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Abstract: Disruption of mental functions in Alzheimer’s disease (AD) and related disorders is 

accompanied by selective degeneration of brain regions for unknown reasons. These regions 15 

comprise large-scale ensembles of cells organized into networks required for mental functioning. 

A mechanistic framework does not exist to explain the relationship between clinical symptoms 

of dementia, patterns of neurodegeneration, and the functional connectome.  The association 

between dementia symptoms and degenerative brain anatomy encodes a mapping between 

mental functions and neuroanatomy. We isolated this mapping through unsupervised decoding of 20 

neurodegeneration in humans. This reflected a simple information processing-based functional 

description of macroscale brain anatomy, the global functional state space (GFSS). We then 

linked the GFSS to AD physiology, functional networks, and mental abilities. We extended the 

GFSS framework to normal aging and seven degenerative diseases of mental functions. 

One Sentence Summary: A global information processing framework for mental functions 25 

links neuroanatomy, cognitive neuroscience and clinical neurology.  

Main Text: Mapping biological functions to their anatomic substrates has been a central theme 

throughout medicine. At the core of the clinical practice of neurology is the localization of a 

particular clinical deficit to an anatomic substrate in the nervous system. Localizing limb 

strength to a lesion in the nervous system is usually straightforward, but in dementing 30 

neurodegenerative disorders of the brain, clinical symptoms manifest as selective impairments in 

mental functions. Cognitive psychology describes these mental abilities using terms such as 

perception, emotion, memory, social cognition, language, and executive function. Localization of 

these functions is coarse grained and poorly understood as there is no framework describing the 

high-level relationships between anatomy, brain dynamics, and mental functioning to guide the 35 

clinical approach to these common conditions. Lack of understanding of this biology also 

precludes the development of precise neurodegenerative disease models that include physiology 

related to dynamic large-sale functional brain systems like the default mode network (DMN) (1-

3). In order to bridge this divide, a mapping between concepts in computational neuroscience, 
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clinical neuropsychology, and neurology is required. Such a framework will provide the 

foundations for improved clinical management of disorders of brain function. 

From a computational neuroscience perspective, the diverse cognitive functions 

selectively degraded by Alzheimer’s disease (AD) and related disorders, arise from global 

integration of the ongoing microscale and mesoscale dynamic functional operations occurring 5 

within a relatively fixed spatial anatomy. In this respect, high-level mental abilities emerge from 

the dynamic global integration of local integrators (4). These globally integrated units can be 

modeled as large-scale network topologies embedded in hierarchical adaptive network 

architecture (5). Emergent properties of particular network topologies could then facilitate 

specific classes of mental abilities. Therefore, a complete spatial mapping of these macroscale 10 

network configurations would represent a functional-anatomic mapping of the biology involved 

in dynamically optimizing perception, cognition, and behavior (6, 7) that are selectively targeted 

in neurodegenerative diseases of the brain (8). Indexing such a large number of potential network 

configurations seems like an intractable problem on the surface, but this repertoire of network 

topologies has recently been described by trajectories on a low-dimensional manifold, and 15 

apparent neurotransmitter-modifiable flow through this manifold supports diverse mental 

abilities (7). We refer to this low-dimensional manifold as a global functional state space 

(GFSS). Theoretically, each point in this state space would represent a particular global network 

topology that optimally supports a specific mental ability, while impairment in a particular class 

of high-level mental functions would correspond to altered dynamics involving a portion of state 20 

space associated with that function. Clinically, such limited flow across a portion of the GFSS 

would be characteristic of a particular dementia syndrome. Pathologically altered large-scale 

dynamics would explain the observed similarity between degenerating brain anatomy and 

functional connectivity patterns, as well as the selective clinical impairment of a particular high-

level mental function. In the current study we find evidence for these predicted relationships, and 25 

incorporate them into a mechanistic model explaining the relationships between 

neurodegenerative patterns, functional connectivity, and clinical symptoms. This is accomplished 

within a framework that emphasizes functional modes of degeneration within a continuous 

dynamic functional state space rather than molecular spreading along functional connections.  

The neurobiology that allows for AD and related disorders to selectively target particular 30 

mental abilities or large-scale brain networks, while sparing others, is unknown. There are 

prominent individual differences in this selectivity leading to variable cognitive symptoms 

among types of AD dementia, such as the typical late life amnestic dementia syndrome and the 

younger-onset visual or dysexecutive variants (9), resulting in a “paradox of syndromic 

diversity” (10). Characterizing the factors related to this paradox, and individual variability in 35 

general, will inform our understanding of the underlying neurobiology driving syndromic 

variability and mental functions (11). Recent investigations of individuals with typical AD and 

those with the visual variant of AD showed that they were indistinguishable at the molecular 

level (12, 13), but they can be distinguished at the network level (14, 15) or by large-scale tau 

patterns that resemble the spatial anatomy of functional brain networks (16). This suggests that 40 

inter-individual variability in mental abilities affected by AD is partly driven by inter-individual 

differences in the macroscale functional pathophysiology of AD, as opposed to purely at the 

molecular level. We have recently proposed a theory of AD pathogenesis that implicates large-

scale network dynamics in disease pathogenesis alongside microscale misfolding of proteins (3, 

16, 17) that is in-line with general theories of network dysfunction in neuropsychiatric disease 45 

(18). In order to test and improve upon AD models that include large-scale network physiology, 
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a more complete model of the physiology of mental abilities and their relationship to brain 

networks and neuroanatomy is essential. This requires a framework that spans computational 

neuroscience, clinical neuropsychology, and neurology. Theoretically, the GFSS can provide 

such a framework, but evidence for selective degeneration of modes/regions of the GFSS does 

not yet exist.  5 

In our proposed GFSS framework, the selective functional impairment seen in an 

individual with AD results from impaired dynamics in a particular portion of the state space 

manifold, or degenerative dynamics within a functional mode of operation (3). In other words, 

the specific pattern of global dysfunction in an individual would represent a particular 

parameterization of disease pathophysiology at this global scale. In this disease model, 10 

individuals with neurodegenerative diseases represent unique “lesion studies” disrupting 

dynamics of GFSS functional modes.  We looked for evidence of this to support a GFSS 

framework of neurodegenerative diseases of brain function. We hypothesized that the inter-

individual differences in neurodegeneration across the AD spectrum could be decoded to yield 

the GFSS, providing a direct link between AD pathophysiology and the low dimensional 15 

manifold of large scale brain organization.  We further hypothesized that this GFSS would be 

related to functional imaging literature and be applicable to interpreting clinical data across 

normal aging and dementia syndromes. 

There is no existing method of determining how impaired flow through the GFSS could 

be encoded by measures of brain function in AD patients. However, if flow through the GFSS is 20 

fundamental to the macroscale neurobiology of AD, then it should be possible to use a form of 

latent variable analysis to decode functional imaging data from patients, construct a 

representation of the GFSS, and subsequently determine the extent to which AD effects are 

predicted by the GFSS (Fig. S1). In this study, we construct an estimate of the GFSS and 

examine its relationship to fundamental features of AD. This is accomplished through four main 25 

investigations: 1) human data (N = 423) is used to derive the GFSS via an unsupervised pattern 

analysis and latent space representation of global glucose uptake across the AD clinical 

spectrum, 2) mental functions are mapped to the observed GFSS using a functional meta-analysis 

and compared to similar mappings obtained using functional connectivity data, 3) application 

and validation of the predictive ability of the observed GFSS in a large multi-site study (N = 30 

410), and 4) additional clinical validation of the functional-anatomic mapping by projecting data 

from normal aging (N = 1,121) and clinically defined dementia syndromes (N = 291) selectively 

targeting memory, executive functions, language, behavior, movement, perception, semantic 

knowledge and visuospatial abilities. Our results provide further validation a GFSS framework 

and demonstrate its translational potential to improve the practice of neurology through advances 35 

made in neuroimaging and computational neuroscience. 

Patient Selection 

In order to ensure that the GFSS was disrupted in the individuals included in our 

investigation, we selected patients with evidence of cognitive impairment, defined here as a 

clinical dementia rating scale greater than zero.  In this patient population, we aimed to 40 

investigate brain physiology that would be sensitive to changes in the GFSS that can be reliably 

measured on the single-subject level. Therefore, we studied glucose uptake measured by F18-

fluorodeoxyglucose (FDG) positron emission tomography (PET), a widely used functional 

imaging modality in routine use in our clinical practice currently. In the current research 

framework for AD, FDG-PET is considered a biomarker of neurodegeneration (19). We limited 45 
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our FDG-PET analysis to individuals who had evidence of microscale AD pathophysiology (i.e., 

elevated beta-amyloid PET). While this focuses our investigation to individuals with a 

microscale element of AD pathophysiology by definition (19), it does not preclude other co-

morbid conditions and therefore allows for a sampling of the complete spectrum of beta-amyloid 

associated cognitive impairment. We identified 423 patients that meet these inclusion criteria 5 

(Table 1). The characteristics of the validation cohort form the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) are also displayed in Table 1.  

 

 
Mayo ADNI P-value 

N 423 410 
 Age (median [Q1,Q3]) 77.4 [69.1, 83.5] 74.5 [69.6, 79.4] 0.001 

Male (%)   244 (57.7)    223 (54.4)  0.375 

Education (median [Q1,Q3]) 15 [12, 17] 16 [14, 18] <0.001 

APOE e4+ (%)   243 (61.7)    283 (69.2)  0.030 

CDR (%)       <0.001 

0.5   274 (64.8)    310 (75.6)  
 1   106 (25.1)     96 (23.4)  
 2    39 ( 9.2)      4 ( 1.0)  
 3     4 ( 0.9)      0 ( 0.0)  
 CDR-SOB (median [Q1,Q3])  3.0 [1.0, 5.5]  2.0 [1.0, 4.4] 0.004 

MMSE (median [Q1,Q3]) 24 [21, 27] 26 [24, 28] <0.001 

FDG (median [Q1,Q3])  1.25 [1.09, 1.40]  1.16 [1.05, 1.28] <0.001 

Table 1. Mayo and Alzheimer’s Disease Neuroimaging Initiative (ADNI) Sample Characteristics 

APOE e4+  –  carriage of an APOE-ε4 allele; CDR– Clinical Dementia Rating Scale; CDR-SOB – Clinical 10 

Dementia Rating Scale Sum of Boxes; MMSE – Mini-Mental State Examination 

 

Latent Space Derivation of the GFSS 

Individual variability in large-scale patterns of glucose uptake in these patients can be 

conceptualized as a parameterization of amyloid associated AD neurobiology at a global scale 15 

(11). We decoded this parametrized AD pathophysiology by performing a form of multivariate 

pattern analysis on a between-subject level that we refer to as Between-subject variability 

Projection and Reduction (BPR) to emphasize the importance of sample selection and patient 

factors for decoding pathophysiology.  

The BPR algorithm leverages widely used analytic techniques to identify global patterns 20 

of between subject covariance. As we applied it to our imaging data, it is a higher-dimensional 

computational equivalent of the 2-D eigenfaces facial recognition algorithm as implemented by 

Turk and Pentland (20). Unsupervised linear (singular value decomposition) and non-linear 

(Laplacian eigenmaps)  methods for the manifold decoding step performed similarly in our data, 

but a full sampling of the parameterization of the GFSS, via between subject variances, is 25 

required in order to replicate the decoding. This is because BPR, and related analyses, of FDG-

PET images from a disease class will index meaningful global features of altered glucose uptake 

caused by the pathophysiologic process of interest in the patient population being studied. In the 

population we studied, this algorithm produced a low dimensional linear basis-set of eigenbrains 

or EBs (Fig. 1), that describes 95% of the variability in the FDG images (Figs. S2-S5). These 30 

EBs describe global patterns of variation in glucose uptake among the group that index highly 

meaningful functional brain properties relevant to AD biology. Further analyses outlined below 
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supports our hypothesis that these patterns describe information processing aspects of the GFSS 

of interest in this study.  

 

Fig. 1. Eigenbrain decomposition of glucose uptake in 423 Alzheimer’s patients reveals a low-dimensional set of 5 

large-scale patterns that explain 95% of the variance among patients. Surface renderings of median, interquartile 

range, and eigenbrain intensities for the first 10 eigenbrains are displayed.  The percentage of variance explained 

by each is listed to the right of the color bar. 

 

Functional Mapping of the Anatomy Described by the Glucose Eigenbrains  10 

We used a NeuroSynth (www.neurosynth.org) (21) functional topic terms (22) based 

decoding (23) as a common framework to compare the functional anatomy captured in this study 

to the existing functional MRI literature in a similar manner as Shine, et al. 2019 (7) and 

Margulies, et. al. 2016 (24), allowing for a common understanding of these diverse findings in 

the same meta-analytic functional terminology. The functional topic term decoding for a single 15 

topic across all 10 EBs can also be used as an embedding of that topic in the GFSS coordinate 

system. The coordinates of that GFSS embedding can then be used as EB weights in a linear 

anatomical reconstruction of that functional topic (Fig. 2). The linear combination of the smooth 

gradients described by the EBs produce global patterns associated with each functional topic. 

Peak values in these reconstructed maps correspond to regions of peak activation associated with 20 

brain patterns observed during performance of these tasks. These topic term embeddings can also 

be used as ‘functional waypoints’ to aid in interpreting functional correlates of large-scale 

anatomic patterns of disruption in patients. In order to do this on a single subject level across 

functional topic terms, we linked values in the GFSS coordinate system continuously to the 

functional imaging literature via a full topic term decoding of each EB (Fig. 3) and then 25 

embedded individual subjects into this well characterized functional-anatomic coordinate-based 

framework (Fig. 4).  
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Fig. 2. Embedding large-scale brain patterns associated with mental function topics. A)  NeuroSynth 

(http://neurosynth.org/analyses/topics/) anatomic maps for four topics related to AD clinical syndromes are 

displayed on surface renderings.  B) The GFSS embeddings of these topics were used to generate the anatomy 

associated with that point in the GFSS manifold and projected onto surface renderings. This demonstrates faithful 5 

representation of these anatomic patterns associated with mental topics in the GFSS. 

 

In this cohort, the first three EBs account for 75% of the variance and are related to 

hemispherically symmetric orthogonal axes of brain function that capture the majority of the 

hypothetical GFSS.  Therefore, we focused on presenting the results for decoding and 10 

characterizing these three EBs. The functional axis captured in EB2 (Fig. 3A) was nearly 

identical to the principle gradient defined by Margulies et. al. (2016) using functional 

connectivity data from cognitively unimpaired individuals (24). The meta-analytic functional 

topic terms based decoding for EB2 and the same decoding of the principle gradient were highly 

correlated (Fig. 3B).  This EB fully indexes the glucose uptake in the principle gradient of 15 

macroscale cortical organization, characterized at one extreme by heteromodal association cortex 

(centered on DMN regions) and on the other extreme by primary sensory and motor regions. 

This fundamental organizing feature of brain function was first observed in FDG-PET (1), 

subsequently identified in patterns of functional connectivity (25), and also shown to be impaired 

in AD (2). Features of this pattern (e.g., sparring of the sensorimotor strip) are also routinely 20 

used by clinicians when interpreting FDG scans from patients (26). The fact that global variation 

in glucose metabolism in AD takes place along this and other macroscale functional gradients 

supports our hypothesis that AD alters flow through a low dimensional, functional manifold 

which captures large-scale network configurations underlying mental functions (7).  
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Fig. 3. Information processing and the global functional state space. A) Joint histogram between the principle axes 

of functional connectivity (13) and glucose EB2. B) NeuroSynth decoding of the principle axes of functional 

connectivity versus glucose EB2 decoding. Select topic terms are color-coded on the right (color coding is the same 5 

as in C). C) Scatter plot of topic term decoding for glucose EB1-3. For the color-coding, each EB decoding was 

used as a RGB channel (EB1 = Blue, inverted polarity EB2 = Red, EB3 = Green). Radius of the points encodes 

depth along EB2. Generated anatomy using the 10-D EB decoded coordinates (Table S3) for faces and objects are 

displayed on the right and left hemisphere (respectively) surface renderings. Below these, axial brain slice with the 

peak voxels from the faces and objects anatomic projection overlaid highlighting the fusiform face area (red) and 10 

visual word form area (blue) respectively encoded at these points. D) The same RGB color-coding was applied in a 

voxel-wise manner using the intensities from EB1-3 producing a continuous functional parcellation of brain 

anatomy along these gradients. E) The state space representation of the same color mapping with the approximate 

location of nine cognitive topic terms from panel C overlaid and numbered. A surface rendering of the anatomic 

correlates, generated from linear combinations of EB1-3 weighted by the position in state space, for the eight 15 

extremes of the cube are displayed near the portion of state space represented. A-anterior; P-posterior; L-left 

lateral; R-right lateral; D-dorsal; V-ventral  

This structural-functional mapping of the EBs can be compactly represented and 

visualized in a three-dimensional approximation of the GFSS using the first three eigenbrains. 

This can be done using a latent space coordinate system (Fig. 3C and Fig. 3E), or in anatomic 20 

space (Fig. 3D). The RGB color map of the anatomic representation clearly demarcates 

functionally meaningful brain parcels based on the patterns of continuous variation in the 

gradients of the first three eigenbrains. This produces analogous results to defining brain parcels 

based on regional variation in cytoarchitectonics (27).  

Each of the GFSS axes, or latent variables, can be conceptually simplified and 25 

dichotomized via axis polarity informed by this brain-behavior mapping (EB1: data source 

[internal vs. external], EB2: model form [abstract vs. concrete], and EB3: control type [feedback 

vs. feedforward]). These conceptual labels are provisional based on the relations between 

functional topic term mappings, but they are in line with the anatomic connectivity, functional 

activation, and clinical symptoms described here. These labels also compliment current theories 30 
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describing the functions of the nervous system in computational terms and provide a conceptual 

link between computational neuroscience and clinical neurology. 

The three-dimensional approximation is hemispherically symmetrical, but EB4 and EB5 

can be included to capture breaks in symmetry and cumulatively explain 85% of the variance in 

the dataset. Naturally, the relative variance explained depends on the phenotypic composition of 5 

the cohort studied, in line with the BPR formulation. For example, EB5 captures hemispheric 

asymmetries in the left temporal lobe, including regions relevant for language functions, and 

eigenvalues were higher for the patients diagnosed with the language-variant of AD relative to 

the rest of the cohort, two-sample t(421) = 3.69, p < 0.001. The topic terms based decoding of all 

10 EBs and the principle gradient from Marguiles et. al. (2016) (24) are presented in Table S1.  10 

Predictive Modeling of Factors Related to AD  

Together, the set of 10 EBs could be used to predict key demographic, imaging, clinical, 

and pathologic variables associated with the effects of AD (Table 2). In other words, indexing 

variation in glucose uptake in global brain systems relevant for mental functions is highly 

predictive of key effects of AD biology on an individual.  15 

 

 
 

Table 2. Predictive Models in the Mayo Cohort for Key Effects of Alzheimer’s Disease  

For each of the dependent variables, the first 10 eigenvalues were used as predictors in a multivariate linear model. 20 

The R
2
, adjusted R

2
, predicted R

2
, color-coded magnitude and sign of standardized beta coefficients, p-value, and 

Bonferroni adjusted p-values are displayed for each model.  

FDGAD – FDG SUVR in AD signature regions; FDGHS – FDG SUVR in hippocampal sclerosis signature regions; 

FDGDLB – FDG SUVR in DLB signature regions; MMSE – Mini-Mental State Examination; MRITHK – MRI 

thickness in AD signature regions; Braak NFT – Braak neurofibrillary tangle stage; CDR– Clinical Dementia 25 

Rating Scale; CDR-SOB – Clinical Dementia Rating Scale Sum of Boxes; Hippo Vol – Hippocampal volume; 

UPDRS - Unified Parkinson’s Disease Rating Scale; RBD – REM sleep behavior disorder; Duration – disease 

duration; E4+ - carriage of an APOE-ε4 allele   

 

Variable N R2
adjR

2
preR

2 EB1 EB2 EB3 EB4 EB5 EB6 EB7 EB8 EB9 EB10 P-value adjP-value

FDGAD 423 0.74 0.73 0.72 0.39 -0.64 -0.03 -0.01 0.11 -0.05 -0.23 -0.20 0.26 -0.02 2.2E-16 5.3E-15

Age 423 0.66 0.65 0.64 0.54 -0.33 -0.32 0.06 -0.18 -0.13 0.23 0.17 -0.09 0.12 2.2E-16 5.3E-15

Onset Age 356 0.63 0.62 0.61 0.56 -0.39 -0.26 0.05 -0.21 -0.12 0.20 0.11 -0.02 0.06 2.2E-16 5.3E-15

FDGHS 423 0.63 0.62 0.60 0.52 -0.40 -0.29 0.10 0.10 -0.01 -0.12 -0.22 0.11 0.14 2.2E-16 5.3E-15

MMSE 403 0.57 0.56 0.54 0.24 -0.60 0.06 0.15 -0.17 -0.03 -0.05 -0.09 0.32 -0.01 2.2E-16 5.3E-15

MRITHK 417 0.51 0.50 0.48 0.09 -0.50 0.27 -0.18 -0.05 -0.02 -0.17 -0.17 0.31 -0.02 2.2E-16 5.3E-15

Braak NFT 67 0.60 0.52 0.42 -0.12 0.25 -0.04 0.43 0.58 0.04 -0.31 -0.40 -0.16 0.08 7.2E-08 1.7E-06

CDR-SOB 423 0.45 0.44 0.42 -0.18 0.54 0.01 -0.06 0.09 0.08 0.05 0.12 -0.31 0.00 2.2E-16 5.3E-15

Tau-PET 138 0.51 0.47 0.41 -0.29 0.48 0.09 0.08 0.21 0.03 -0.28 -0.02 -0.20 0.08 9.5E-16 2.3E-14

Hippo Vol 417 0.40 0.39 0.37 -0.23 -0.17 0.34 -0.18 -0.04 0.05 -0.07 -0.11 0.34 -0.21 2.2E-16 5.3E-15

Language 263 0.39 0.37 0.33 0.15 -0.46 0.16 0.06 -0.21 0.02 -0.13 -0.22 0.30 -0.04 2.2E-16 5.3E-15

CDR 423 0.34 0.33 0.30 -0.17 0.47 0.04 -0.05 0.08 0.08 0.08 0.07 -0.26 -0.01 2.2E-16 5.3E-15

Memory 231 0.28 0.25 0.20 -0.11 -0.35 0.16 0.06 -0.30 0.00 -0.01 -0.12 0.30 -0.16 8.0E-12 1.9E-10

Sex 423 0.21 0.20 0.17 0.09 -0.11 0.09 0.02 0.01 0.19 0.03 0.31 0.07 -0.22 2.2E-16 5.3E-15

UDPRS 407 0.20 0.18 0.16 -0.13 0.04 0.17 -0.13 -0.25 0.04 0.23 0.15 0.03 -0.02 5.3E-15 1.3E-13

Attention 198 0.25 0.21 0.15 0.16 -0.26 0.10 -0.06 0.22 0.04 -0.23 -0.20 0.18 -0.07 3.2E-08 7.6E-07

Global Cog 166 0.27 0.22 0.15 0.05 -0.34 0.17 0.00 -0.07 0.05 -0.19 -0.26 0.26 -0.12 3.4E-07 8.2E-06

Visual 187 0.26 0.22 0.15 0.35 -0.21 0.17 -0.01 0.16 -0.02 -0.15 -0.23 0.00 -0.10 4.4E-08 1.1E-06

RBD 246 0.20 0.17 0.13 -0.17 -0.09 0.17 -0.08 -0.16 0.11 0.21 0.19 -0.01 -0.12 3.9E-08 9.2E-07

FDGDLB 423 0.16 0.14 0.12 -0.26 -0.12 0.23 0.06 -0.04 -0.11 0.05 -0.02 0.01 -0.09 7.5E-12 1.8E-10

Amyloid-PET 423 0.16 0.14 0.12 0.02 0.11 -0.23 0.05 0.12 -0.11 -0.10 0.08 -0.23 0.03 7.6E-12 1.8E-10

Duration 118 0.25 0.18 0.10 -0.14 0.18 -0.26 -0.03 0.17 -0.04 -0.13 0.06 -0.25 0.09 3.6E-04 8.7E-03

Lewy Path 64 0.39 0.27 0.06 -0.22 0.20 -0.02 -0.17 -0.10 -0.16 0.35 0.51 0.04 0.08 1.8E-03 4.4E-02

E4+ 384 0.08 0.06 0.03 0.04 0.09 0.02 0.18 0.14 0.13 -0.03 -0.07 -0.03 0.01 1.9E-04 4.6E-03
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External Validation of Predictive Modeling 

We next validate the predictive ability of mapping dysfunction in the GFSS in an 

independent cohort. Using the associations in this basis set to predict the age of patients from an 

independent database (N = 410) available as part of the Alzheimer’s Disease Neuroimaging 

Initiative (Table 1), we achieved a mean absolute error of 5.1 years using a linear 10 EB model. 5 

Similar results were obtained predicting other variables in the dataset related to glucose uptake, 

cognition, and disease severity, with peak prediction performance achieved with models using 8-

20 EBs (Fig. S8 and S9). This strong predictive ability is suggestive of a key role for the GFSS 

in the expression of AD pathophysiology within an individual and serves as a robust validation 

of our results in a multisite study.  10 

Clinical Validation of the GFSS Framework  

We embedded a large cohort of Mayo Clinic participants in the GFSS framework using 

the eigenbrains derived from only the 423 individuals with amyloid associated cognitive 

impairment (Fig. 4). See the Materials and Methods for exploration of the effect of cohort on 

eigenbrain definition (Fig. S5 and S6).  15 

This cohort included cognitively unimpaired individuals with negative amyloid-PET 

scans (n = 1,121) across the age spectrum (median age [q1, q3] = 65 [57, 74], range = 30-93) and 

seven clinically defined age-associated dementia syndromes: typical Alzheimer’s disease (tAD, n 

= 137), Dementia with Lewy Bodies (DLB, n = 72), behavioral variant of frontotemporal 

dementia (bvFTD, n = 33), semantic dementia (SD, n = 11), posterior cortical atrophy (PCA, n = 20 

15), logogenic variant of primary progressive aphasia (lvPPA, n = 8), and dysexecutive 

Alzheimer’s disease (dAD, n = 15).  

Each clinical syndrome could be uniquely characterized by their distribution along the 

first three coordinates of the GFSS in a manner reflecting their distinguishing clinical features 

(Fig. 4A-C). All of the cognitive dementia syndromes differed from cognitive aging in terms of 25 

brain regions involved in abstract model formation (Fig. 4B). Both PCA and DLB displayed 

characteristic abnormalities in brain regions abstractly modeling information form external data 

sources (Fig. 4A), but brain regions important for feedforward control were more abnormal in 

PCA relative to DLB (Fig. 4C).  Subjects with bvFTD and SD displayed characteristic 

abnormalities in brain regions abstractly modeling internal data sources (Fig. 4A), but SD 30 

involved more feedforward control brain regions relative to bvFTD (Fig. 4C). Both lvPPA and 

dAD groups showed the most extreme abnormalities in abstract modeling brain regions relative 

to other dementia groups, but dAD subjects were characteristically more impaired in brain 

regions supporting feedback control, in line with their characteristic working memory 

impairment (9, 16). Typical AD is characterized by being in the middle of these extremes. 35 
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Fig. 4. GFSS across normal aging and seven clinical dementia syndromes. Rain cloud plots (28) with data 

distribution and jittered raw data points for each subject on either side of boxplots of eigenvalues for A) EB1, B) 

EB2, and C) EB3 for cognitively normal amyloid negative individuals across the aging spectrum (CN), typical AD 

(tAD), dementia with Lewy bodies (DLB), behavioral variant of frontotemporal dementia (bvFTD), sematic 5 

dementia (SD), posterior cortical atrophy (PCA), logopenic variant of primary progressive aphasia (lvPPA), and 

dysexecutive AD (dAD). D) Scatter plot for the first 3 EBs for all of these subjects with age color mapping showing 

the youngest individuals (blue) at the opposite extreme from the oldest individuals (red). The same plot with RGB 

color mapping for reference to other figures is inset in the bottom right. E) Scatter plot for the first 3 EBs for 5 

dementia syndromes highlighting the differential mapping across the GFSS with clinical syndromes coinciding with 10 

predictions made by the functional mapping in Fig. 3. The same plot with RGB color mapping for reference to other 

figures is inset in the bottom right. F) The same RGB GFSS color mapping used in Fig. 3 indicating the anatomy 

and GFSS location for each clinical group (including an example of limbic-predominant age-related TDP-43 

encephalopathy [LATE] (29)). A representative single subject clinical FDG-PET (Cortex ID, GE Healthcare 

software) with z-scores relative to age matched controls color-coding the degree of hypometabolism for one patient 15 

from each group is also displayed.  

 

Discussion  

 Neurodegeneration in dementia syndromes can be conceptualized as occurring along a 

continuous low-dimensional manifold that spans the macroscale functional-anatomic 20 

organization of the brain, or global functional state space (GFSS). The coordinates in this state 

space encode macroscale anatomy that supports the cognitive functions which are selectively 

impaired by neurodegenerative diseases of the brain (Figs. 2-4). This macroscopic description of 

high-level functional organization compliments smaller scale anatomical mappings of lower-

level brain functions (e.g., orientation columns in primary visual cortex) and highlights the 25 

multiscale nature of the brain’s functional architecture and its dysfunction in neurologic illness. 

The high predictive ability of the GFSS embedding for all major readouts of AD effects on an 

individual (Table 2), suggests that the global functional physiology of the brain is a key 

parameter influencing the expression of AD within an individual. These latent factors, related to 
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information processing (Fig. 3), were decoded from patterns of glucose uptake in patients with 

AD, but are readily able to represent functional activation patterns from cognitively normal 

individuals. They are also able to capture clinically relevant patterns of variability across seven 

dementia phenotypes (Fig. 4). This same manifold can be found from decoding metabolic 

patterns across the aging and dementia spectrum (Fig. S6). Together, these facts lend support to 5 

complex systems based pathophysiologic models for all neurodegenerative diseases that integrate 

macroscopic functional physiology with microscopic cellular and molecular physiology (3, 16, 

17). 

Selective vulnerability of certain brain anatomic structures, large scale-brain networks, 

and the cognitive functions these networks and anatomy support, is a hallmark of all 10 

neurodegenerative diseases. This leads to a characteristic mapping between clinical phenotype, 

structural anatomy, and brain networks (8). The GFSS interpretation recasts these relationships 

in terms of degeneration in modes of brain functioning along a continuous state space. A 

mechanistic model of this selective degeneration requires an understanding of the physiology 

that allows static brain structure to support dynamic reconfiguring of functional operations in 15 

response to current high-level functional demands through coordination of spiking activity in 

large populations of neurons (4). In other words, a framework bridging cognitive computational 

neuroscience and clinical neurology is needed. The GFSS framework represents an important 

step in that direction conceptually, in addition to demonstrating immediate clinical utility (e.g., 

differentiating the most common causes of neurodegeneration form normal aging).  20 

The GFSS is able to capture information represented discretely by meta-analysis of 

functional MRI (Fig. 3) or discrete patterns of degeneration in patients with dementia (Fig. 4), 

but in a continuous manner, suggesting a wide applicability of this latent space beyond FDG 

images in individuals with AD. Degenerative diseases are an important population to study 

neurodynamics because the pathophysiology in these conditions must selectively impair modes 25 

of function within the GFSS when they limit particular high-level functional abilities (memory, 

social cognition, executive control, semantic knowledge, visuospatial processing, etc.). 

Therefore, they represent “lesion studies” of functional neurodynamics. We did find it striking 

that our study of only AD associated cognitive impairment revealed such a comprehensive state 

space robust to the sample characteristic and methods used to derive it (Figs. S4-S7). This 30 

phenomenon likely relates to the wide clinical phenotypic variability in AD, the low dimensional 

nature of the GFSS, and the necessary dependencies within the neurodynamics regulating flow 

through this state space.  

It is remarkable that three brain patterns related to high-level informational processing 

(information source [EB-1], model type [EB-2], and control mode [EB-3]) are sufficient to 35 

explain the majority of the variability in degenerative pattern formation in AD and related 

disorders. Necessarily, these eigenbrains also encode patterns observed in the functional MRI 

literature. We believe this occurs because the macroscopic functional properties encoded by the 

GFSS index state variables of the brain’s complex adaptive information processing system at a 

scale relevant for high-level cognitive functions. These cognitive functions are routinely 40 

investigated in fMRI experiments and selectively degraded by neurodegenerative diseases. The 

neurodegenerative selectivity for certain dynamic brain patterns, or modes of function of the 

complex system, and the high predictive ability of GFSS mapping for all key readouts of AD 

suggests a fundamental role for large-scale neurodynamic physiology in AD and related 

disorders. This emphasizes the urgent need to ground clinical neurology and cognitive 45 
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psychology in terms of computational neuroscience in order to make meaningful advances for 

these incurable degenerative diseases of the mind. The GFSS framework is an important step in 

that endeavor. 
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Fig. S1. Graphical study outline. Alzheimer’s disease pathophysiology involves complex 

nonlinear dynamics related to the bidirectional interaction between microscale and macroscale 

brain organization in a manner consistent with the cascading network failure model of 

Alzheimer’s disease (16, 17). Unknown parameters involved in these nonlinear effects may 

perturb the global functional state space (GFSS) in a heterogeneous fashion leading to 5 

individual variability in the expression of this pathophysiology at the macroscale. FDG-PET is a 

sensitive marker of the global pattern of neurodegenerative functional disruption at the 

individual level. Therefore, individual variability in global FDG-PET patterns can be considered 

an observable parameterization of macroscale functional AD pathophysiology. Latent variable 

analysis of the observable variability in FDG-PET should produce a functional-anatomic 10 

mapping of the GFSS. This factor analysis assumes the underlying unseen variables are 

continuous and normally distributed. Therefore, the first part of this study performs a form of 

factor analysis computationally equivalent to the eigenface facial recognition algorithm (20), 

Between-subject variability Projection and Reduction (BPR), to identify spatially interpretable 

latent factors related to AD physiology (Fig 1). In the second part of this study, this newly 15 

identified GFSS is mapped onto functional connectivity and functional terminology (Fig 2 and 

Fig 3). In the third part of this study, the GFSS is used to make predictions about other 

manifestations of AD pathophysiology (Table 2). This allows for predictive modeling of key AD 

pathophysiologic manifestations in an out-of-sample multi-site study (Fig S9). This is in contrast 

to the more common approach of using a generalized linear model (GLM) voxel-wise, or region-20 

of-interest based, approaches to see how these variables are encoded in FDG-PET (dashed gray 

upward arrow). This framework is extended to normal aging and seven dementia syndromes in 

the last part of the study (Fig 4). 

 

Participants 25 

 All participants or their designee provided written consent with approval of the Mayo 

Clinic Foundation and Olmsted Medical Center Institutional Review boards. All participants in 

the Mayo Clinic Rochester Alzheimer’s Disease Research Center and the Mayo Clinic Study of 

Aging that met our inclusion criteria were included in this study. As previously described (16), 

the Mayo Clinic Rochester Alzheimer's Disease Research Center is a longitudinal cohort study 30 

that enrolls subjects from the clinical practice at Mayo Clinic in Rochester, MN. The Mayo 

Clinic Study of Aging is a population-based study of cognitive aging among Olmsted County, 

MN residents (30). Enrolled participants are adjudicated to be clinically normal or cognitively 

impaired by a consensus panel consisting of study coordinators, neuropsychologists and 

behavioral neurologists. Methods for defining clinically unimpaired, mild cognitive impairment 35 

and dementia in both of these studies conform to standards in the field (31-33). 

Inclusion criteria for this study consisted of 1) a Clinical Dementia Rating (CDR) global score 

greater than zero, 2) presence of amyloid plaques, defined as amyloid-PET standard uptake value 

ratio (SUVR) greater than 1.5, and 3) had high quality MRI, amyloid-PET, and FDG-PET data 

available for analysis. A higher more conservative SUVR cut point was used for defining 40 

amyloid-PET positivity in order to avoid contaminating the creation of this basis set with false 

positives (16). See Table 1 and Data S1 for more details on the participants included in this 

study.  

 

Structural Magnetic Resonance Imaging 45 
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As previously described (16), MRI was performed on one of three compatible 3T systems from 

the same vendor (General Electric, Waukesha, WI, USA). A 3D magnetization prepared rapid 

acquisition gradient echo (MPRAGE) structural imaging sequence developed for the Alzheimer's 

Disease Neuroimaging Initiative (ADNI) study was acquired (34). All images were acquired 

using an 8-channel phased array head coil. Post-processing to correct for gradient distortion 5 

correction and processing has been validated in multiple studies, shown to give consistent stable 

results in ADNI data, and geometric fidelity after correction is independent of scanner (35, 36). 

Parameters were: TR/TE/T1, 2300/3/900 msec; flip angle 8°, 26 cm field of view (FOV); 256 × 

256 in-plane matrix with a phase FOV of .94, and slice thickness of 1.2 mm. These MPRAGE 

parameters have been held invariant since approximately 2008. This structural MRI was used for 10 

preprocessing PET data. 

 

PET Acquisition and Preprocessing  

 The amyloid-PET imaging was performed with C-11 Pittsburgh Compound B (37) and 

FDG-PET with F-18 fluorodeoxyglucose. PET images were acquired using 1 of 2 PET/CT 15 

scanners (DRX; GE Healthcare). A computed tomography scan was obtained for attenuation 

correction. These images were usually acquired on the same day with 1 hour between amyloid-

PET and FDG-PET acquisitions. Subjects were prepared for FDG-PET in a dimly lit room, with 

minimal auditory stimulation.   Amyloid-PET images consisted of four 5-min dynamic frames 

from 40 to 60 min after injection. FDG-PET consisted of four 2-min dynamic frames acquired 20 

from 30 to 38 min after injection. PET sinograms were iteratively reconstructed into a 256 mm 

FOV. The pixel size was 1.0 mm and the slice thickness 3.3 mm. Standard corrections were 

applied. 

 The global amyloid-PET SUVRs were calculated as previously described (38). The FDG-

PET image volumes of each subject were coregistered to the subject’s own T1-weighted MRI 25 

scan, using a 6 degree-of-freedom affine registration with mutual information cost function. Each 

MRI scan was then spatially normalized to an older adult template space (39) using a unified 

segmentation and normalization algorithm (40) with transforms applied to co-registered FDG-

PET images. These spatially normalized images were then intensity normalized to the pons and 

spatially smoothed with a 6 mm full-width half-maximum Gaussian kernel.  30 

 

Between-subject variability projection and reduction  

 The unsupervised machine learning algorithm, Between-subject variability Projection and 

Reduction (BPR), was designed to capture pathophysiologic information present in between-

subject variability in a disease parameter of interest. The singular value decomposition (SVD) at 35 

the heart of the data reduction portion of the algorithm is widely used and interpretable, but other 

methods could be used depending on the framing of the problem at hand. The goals of this 

algorithm also motivate data preprocessing decisions that focus on between-subject variance 

within the class being studied rather than variance in the observed modality under investigation 

or variance relative to classes not being studied. This algorithm conceptualizes multivariate 40 

medical data from an individual as representing a particular parameterization of a 

(patho)physiological process of interest and uses within-class individual differences in this 

parametrization to define a high dimensional parameter space that contains a smaller dimensional 

subspace manifold that describes global features of the disease generating processes of interest. 

This lower dimensional subspace can be isolated in many ways, but ideally the dimensionality 45 

reduction technique used would retain interpretability in order to facilitate understanding of the 
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pathophysiology of interest and be able to meaningfully place new subjects into the learned 

subspace and make predictions about clinical variables of interest (Fig S1). 

 In the present study, we assume that macroscale glucose uptake patterns in cognitively 

impaired individuals with amyloid plaque deposits represent a parameterization of macroscale 

AD pathophysiology. We then isolated the between-subject variability of interest to this study 5 

from these preprocessed FDG-PET scans in the following way. The preprocessed FDG-PET 

images are three-dimensional arrays of voxel intensities that correspond to SUVR values in a 

standard template space. Taking only the voxel intensities that fall within the set of voxels, V, 

that have a greater than 15% probability of being gray matter in template space, this three-

dimensional array can be reduced to a one-dimensional vector, Ψ, with 150,468 elements at our 10 

image resolution, defined by V. To isolate subject effects, each element is non-parametrically 

standardized by the median, 𝑿̃, and interquartile range, 𝑸̃,  for that element across subjects 

𝜞𝑖 =  (𝜳𝑖 − 𝑿̃)𝑸̃−1 (see Fig 1 for surface renderings of 𝑿̃ and 𝑸̃). Let the set of these 

standardized vectors, with 150,468 elements per image, be Γ1, Γ2, Γ3 . . . ΓM, where M is the 

number of participants studied (M = 423). Subject-wise centering of each image is represented 15 

by the vector 𝜱𝑖 = 𝜞𝑖 −
1

𝑉
∑ 𝜞𝑖

𝑉
𝑛=1 . This can then be used to represent the individual differences 

of interest in the brain images between each image pair, or between subject variance, by 

calculating the subject-wise M by M matrix L,  

                                              𝐿 =  𝐴𝑇A                                                                        (1) 

where the matrix A = [Φ1 Φ2 . . . ΦM]. This high-dimensional projection of individual 20 

differences can be represented as an eigendecomposition, using the singular-value decomposition 

𝐿 =  𝑣𝜀𝑣𝑇, such that the M eigenvectors, 𝒗𝑖 , of L, determine the linear combination of the M set 

of FDG-PET images that produce image space eigenvectors, 𝒖𝑙, or eigenbrains given that they 

can be ordered into a three-dimensional configuration corresponding to the original brain images, 

as previously described for the eigenfaces facial recognition algorithm for two-dimensional 25 

facial recognition (20): 

                                           𝒖𝑙 = ∑ 𝒗𝑖𝑘𝜱𝐾                     𝑙 = 1, . . . , 𝑀𝑀
𝑘=1                            (2) 

 This was demonstrated while considering that the eigenvectors 𝒗𝑖 of 𝐴𝑇A such that 

                                           𝐴𝑇A𝒗𝒊  =  𝝁𝒊𝒗𝒊                                                                 (3) 

multiplying both sides by A,  30 

                                           𝐴𝐴𝑇A𝒗𝒊  =  𝝁𝒊𝐴𝒗𝒊                                                            (4) 

it is shown that  𝐴𝒗𝑖 are the eigenvectors of the larger dimensional covariance matrix (150,468
 
 

by 150,468) in image space, 𝐶 = 𝐴𝐴𝑇. This algorithm demonstrates how individual differences 

in macroscale multivariate patterns in brain images can be mapped back into the original image 

space in the form of a compact lower-dimensional basis-set of eigenbrains (EBs). This allows for 35 

a highly interpretable understanding of the parameterization of a disease processes affecting the 

individuals included in the analysis.  
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Fig. S2. Cumulative percentage of variance explained for the first 30 eigenbrains (blue curve). 

The first 10  eigenbrains (arrow) explain 95% (red line) of the variance in this dataset. 

 

 The first 10 EBs (see Fig 1 for surface renderings) explained 95% of the variance in the 5 

dataset (Fig S2). Using only these 10 EBs, 𝒖𝑖, and the eigenvectors 𝒗𝑖, of L, as a subject-level 

weight, an individual FDG-PET scan can be estimated, 𝜳𝒆𝒔𝒕, from a linear combination of EBs 

in following way: 

                                            𝜳𝒆𝒔𝒕 = 𝑿̃ + ∑ 𝒗𝒊𝒖𝒊𝑸̃
𝑛=10

𝑖=1
                                              (5) 

An example of an estimated image using only these 10 EBs relative to the original image is 10 

presented in Fig S3. Using additional EBs adds additional structural information, but this does 

not appear relevant to quantifying dysfunction in the GFSS or enhance predicative ability (see 

section below, Out-of-sample predictions in ADNI).  

 

 15 
Fig. S3. A) The voxel intensities in the original FDG-PET scan from one subject are plotted 

versus the voxel intensities of the projected images reconstructed from a 10-EB model. Red 

dotted line is the line of identity. The solid white line is the least square fit of the data points. B) 

Orthogonal slices of the original images (top), projected image (middle), and the difference 

image between the two overlaid on the gray matter segmentation (bottom). The regions in red in 20 

the difference image indicates regions that are present in the projected images but are not in the 
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original image. These regions correspond to anatomic variations in the subject’s gray matter 

and are not related to global metabolic patterns. 

 

In order to determine the robustness of this algorithm to place an unseen image into this same 

GFSS mapping, we iterated the algorithm 423 times leaving out each subject exactly once and 5 

estimated the subject level weights, 𝒗𝑖, for the left out subject using the first 10 EBs, 𝒖𝑖, and the 

associated singular values, 𝜀𝑖,𝑖, derived from the remaining 422 subjects. These estimates were 

then compared to the derived values from the original run that included all 423 subjects. The set 

of subject-level weights, 𝒗𝑖, for an unseen image, 𝜞𝑚, for each of the 10 EBs, 𝒖𝑖, was calculated 

in the following way: 10 

                                            𝒗𝑖,𝑚 =
∑ 𝜞𝑚𝒖𝑖

𝑛=10

𝑖=1

𝜺𝒊,𝒊
                                                          (6) 

The concordance between the original values and the estimated values was assessed using the 

absolute value, given that the sign is indeterminate and may change on a given iteration (Fig S4). 

The method demonstrated a robust performance with Kendall’s coefficient of concordance 

approaching 1, indicating near complete agreement between the full model and the estimates 15 

obtained for the unseen left out subjects using equation 6. To assess the sample-related bias of 

the basis-set produced by this data-set, we generated 500 bootstrapped samples and calculated 

the first 10 EBs per sample and compared the correlation of the absolute values of the EB images 

produced to the EBs from the original model. All 10 EBs appeared to be robust to sample 

variation with relatively more variation seen in the EBs explaining less than 5% of the variance 20 

in the original data (Fig S5). 

 

 

 
Fig. S4. Leave-one-out cross-validation of eigenvalue estimates.  A) The absolute values of the 25 

eigenvalues estimated from a leave-one-out model are plotted versus the absolute values of the 

eigenvalues obtained from the full model (point density is encoded in the colormap). This shows 

highly consistent results for the eigenvalues whether they were calculated in the full model or 

estimated after leaving that subject out (Kendal’s W approaching a value of 1). B) Violin plots 

by eigenbrain of the difference between the eigenvalues estimated in the original full model 30 

subtracted from the values estimated during the leave-one-out runs demonstrating similarly high 

reproducibility of eigenvalues across all eigenbrains. 
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Fig. S5. Violin plots of the spatial correlation between the eigenbrains estimated from the 

original full model and 500 bootstrapped samples (mean in black and median in red). All 

eigenbrains were robust to sample variation. The first three eigenbrains, that explained 75% of 

the variance in the original sample, were more stable than the remainder of the eigenbrains 5 

(EB4-10), that explaining 20% of the variance in the original sample.   

 

We further tested the effect of sample selection on the eigenbrain maps by performing the same 

BPR procedure on a large dataset of FDG-PET images spanning the age and degenerative 

disease spectrum (N = 4,448). We found that the first three eigenbrains and eigenvalues were 10 

replicated in this larger dataset, but EB1 and EB2 switched order in terms of variance explained 

in the larger dataset (Fig S6). Using only a cohort of young cognitively normal participants, we 

were not able to replicate the eigenbrains derived from these cohorts.  

 

 15 
Fig. S6. Replication of GFSS defined in the AD spectrum across a large dataset of FDG-PET 

images. A-C) Joint histograms between the eigenbrains defined using the AD spectrum (AD423) 

versus a larger FDG-PET dataset spanning the age and dementia continuum (ALL4448). The 
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mutual information (MI) and correlation coefficient (R) is inset.  D-F) Scatter plot and linear 

regression for the associated eigenvalues for their respective eigenbrains.     

 

We also explored the effect of non-linear approaches to defining the manifold and found no 

compelling evidence not to use the linear solution provided by the PCA approach (Fig S7). 5 

 

 
Fig. S7. Comparing eigenbrains derived from PCA to Laplacian eigenmaps and isomaps. Joint 

histograps comparing the first three eigenbrains derived from PCA to Laplacian eigenmaps (A-

C) and isomaps (D-F). All three methods produced similar manifolds with high mutual 10 

information (MI).  

 

 Out-of-sample predictions in ADNI 

  To evaluate the out-of-sample predictive ability of the GFSS for key measures of the 

effects of AD pathophysiology (i.e., age, glucose uptake, cognition, and disease severity), we 15 

used the publically available multisite data from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu). This multisite database is well suited for testing 

the ability of the GFSS to make predictions about individual subjects with biomarker evidence of 

AD pathophysiology. The focus of this validation analysis was on predicting an individual’s age 

based on their metabolic mapping to state space. Age prediction is a strong validation of the 20 

GFSS mapping given the association between age and clinical phenotypes (41), pathologic 

phenotypes (42), and global tau deposition patterns (16). We analyzed the data from 410 ADNI 

subjects (Table 1) with FDG-PET scans, CDR greater than 0, and positive amyloid PET imaging 

as defined by previously established ADNI cut-point (1.11 for whole cerebellum referenced 

AV45 data) (43). 25 

 In this dataset, the FDG composite summary used in ADNI to summarize AD-like 

patterns of hypometabolism (44) is not associated with age (Fig S8A). However, once the 

eigenvalues for each of the first 10 EBs are calculated from an individual’s FDG scan, the GFSS 

model fits in the Mayo data (Table 2) can be used to accurately predict the age of an individual 

(Fig S8B) and the FDG composite score (Fig S8C). The predictive ability of the GFSS models in 30 
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the ADNI data is not substantially improved with additional EBs being included in the models 

for FDG composite, age, disease severity, or cognition (Fig S9).     

 

 

 5 
Fig. S8. Global functional state space predictive modeling.  A) The ADNI FDG composite score 

is not associated with age. B) Using the FDG-PET to place the subjects into the 10-dimensional 

GFSS allows for accurate prediction of the subjects age using models fits from the Mayo data 

(Table 2). C) The GFSS also allows for an accurate prediction of the subjects FDG-PET 

composite. See Fig S9 for a range of correlation values by number of eigenbrains used in the 10 

predictive model.  
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Fig. S9. Plots of model order effect on global functional state space predictive modeling of FDG, 

age, severity, and cognition in ADNI. The Pearson correlation coefficients between the actual 

and predicted values are plotted versus the number of eigenbrains used in the predictive model 

for each of the variables (left). The mean absolute error (MAE) of the prediction is plotted versus 5 

the number of eigenbrains used in the predictive model for each of the variables (right). The 

near optimal performance of the 10-D model is highlighted by the red vertical bar in each plot.  

 

 

FDG-PET eigenbrains and large-scale functional organization of the brain 10 

 We used the NeuroSynth database (www.neurosynth.org) (21) and the recently described 

(24) principle gradient of macroscale functional organization (available at 

https://neurovault.org/images/24346/) to map our FDG-PET derived EBs to patterns of 

functional connectivity and functional terminology. We first calculated the voxel-wise Pearson 

correlation between the principle gradient of functional connectivity and EB2 and found a high 15 

correlation (r = 0.82) (Fig 3A). Next we compared a NeuroSynth topic terms (22) based 

decoding of EB2 and the principle gradient of functional connectivity. Feature terms were 
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derived from the 50 set of topic terms (v4). Of the 50 available, 28 terms captured coherent 

cognitive terms spanning the theoretical range of the GFSS and mirrored the range evaluated by 

Margulies, et al. (2016) (24) and are used in further analysis. The decoding of all 28 topic terms 

is available in Table S1. The decoding analysis produces a Pearson correlation between the 

unthresholded EB and the unthresholded topic term meta-analysis images (see the FAQs section 5 

here for details: http://neurosynth.org/decode/?neurovault=308). The topic term decoding of EB2 

was similar to the same analysis performed on the principle gradient of macroscale functional 

organization (r = 0.86) in that at one extreme were regions serving concrete primary 

sensory/motor functions and at the other end were abstract processes involving transmodal 

regions (Fig 3B). The same decoding of EB1 however revealed brain regions involved in 10 

processing external visual information were at one extreme and brain regions associated with 

evaluating internal mental and physical states (e.g., emotions, pain, and sustenance) were on the 

other extreme. EB3 was divided into brain regions involved in fluid executive control (e.g., 

response preparation, working memory, and response inhibition) with highly learned perceptual 

categories (e.g., faces, objects, and sensory perception) that can rely on feedforward control of 15 

previously learned models on the opposite extreme. The decoding weights for each of the topic 

terms for EB1-3 were used to associate functional terminology with the points in the three-

dimensional GFSS (Fig 3C). The points in this plot were color-coded treating each EB decoding 

as a channel in a RGB color scheme (EB1 = Blue, inverted polarity EB2 = Red, EB3 = Green). 

This same RGB color-coding was done voxel-wise using the spatial loadings of EB1-3 so that a 20 

complete functional-anatomical mapping could be visualized on a brain rendering (Fig 3D). The 

same color-coding is then used for the eigenvalues for individual subjects included in this study 

(Fig 4). 

 

Statistical Methods 25 

A combination of MATLAB-based (Mathworks Inc., Natick, MA, USA) and R-based 

(http://www.R-project.org) software packages were used to perform all statistical analysis. When 

comparing cohort characteristics, Kruskal-Wallis one-way ANOVA was used for continuous 

variables and chi-squared tests were used for categorical variables. Multiple linear regression 

predictive models were used to for dependent variables in Table 2, the first 10 eigenvalues were 30 

used as predictors. 
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Table S1. NeuroSynth Topic Term Decoding   
 

Data S1. (separate file) 

Data used for figures and tables.  5 

 

 

 

 

Summary Term 
Neurosynth Topic 

Term
EB1 EB2 EB3 EB4 EB5 EB6 EB7 EB8 EB9 EB10 FC Gradient

Langue 

Comprehension 

36_sentences_compr

ehension_language
-0.0214 -0.3514 -0.0445 0.1938 -0.1486 -0.0308 -0.1483 -0.1198 0.041 0.1262 0.2029

Social 
17_social_participant

s_empathy
-0.1474 -0.2999 -0.0536 -0.0518 -0.0074 -0.1299 -0.05 -0.112 -0.0355 -0.1087 0.305

Memory 
12_memory_retrieval_

encoding
0.0455 -0.2117 0.0812 0.0598 -0.1675 -0.1574 -0.0157 -0.179 0.0558 -0.2862 0.2246

Language 

Semantics

44_semantic_words_

word
0.0857 -0.1808 -0.0092 0.1809 -0.2081 0.0089 -0.2206 -0.1172 0.037 0.0724 0.0584

Negative 

emotion

40_emotional_negativ

e_emotion
-0.384 -0.1646 0.0144 -0.2162 -0.0603 -0.156 -0.0529 -0.024 -0.065 -0.1671 0.2279

Visual Attention
41_attention_attentio

nal_visual
0.3479 -0.1456 -0.0489 0.0034 0.1125 0.0382 -0.0158 -0.0992 -0.1699 -0.0449 -0.0642

Language 

Perception

20_reading_language

_words
0.2238 -0.1277 0.0085 0.2152 -0.1219 0.0144 -0.2229 -0.0865 0.0047 0.1715 -0.0525

Numerical
42_number_numerica

l_arithmetic
0.2146 -0.1217 -0.1044 0.0804 0.081 0.0111 0.1489 -0.0905 -0.0137 -0.0469 0.038

Working 

Memory

22_memory_working_

wm
0.1447 -0.0937 -0.1973 0.128 0.0646 0.0784 0.1039 -0.043 -0.0371 -0.0494 -0.0089

Emotional Cues
23_emotional_faces_f

acial
-0.278 -0.0789 0.2035 -0.2359 -0.1116 -0.1975 -0.0605 -0.0154 -0.0119 -0.0852 0.134

Reward
29_reward_decision_r

isk
-0.3425 -0.0766 -0.0477 -0.1049 0.0353 -0.1302 -0.0697 0.0833 -0.1712 -0.2318 0.1689

Response 

Preparation

47_conflict_response

_trials
0.153 -0.0629 -0.2152 0.0371 0.141 0.2164 0.029 -0.0572 -0.1323 0.0009 -0.073

Hearing
32_speech_auditory_

sounds
-0.0432 -0.0594 0.0339 0.046 -0.0033 0.0633 -0.226 0.1186 0.0935 0.486 -0.1079

Facial 

recognition

05_face_faces_recog

nition
0.2545 -0.0474 0.2877 -0.1453 -0.0919 -0.2326 -0.0967 -0.1452 0.1059 -0.0902 0.0137

Addiction
27_alcohol_drug_smo

kers
-0.2676 -0.0183 -0.0237 -0.1011 0.0498 -0.0901 0.0563 0.0479 -0.0791 -0.1689 0.1021

Objects
01_object_objects_ca

tegory
0.3993 0.0141 0.2736 0.008 -0.1466 -0.0874 -0.1292 -0.1518 0.1027 -0.0631 -0.082

Sustenance 

State
26_food_taste_weight -0.2974 0.0304 0.0649 -0.1541 -0.0321 -0.0737 -0.067 0.1392 -0.0825 -0.066 0.0273

Error Learning
25_learning_feedback

_error
-0.0106 0.0366 -0.1925 0.087 0.1627 0.1082 0.0176 0.0657 -0.0848 0.022 -0.0229

Response 

inhibition

08_inhibition_respons

e_inhibitory
-0.1458 0.044 -0.1294 -0.1367 0.144 0.1433 0.0082 0.0714 -0.1489 0.0225 -0.0436

Praxis
00_action_actions_m

otor
0.3789 0.0767 0.0181 0.0749 0.0574 0.2589 -0.0023 0.0074 0.0331 0.2129 -0.2198

Stimulus 

response

19_stimulus_respons

es_response
0.0005 0.1154 -0.0607 -0.0146 0.1098 0.0358 -0.0346 0.0824 -0.1107 -0.0155 -0.0937

Motion 

Perception

11_motion_visual_per

ception
0.5698 0.1345 0.1701 -0.0178 0.0387 0.0782 -0.0528 -0.0468 -0.0433 0.0589 -0.2713

Perception
03_visual_auditory_s

ensory
0.3943 0.1352 0.1756 0.0177 -0.0245 0.1 -0.2513 0.0209 -0.0161 0.1951 -0.2703

Pain
48_pain_painful_stim

ulation
-0.3524 0.1769 -0.0334 -0.1115 0.1219 0.1182 -0.0464 0.2013 0.0024 0.2354 -0.1496

Directed Gaze 15_eye_spatial_gaze 0.4143 0.1954 0.0686 -0.0128 0.0895 0.145 0.0808 -0.0899 -0.0235 -0.1128 -0.2152

Somatosensory
35_stimulation_soma

tosensory_tms
0.0185 0.2889 -0.0412 0.0011 0.1675 0.3474 0.0604 0.2183 0.0501 0.3788 -0.3453

Motor
49_motor_movement

_movements
0.0839 0.4018 -0.1742 0.1526 0.1596 0.3841 0.0687 0.1403 0.0676 0.3036 -0.3354
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