transmission  Fitted. 

���� Number of individuals 

exposed at model 

initialisation 

A multiplier applied to seed infected individuals at initialization, distributed proportionally by 

population. 

Fitted.  

�� , ��	��
 

 

Seasonal transmission 

adjustment 

A standard function from mathematical epidemiology [23] was modified, as given in the ESM. 

Season can take on values between 0 and 1 and is centred to reach its minimum value on the mid-

date between the hottest day of the year in Alberta’s two largest cities. The function was further 

calibrated to reach a maximum value of 0.65. 

����� = 0.3, which solves to 0.4 at its 

minimum, meaning that transmission at 

the seasonal minimum is 40% of 

transmission at the seasonal maximum. 

��� Susceptibility by age 

group 

0.489 if aged <10 years, 1 otherwise. Estimates taken from a modelling study 

[24]. 

���������,�,	,� Contact reduction in 

schools 

A 100% reduction in the contact rate is applied for students who do not attend school, which is 

maintained for the duration of the modelling period in the baseline scenario. The following values 

were elicited from the expert panel for the fall return to school (median and 90% CI): 

Age group Contact reduction Proportion returning 

5–9 years 0.692 [0.358, 0.869] 0.760 [0.399, 0.933] 

10–14 years 0.573 [0.314, 0.846] 0.831 [0.399, 0.941] 

15–19 years 0.522 [0.278, 0.861] 0.860 [0.634, 0.994] 
 

Rapid expert elicitation exercise. 

�����
�,� Contact reduction in 

homes at time t 

A 41% reduction in the contact rate is applied. Home refers to all residential locations, so that 

reductions in visits to secondary households are reflected in these contact rates. 

Rapid expert elicitation exercise.   

�����	,�, 

�������	,� 

Contact reduction in 

workplaces and other 

locations at time t 

Reduction in the contact rate relative to normal (100), given in a weekly interval. Future weeks are 

expected to remain constant at the rate of the most recent week.  

Based on reduction in time spent in 

workplaces, or combined time spent at 

retail, grocery, and transit locations from 

Google Community Mobility data [21].  

��������	,� Contact reduction for 

seniors 

A 61% reduction in the contact rate for seniors in all locations. Seniors defined in this model as 

those aged 75 and above. 

Rapid expert elicitation exercise. 

���	 Contact reduction for 

high-risk individuals  

A 64% reduction in the contact rate is applied to reflect physical distancing for high-risk individuals. Rapid expert elicitation exercise.  

A
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��� Proportion of 

community infections 

isolated  

0.169 based on seroprevalence studies conducted in Alberta. Note that the Isolation compartment 

represents case isolation only. 

Alberta Health data. 

������� Latent period Mean 3.3 days.  PHAC Modelling Evidence summary [25]. 

����������� Incubation period Mean 1.3 days.  PHAC Modelling Evidence summary [25]. 

����������� Infectious period Mean 20.3 days. PHAC Modelling Evidence summary [25]. 

����� Days in hospital Mean 10.8 Alberta Health data. 

���������� Days prior to isolation of 

cases 

5 Assumed. 

��

����� Days prior to immune 

response from 

immunisation 

14 Assumed. 

������  OR of hospital for high-

risk individuals 

7.3 (95% CI [6.8, 7.8]). Alberta Health data. 

������� OR of death for high-risk 

individuals 

23.6 (95% CI [19.9, 28.0]). 

 

Alberta Health data.  

������ Fitting term for 

hospitalisation 

probability 

 Fitted. 

���� Hospitalisation risk by 

age 

Hospitalisation risk by age estimated from cumulative counts converted to proportion by age and 

analysed in an exponential regression for model input.  

Fitted values: �8.2518 � 0.4379%&�' 

Alberta Health data. 

��,	 Probability of 

hospitalisation 

Function of (�)�, *+����, and the fitted value of ),����.  

����� Fitting term for LTC 

probability 

 Fitted. 

-�,	 Probability of LTC 

admission 

Function of ),���.  

./	 Probability of death 

from community 

 Fitted. 
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.0	 Probability of death 

from LTC 

Function of 1, *+����� , 22.  

.3	 Probability of death 

from hospital 

Function of 1, *+����� , 23.  

� Fitting term for deaths 

from LTC, hospital, and 

ICU 

 Fitted. 

40 LTC proportion dying 687/4627 Alberta Health data. 

43 Hospital proportion 

dying 

947/4002 Alberta Health data. 

5�,	 Population by age and 

risk of poor outcome 

Total population is spilt by 5-year age groups up to age 75 years. The population is split into two risk 

groups, by risk of severe outcome related to COVID-19.  

High-risk is defined as individuals who have met an administrative data case definition for ischemic 

heart diseases (ICD-10 codes: I20–I25), respiratory diseases including asthma (ICD-10 codes: J45, 

J46) and COPD (ICD-10 codes: J41–J44). 

A subset of the high-risk population aged ≥70 years is shifted to a 17
th

 age group representing LTC 

residents, with the same contact rates as the high-risk ≥75 years age group. 

Alberta Health data. 

6�
7	67�, 

and 

6�
7	678�, 

Contact matrix School, home, workplace, other. 

Adjusted for different interventions and applied to the ��,  and �9�,  compartments, respectively. 

Canadian estimated contact matrices. 

Transformed to symmetric [19]. 

Note: CI: confidence interval; COPD: chronic obstructive pulmonary disease; ICD-10: International Statistical Classification of Diseases and Related Health Problems, 10
th

 revision; ICU: 

intensive care unit; LTC: long-term care; OR: odds ratio; SD: standard deviation; ESM: electronic supplementary material. 
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2.3 7 Economic Inputs  1 

The study is conducted from a Canadian health system payer perspective. All costs are converted to 2 

2020 Canadian dollars, and discounted at an annual rate of 1.5%, according to CADTH guidelines 3 

[26]. Cost inputs include hospitalisation, incremental LTC costs for infection prevention measures, 4 

and the cost of purchasing and administering a vaccine. Health utility losses include disutility from 5 

infection, hospitalisations and LTC infections (during stay and following discharge), and deaths. We 6 

assessed outcomes using the NMB framework [27]. We apply the health opportunity costs estimated 7 

for Canada [28], using the value of $30,000 per QALY.  8 

Evidence related to health utility for COVID-19 is currently limited but rapidly emerging. [29] Given 9 

the lack of evidence at the time of writing, we identified utility impacts of similar conditions. We 10 

estimated disutility for community COVID-19 infections from an EQ-5D survey of individuals with lab 11 

confirmed influenza B infections, stratified by age group [30]. Because hospitalised COVID-19 cases 12 

are often diagnosed with pneumonia, we used disutility estimates for viral pneumonia inpatients 13 

[31] to estimate in-facility treatment utility losses, as well as utility losses for the year following 14 

facility discharge. We estimated QALY losses from premature death using the life table approach 15 

developed by Briggs et al. [32], adjusting for baseline utility and discounting. Costs related to 16 

community infections are not included. We estimated incremental direct costs associated with 17 

COVID-19 hospitalisation based on published Alberta per-diem costs, as well as the incremental cost 18 

of infection prevention and control for LTC cases. We also estimate utility decrements for ‘chronic’ 19 

or ‘long’ infections (ESM). Cost and utility decrement estimates are given in Table 2. Estimates are 20 

applied to the relevant compartments, and the resulting incremental NMB (iNMB) is estimated for 21 

each policy scenario. 22 

2.4  Model Fitting 23 

We fit five parameters: virus transmissibility, the probability of hospitalisation, infections in LTC, and 24 

the probability of death from either facility or community infections. Using a deterministic version of 25 

the model defined with mean values of each input parameter we fit observed surveillance data for 26 

daily hospital census counts, as well as cumulative daily death and LTC counts from 01 October 2020, 27 

to 06 February 2021. Given the interdependence in the fitting parameters, we used simultaneous 28 

fitting methods by optimizing model fit over a Latin hypercube generated from plausible values for 29 

each parameter. Optimal parameter values were identified when the sum of the normalised 30 

difference in model and observed outcomes was minimised. 31 

2.5  Outputs 32 

CRAM samples from the probability distributions of model inputs, as either the best fitting 10% of 33 

simulations from the model fitting, or as estimated from the parameter source (Tables 1 & 2), to 34 

account for outcome uncertainty over 200 iterations, and then generates model outputs from the 35 

sampled values. This number of iterations was selected after comparing output stability across 36 

different numbers of iterations, for details, see the ESM. Outputs include cumulative estimates for 37 

the mean number of active cases, total infections, and hospitalisations, with credibility intervals to 38 

present uncertainty over simulations. The outputs include expected NMB, so that comparisons 39 

without the use of ratios can be made [27]. For each of the vaccine scenarios, iNMB is estimated 40 

relative to the baseline with no vaccine.   41 
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Table 2. Cost and Utility Parameters 1 

Parameter Name Baseline Value Source and Description 

Utility decrement, 

Hospitalisation, LTC 

case 

QALY decrement during facility stay  

Mean: 0.58 

Beta Distribution: α=230.52, β=141.41 

QALY loss from viral pneumonia hospitalization, as 

estimated by [31]. This figure is adjusted for 

duration in facility compartments in the model. 

Utility decrement, 

community case 

Quality-adjusted life day (QALD) 

decrement: 

Age 

group 

Mean Gamma 

Distribution 

α β 

00-15 1.82 9.76 5.07 

16-64 2.8 1.16 0.83 

65+ 4.41 21.29 4.36 
 

Influenza B estimate from [30]. The study provides 

QALD losses, which are applied for the duration in 

the infectious compartment in the model. 

Utility decrement, 

facility discharge 

  

QALY decrement one year following 

discharge. Mean 0.10, SD 0.0158 

Beta Distribution: α=0.469, β=4.224 

QALY loss from viral pneumonia, as estimated by 

[31]. 

  

Utility decrement, 

chronic COVID 

QALY decrement one year following 

discharge 0.16, with probability 34.8%  

Beta Distribution for probability: α= 
2.410903, β= 4.516979 

Weighted expected QALY decrement for common 

chronic conditions associated with chronic COVID. 

See the ESM for details. Probability of chronic COVID 

taken from the fatigue estimate given in [33]. 

QALY loss, death Age Mean SD 

0-9 41.37 1.99 

10-19 37.19 2.32 

20-29 33.37 2.31 

30-39 29.40 2.03 

40-49 24.90 1.85 

50-59 20.18 1.47 

60-69 15.36 1.01 

70-74 10.35 0.67 

75+ 5.17 0.33 
 

Net present value of total QALYs lost from [32], 

modified with Canadian population norms and 

standard deviations.   

Incremental cost, 

Hospitalisation and 

ICU admission 

Per diem median $1391.80, 90
th

 

percentile $1852.52 

Gamma Distribution: α=18.5, β=0.01 

 

Alberta Health Interactive Health Data Application, 

CMG+ 2018 Grouper 133, Infectious/Parasitic 

Disease of Respiratory System [34]. Inflation 

adjusted from 2018 to 2020 using Canada All-Item 

inflation [35]. 

Incremental cost, 

LTC case 

Per diem mean $337.65, SD $548.14. 

Gamma distribution: α= 0.8547, β= 
0.0025 

Cost from [36] converted to CAD using average 2015 

exchange rate, inflation adjusted from 2015 to 2020 

using Canada All-Item inflation [35]. 

Incremental cost, 

chronic COVID 

Annual cost of $10,020, with probability 

34.8%  

Beta Distribution for probability: α= 
2.410903, β= 4.516979 

Weighted expected annual cost for common chronic 

conditions associated with chronic COVID. See the 

ESM for details. Probability of chronic COVID taken 

from the fatigue estimate given in [33]. 

Vaccine cost per 

dose 

$40 Assumed based on reporting, includes cold chain 

and administration. [37] 
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Note: LTC: long term care; QALY: quality-adjusted life year; QALD: quality-adjusted life day; SD: Standard deviation; ESM: 1 
electronic supplementary material. 2 

2.6  Scenario Analysis 3 

In the reference scenario (1), no vaccine is available, and all contact matrixes and time variant inputs 4 

are held constant at the last observed value from model fitting. Specifically, we maintained contact 5 

reductions at the values determined through the expert elicitation for ‘home’ locations, as well as 6 

for seniors and high-risk individuals, and a fall return to school. Moreover, we kept the final 7 

observation of reduction in time spent in workplaces and ‘other’ locations from the Google 8 

Community Mobility reports consistent over the model run. In all scenarios, the vaccine is 9 

‘sterilizing’, meaning that effective vaccine protects individuals from infection. 10 

A range of NPIs can be estimated by CRAM. Policies which impact contact rates in the home, 11 

workplace, school and other locations for different age groups can be simulated through reductions 12 

on the corresponding contact matrix. Similarly, broad age-based interventions can be applied to the 13 

total contact matrix. In this paper, we considered school closure via a complete reduction in school-14 

based contacts, and policies with increased physical distancing for seniors by reducing contact rates 15 

for those aged 75 and older by 50%. 16 

Vaccine scenarios represent different vaccine allocation strategies, as well as various vaccine 17 

characteristics (i.e., effectiveness and coverage), as described in Table 3. Vaccine scenarios are 18 

characterised by the maximum number of doses that can be delivered per day, the start date of the 19 

vaccine program, the definition of the priority group, the interval (if any) between access for the 20 

priority group and the general population, the effectiveness of the vaccine, and vaccine coverage as 21 

a proportion of the total population. The estimates of vaccine effectiveness used in the analysis do 22 

not directly align to any of the currently approved vaccine products in Canada or elsewhere, nor 23 

does the price or timing of allocation align to the initial approval or distribution of licensed vaccines.  24 

If the number of individuals eligible for immunisation exceeded the maximum number of doses that 25 

could be delivered on a given day, the maximum number of doses were pro-rated across each 26 

eligible age and risk group daily. This means that a group representing 5% of the eligible population 27 

would receive 5% of the total number of doses available on a given day.  28 

To examine the impact of variations in vaccine effectiveness, we included scenario 7, where 29 

effectiveness varies by age. It is assumed that the vaccine is 60% effective over the age of 60, and 30 

80% effective otherwise. In all other scenarios, effectiveness is constant across age groups. The 31 

scenario with 80% effectiveness approximates preliminary results from three phase three trials 32 

which have reported efficacy ranging from approximately 70 to 94% [38-40].   33 

In each of the scenarios (1-11), we assumed a simple 30-day interval in access for the prioritized 34 

population groups and the general population, starting on 01 November 2020. Depending on the 35 

prioritization policy, this could lead to a gap of days during which no immunization would be 36 

provided. Extrapolating from the maximum estimate of vaccines per day in Alberta from [41], we 37 

assumed that up to 80,000 individuals can be immunised daily. Each of the scenario comparisons 38 

implicitly contains the baseline scenario (2) with age and risk-based prioritisation, 80% effectiveness, 39 

and 40% coverage, as a common reference point across scenarios. Scenarios that prioritise based on 40 

age give first access to those aged 55 and over, while programs that prioritise high-risk individuals 41 

prioritise all high-risk individuals irrespective of age. 42 

 43 
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Table 3. Vaccine Scenarios 1 

Scenario 

(Name, Reference 

Number) 

Prioritization Policy Vaccine Effectiveness Population Dose 

Coverage 

No Vaccine  1 No Vaccine N/A N/A 

Vaccine 

Baseline 

2 Age + Risk  80% 40%  

2a, 2b Same as 2, but with school closures (2a) or decreased contact rates for seniors (2b), with 

varying prioritization policies. 

Vaccine 

Coverage 

Comparison 

3 Age + Risk  

 

80% 

 

20% 

4 70% 

Vaccine 

Effectiveness 

Comparison 

5 Age + Risk  40% 40% 

6 60% 

7 60% above 60 years old, 80% otherwise  

Vaccine 

Priority Group 

Comparison 

8 No Priority 80% 40%  

9 Age Only 

10 Risk Only 

Low 

Effectiveness 

and Coverage 

11 Age + Risk  40% 20% 

11a, 11b Same as 11, but with school closures (11a) or decreased contact rates for seniors (11b), 

with varying prioritization policies. 

Note: Age + Risk = high risk population, age > 55, Age Only = age >55, Risk Only = high risk population. 2 

Scenario 11 is defined with low vaccine effectiveness (40%) and coverage (20%). For both scenario 3 

11 and the baseline scenario (2), we modelled additional public health measures, including a 50% 4 

reduction in contacts for seniors, and complete school closures (each policy implemented on 01 5 

October 2020). For both sub-scenarios (school closures and seniors contact reduction), we assumed 6 

no additional costs or QALY losses.  These simulations compare the impact vaccine policies in 7 

combination with other mitigation strategies, albeit for a small range of potential policy 8 

combinations.  9 

3. Results 10 

We used the CRAM to produce outputs for each vaccine scenario. For all scenarios, mean values, and 11 

either standard deviation or a 90% credibility interval are presented. In the no vaccine scenario, total 12 

cases were shown to remain relatively low in the initial period, but increase rapidly over time. In the 13 

vaccine baseline scenario (scenario 2), active cases are reduced by 17%. The impact of population 14 

vaccine coverage on outcomes demonstrates improved outcomes with greater population vaccine 15 

coverage, as expected. When coverage is 70%, cases are significantly reduced by 38%. Interestingly, 16 

with 70% coverage, iNMB decreases relative to baseline (Table 4, $216 vs 263 million). This indicates 17 

decreasing returns to scale, related to approaching herd immunity. The impact of vaccine 18 

effectiveness on outcomes behaved in the expected manner, where NMB increases alongside 19 
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effectiveness. With 40% effectiveness, the availability of a vaccine reduces cumulative cases by 10%, 1 

while with 60% effectiveness, cumulative cases decrease by 14%. These results are summarised in 2 

Table 4 and Figure 2. 3 

Vaccine prioritisation strategies demonstrated dynamic results. Prioritizing both high-risk and 4 

individuals over the age of 55 had the smallest impact on infections and produced the second lowest 5 

value for iNMB. Equal prioritisation to all age and risk groups minimised cumulative cases and had 6 

the greatest iNMB value. Prioritisation based on risk levels alone had the second highest iNMB value. 7 

Prioritization by age group had the second greatest reduction in cases, but the lowest reduction in 8 

iNMB relative to the scenario with no vaccine. The variability in results demonstrates the need for 9 

decision makers to clearly identify their objective when determining vaccine allocation strategies. 10 

The results of the concurrent NPI scenarios (Table 5) demonstrate several important relationships. 11 

First, the relative ranking of each prioritisation scenario varied depending on the outcome of 12 

interest. For example, in the worst case scenarios 11a and 11b, risk based prioritization had the 13 

second best iNMB and number of hospitalizations, but the second worst number of cases (Figure 3, 14 

Table 5). 15 

Second, the impact of prioritisation strategies varies greatly depending on concurrent public health 16 

interventions. School closures and senior contact reductions have similar impacts on iNMB when 17 

there is no prioritisation given to any age or risk group (Table 5, iNMB 352 vs. 292 million, 18 

respectively, ratio 1.2:1), but when older groups are given priority, the benefit of school closures is 19 

much larger than reducing contacts for seniors (Table 5, iNMB 214 vs. 118 million, respectively, ratio 20 

1.8:1). 21 

Third, we found that the relative ranking of the prioritisation scenarios changed dynamically 22 

between the baseline scenario (Table 4) and the concurrent NPI scenarios (Table 5). In all scenarios, 23 

giving equal priority to all age and risk groups maximised iNMB, and minimized cases and 24 

hospitalizations in all concurrent NPI scenarios. Conversely, prioritizing older and high-risk 25 

individuals had the greatest reduction in hospitalizations in the baseline scenario with no concurrent 26 

NPIs.  27 
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3.1 Coverage, Effectiveness, and Prioritisation Scenario Results 1 

Table 4: Scenario Results 2 

Scenario  

(Reference Number, Name) 

Cumulative Cases  

Mean (SD) 

 

Cumulative 

Hospitalisations 

Mean (SD) 

NMB, Millions 

Mean (SD) 

iNMB*, Millions  

Mean (SD) 

Reference Scenarios 

1 No Vaccine  12.4 (0.2) 6380 (238) -980 (112) n/a 

2 Vaccine Baseline
† 

10.3 (0.2) 3419 (112) -718 (91) 263 (130) 

Coverage Scenarios     

3 Coverage 20% 11.3 (0.2) 4580 (162) -805 (100) 175 (132) 

4 Coverage 70% 7.7 (0.1) 2975 (92) -764 (77) 216 (130) 

Effectiveness Scenarios 

5 Effectiveness 40% 11.2 (0.2) 4760 (168) -902 (100) 78 (140) 

6 Effectiveness 60% 10.7 (0.2) 4061 (139) -807 (95) 174 (142) 

7 Effectiveness 60% age 60 and above, 80% otherwise 10.4 (0.2) 3729 (125) -752 (91) 228 (138) 

Prioritisation Scenarios 

2 Age and Risk (Vaccine Baseline)
† 

10.3 (0.2) 3419 (112) -718 (91) 263 (130) 

8 None 5.9 (0.0) 3432 (103) -692 (60) 288 (124) 

9 Age Only 9.4 (0.2) 4277 (147) -865 (93) 115 (142) 

10 Risk Only 9.8 (0.2) 3470 (116) -706 (88) 274 (136) 

Note: SD = Standard Deviation, NMB = Net Monetary Benefit, iNMB = Incremental Net Benefit, N/A = Not Applicable. Prioritisation Scenarios are defined as follows: None = equal 3 

priority given to all age and risk groups, Age = priority given to those aged 55 and over, Risk = priority given to high-risk individuals, Age and Risk = prioritisation for who are high-4 

risk or older than 55. Maximum doses per day is assumed to be 80,000, with access starting on October 15, 2020 for the priority group, and 30 days later for everyone else. *For 5 

all scenarios, iNMB is estimated relative to the scenario with no vaccine. Within each scenario group, the optimal policy is bolded. The dagger (†) denotes the same scenario 6 

repeated in the table for ease of reference.  7 

  8 
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Figure 2. Scenario Results - Active Cases  1 
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Fig2     For scenario definitions, see main text2 
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3.2  Low Effectiveness and Coverage Scenarios: Concurrent Public Health Responses 1 

Table 5. Concurrent Non-Pharmaceutical Intervention Results 2 

Scenario and 

Concurrent 

public health 

interventions 

Prioritisation Cumulative Cases  

Mean (SD), Rank (1-4) 

Cumulative Hospitalisations 

Mean (SD), Rank (1-4) 

NMB, Millions 

Mean (SD), Rank (1-4) 

iNMB*, Millions  

Mean (SD), Rank (1-4) 

2a: Baseline, 

School Closure 
Age and Risk 8.6 (0.1) 4 3061 (92) 2 -646 (76) 3 334 (135) 3 

None 5.2 (0.0) 1 3006 (87) 1 -628 (53) 1 352 (120) 1 

Age Only 7.9 (0.1) 2 3738 (116) 4 -767 (77) 4 214 (138) 4 

Risk Only 8.2 (0.1) 3 3086 (91) 3 -633 (73) 2 348 (134) 2 

 

2b: Baseline, 

Reduce senior 

contacts 50% 

Age and Risk 10.3 (0.2) 4 3366 (110) 2 -715 (90) 3 266 (132) 3 

None 5.9 (0.0) 1 3364 (101) 1 -688 (60) 1 292 (125) 1 

Age Only 9.4 (0.2) 2 4227 (144) 4 -862 (92) 4 118 (149) 4 

Risk Only 9.8 (0.2) 3 3412 (112) 3 -703 (88) 2 278 (129) 2 

 

11a: Worst 

Case, School 

Closure 

Age and Risk 9.9 (0.1) 4 4480 (144) 3 -765 (87) 3 215 (131) 3 

None 7.2 (0.1) 1 4031 (126) 1 -701 (67) 1 280 (119) 1 

Age Only 9.8 (0.1) 2 4636 (150) 4 -809 (88) 4 171 (128) 4 

Risk Only 9.9 (0.1) 3 4432 (142) 2 -748 (86) 2 232 (139) 2 

 

11b: Baseline, 

Reduce senior 

contacts 50% 

Age and Risk 11.6 (0.2) 4 4909 (177) 3 -858 (102) 3 122 (131) 3 

None 9.0 (0.1) 1 4735 (160) 1 -820 (84) 1 161 (131) 1 

Age Only 11.6 (0.2) 2
 

5157 (183) 4 -915 (106) 4 66 (149) 4 

Risk Only 11.6 (0.2) 3 4856 (174) 2 -839 (102) 2 142 (136) 2 

Note: SD = Standard Deviation, NMB = Net Monetary Benefit, iNMB = Incremental Net Benefit. Prioritisation Scenarios are defined as follows: None = equal priority given to all 3 

age and risk groups, Age = priority given to those aged 55 and over, Risk = priority given to high-risk individuals, Age and Risk = prioritisation for who are high-risk or older than 4 

55. Maximum doses per day is assumed to be 80,000, with access starting on October 15, 2020 for the priority group, and 30 days later for everyone else. *For all scenarios, 5 

iNMB is estimated relative to the scenario with no vaccine. Within each scenario group, rank 1 gives the optimum policy, whereas rank 4 gives the worst, ranking is based on 6 

unrounded results. 7 

 8 
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Figure 3. Concurrent Non-Pharmaceutical Intervention Results – Active Cases  4 
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Fig3     For scenario definitions, see main text5 
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4. Discussion 1 

Our results demonstrate the conflicts faced by decision makers when determining which policy 2 

objectives to pursue. In addition to the expected result that the choice of optimal vaccine allocation 3 

strategy is dependent on the primary outcome of interest, we also show the importance of considering 4 

time-variant epidemiological conditions, NPIs in place while a vaccine stockpile is allocated, vaccine 5 

coverage and effectiveness, population prioritisation policies, and timing of vaccine availability.   6 

Cumulative cases and iNMB vary greatly depending upon which concurrent strategies are in place. The 7 

optimum vaccine allocation strategy is sensitive to whether policies target morbidity reductions (cases, 8 

hospitalizations) or NMB outcomes. The choice over which outcomes to optimize is a reflection of 9 

values, and/or of specific concerns (such as hospital capacity) at the time of decision making. Depending 10 

on contact patterns and case burden, increases in cases do not imply equivalent marginal increases in 11 

hospitalizations, and vice-versa. Similarly, outcomes such as hospitalizations have different impacts by 12 

age and risk group, which are not captured in count-based measures. The NMB measure combines the 13 

QALY losses and health system costs related to multiple outcomes (cases, hospitalizations, deaths).  14 

With the exception of Chen et al. [13], other studies do not consider concurrent or future public health 15 

policies/ and or behavioural factors. We consider this an important oversight, as vaccine roll outs will 16 

take place in the context of other public health interventions and variation in behavioural responses. 17 

Ignoring this dynamic would risk misallocating the limited and highly valuable vaccine supply. Similarly, 18 

very few other studies have examined allocation by age and risk, [13,15,17] which are key factors in 19 

vaccine allocation discussions.  20 

Our study applies a health system perspective and incurs immunisation costs, whereas a societal 21 

perspective is expected to broadly increase NMB in immunisation scenarios relative to a health system 22 

perspective as broader social, economic, and health impacts are considered. For example, the societal 23 

cost of school closures are not captured in model results. The model is run for a short time frame such 24 

that the full benefits of immunisation are not fully realised, and important dynamics such as waning 25 

immunity are unknown and not considered in this analysis. Despite these limitations, the large NMB loss 26 

estimates for all scenarios demonstrate the magnitude of the harm caused by the COVID-19 pandemic, 27 

and the relative impact of vaccination on NMB in the short term. 28 

Some results from our analysis are unexpected and warrant further explanation. The impact of a lower 29 

vaccine effectiveness in those aged 60 and over appears relatively small. This is likely due to the 30 

expectation that physical distancing is maintained at a higher level for seniors throughout the period of 31 

analysis. If public health guidance or population attitudes shift such that seniors have increasing contact 32 

rates, lower effectiveness for older age groups would have a greater impact. 33 

The results for the ‘no prioritization’ strategy is non-intuitive. While age and risk groups that are older or 34 

high-risk have a greater risk of hospitalisation or death from COVID, these outcomes interact 35 

dynamically with greater transmission, driven by higher rates of contact, in young and low risk age 36 

groups. With increasing evidence of COVID-19 vaccines reducing the probability of viral transmission 37 

[42, 40], there is an argument that immunizing those with greater rates of contact will confer greater 38 

population level benefits [43]. This dynamic may also be due to relatively high coverage in the scenarios 39 

evaluated. These effects may not be as strong with coverage lower than 40%, as evaluated in our 40 
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baseline scenarios. With sufficient evidence to support sterilizing immunity, this is an important finding 1 

as the implication will be that individuals who cannot avoid contact (due to their employment, 2 

socioeconomic status, or living situation) should be prioritized for immunization to minimize onwards 3 

transmission and increase protection at a population level. 4 

We have modelled ‘all or nothing’ vaccine effectiveness. Other authors have shown that evaluating 5 

‘leaky’ effectiveness impacted upon the dynamics of the population impact [17]. This would not change 6 

the importance of the dynamic relationships our analysis elucidates but would impact upon the relative 7 

magnitude of different policy strategies. Future analyses with CRAM could incorporate evidence-based 8 

vaccine effectiveness and the identification of critical coverage thresholds needed to achieve herd 9 

immunity. 10 

Our analysis assumes only susceptible individuals are immunized and does not consider the potential 11 

role of serological testing for guiding vaccination strategies [17]. The assumption that only susceptible 12 

individuals are tested implies that an accurate method of case identification is in place, and more 13 

realistic evaluations intended to inform policies must consider the likely population distribution of 14 

recovered cases, to ensure realistic modelling of immunizing both susceptible and recovered individuals. 15 

Furthermore, evidence of marginal vaccine effectiveness on recovered individuals would be required. 16 

As stated in the introduction, the aim of this paper is to develop a model-based approach to vaccine 17 

allocation, analysing strategies defined by age and risk target groups, coverage, and effectiveness, 18 

within a dynamic context considering NPIs and population behaviour change. To this end, we evaluated 19 

intentionally hypothetical scenarios to avoid direct application of our results rather than our approach 20 

to vaccine allocation. Analyses designed to inform decision making must reflect the context within 21 

decisions are being made: current epidemiology, the timing of vaccine allocation, vaccine supply, 22 

delivery capacity, product effectiveness, proposed dose intervals, inter-dose effectiveness, concurrent 23 

NPIs, and population behaviour. 24 

Our results have three key policy implications: (i) that optimal vaccine allocation will depend on the 25 

public health policies, epidemiology, and human behaviours in place at the time of allocation; (ii) the 26 

effectiveness and efficiency of vaccine allocation policies can be greatly enhanced by co-interventions 27 

that target contact reduction in critical sub-populations; and (iii) the identification of the optimal 28 

strategy depends on which outcomes are prioritised. 29 

Future analyses conducted to inform policy directly should reflect these findings. It is critical to identify 30 

which outcomes are prioritized in vaccine allocation. Decision makers must not only consider the 31 

interventions and behaviours in place at the time of allocation, but also those which could be in place in 32 

the future. Whereas our paper evaluates changes to NPIs in separate scenarios, optimal allocation will 33 

depend on public health policy, epidemiology, and human behaviour. This creates a dynamic decision-34 

making environment where different combinations and degrees of implementation should be compared 35 

for all NPIs. Similarly, it is likely that real-world decision problems will involve the allocation of multiple 36 

vaccines, targeting different segments of the population with different availability over time. The full 37 

suite of policy options (both NPIs and vaccine allocation options) and combinations thereof must be 38 

examined to identify an optimal solution. 39 

Public health policies that can be implemented alongside vaccine allocation must be considered within a 40 

clear framework reflecting social values and equity. For example, in our model NMB is improved relative 41 
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to baseline when seniors continue to reduce their number of contacts, and if vaccines are allocated 1 

without prioritizing older and high-risk population groups.  However, this would mean that the people 2 

with the greatest risk of disease and poor outcomes would also bear the highest burden through 3 

additional social isolation. Therefore, the suite of public health policy policies to be implemented 4 

alongside the vaccine should be determined prior to dynamic policy optimisation [8]. 5 
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