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ABSTRACT 

Objective: In the present study, we sought to identify causal relationships between obesity and 

other complex traits and conditions using a data-driven hypothesis-free approach that uses 

genetic data to infer causal associations.  

Methods: We leveraged available summary-based genetic data from genome-wide association 

studies on 1,498 phenotypes and applied the latent causal variable method (LCV) between obesity 

and all traits. 

Results: We identified 110 traits with significant causal associations with obesity. Notably, obesity 

influenced 26 phenotypes associated with cardiovascular diseases, 22 anthropometric 

measurements, nine with the musculoskeletal system, nine with behavioural or lifestyle factors 

including loneliness or isolation, six with respiratory diseases, five with body bioelectric 

impedances, four with psychiatric phenotypes, four related to the nervous system, four with 

disabilities or long-standing illness, three with the gastrointestinal system, three with use of 

analgesics, two with metabolic diseases, one with inflammatory response and one with the 

neurodevelopmental disorder ADHD, among others. 

Conclusions: Our results indicate that obesity causally affects a wide range of traits and comorbid 

diseases, thus providing an overview of the metabolic, physiological, and neuropsychiatric impact 

of obesity on human health. 

 

Keywords: Obesity, genetics, causal inference, epidemiology, complex traits. 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 9, 2021. ; https://doi.org/10.1101/2020.10.20.20216598doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20216598
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 

DECLARATIONS 

Competing Interests 

Financial interest: GC-P contributed to this study while employed at The University of Queensland. 

He is now an employee of 23andMe Inc., and he may hold stock or stock options. All other authors 

declare having no conflicts of interest. 

 

Funding Info 

L.M.G.M and A.I.C. are supported by UQ Research Training Scholarships from The University of 

Queensland (UQ). M.E.R. thanks support of the NHMRC and Australian Research Council (ARC) 

through a Research Fellowship (GNT1102821). P.F.K. is supported by an Australian Government 

Research Training Program Scholarship from Queensland University of Technology (QUT). 

 

Author contribution 

M.E.R. and G.C.-P. conceived and directed the study. L.M.G.-M. performed the statistical and 

bioinformatics analyses, with support and input from A.I.C., P-F.K., N.G.M., G.C.-P. and M.E.R. 

L.M.G.-M. wrote the first draft of the paper and integrated input and feedback from all co-authors. 

 

Data Availability 

Individual-level data for UK Biobank participants are available to eligible researchers through the 

UK Biobank (www.biobank.ac.uk). 

 

Code Availability 

Code used as part of the present manuscript’s work is available from the authors upon reasonable 

request. 

 

Compliance with ethical standards 

Ethics Approval 

This study was approved by the Human Research Ethics Committee of the QIMR Berghofer 

Medical Research Institute. 

 

Animal Research (Ethics) 

Not applicable 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 9, 2021. ; https://doi.org/10.1101/2020.10.20.20216598doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20216598
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 

Consent to Participate (Ethics) 

Informed consent was obtained from all individual participants included in the study. 

 

Consent to Publish (Ethics) 

All participants provided informed consent for the publication of study results. 

 

ACKNOWLEDGEMENTS 

AIC and LMGM are supported by UQ Research Training Scholarships from The University of 

Queensland (UQ). MER thanks the National Health and Medical Research Council and Australian 

Research Council’s support through a Research Fellowship (APP1102821). 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 9, 2021. ; https://doi.org/10.1101/2020.10.20.20216598doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20216598
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 

INTRODUCTION 

Obesity is a complex, multifactorial and preventable disease in which an imbalance between daily 

caloric energy intake and expenditure leads to unwanted and atypical accumulation of fat or 

adipose tissue, which in turn results in the impairment of human health (Hruby and Hu 2015; 

Purnell 2018; Panuganti et al. 2020). Obesity is the second most common cause of preventable 

death after smoking (Hurt et al. 2010; Mitchell et al. 2011; Ng et al. 2014; Panuganti et al. 2020), 

making it an essential target of public health interventions. Globally, its prevalence has increased 

by 27.5% for adults and 47.1% for children in the last three decades (Ng et al. 2014; Apovian 

2016), affecting over 500 million adults (Panuganti et al. 2020). 

 

Obesity is typically defined according to body mass index (BMI), which is estimated as the ratio of 

weight in kilograms and height in meters squared (De Lorenzo et al. 2016; Panuganti et al. 2020). 

Typically, an individual with obesity has a BMI higher than 30 kg/m
2
 (De Lorenzo et al. 2016; 

Panuganti et al. 2020). The BMI-based classification includes underweight (BMI < 18.5), normal 

range (18.5 < BMI < 24.9), overweight (25 < BMI < 29.9), obesity class I (30 < BMI < 34.9), obesity 

class II (35 < BMI < 39.9) and obesity class III (BMI > 40)  (De Lorenzo et al. 2016; Panuganti et al. 

2020). 

 

Genetic epidemiological studies have made considerable advances in the understanding of the 

genetic propensity to obesity. Genome-wide association studies (GWAS) have identified ~950 

genomic loci associated with an obesity measure (Yengo et al. 2018; Tam et al. 2019) and genetic 

overlap with other anthropometric measurements, coronary artery disease, blood pressure and 

type 2 diabetes, among others, has been reported (Locke et al. 2015). A genetic correlation 

between two traits could be explained by horizontal pleiotropy (i.e. genetic variants have a direct 

effect on both traits) or by vertical pleiotropy (i.e. the effect of a genetic variant on a trait is 

mediated by its effect on another trait) (O’Connor and Price 2018; Haworth et al. 2020).  

 

Horizontal pleiotropy represents a challenge for statistical methods seeking to determine causality 

between two traits. For example, traditional Mendelian randomisation (MR) methods can be 

confounded by horizontal pleiotropy in the presence of a genetic correlation, which increases the 

likelihood of false-positive findings (O’Connor and Price 2018; Koellinger and de Vlaming 2019; 

García-Marín et al. 2021). The Latent Causal Variable (LCV) is a recently developed statistical 

approach developed to investigate whether a genetic correlation between traits is explained by 
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causal effects or by horizontal pleiotropic effects (O’Connor and Price 2018; Haworth et al. 2020; 

García-Marín et al. 2021). 

 

Understanding the extent to which obesity is causally associated with other conditions is a 

fundamental question in obesity research. Here, we conduct a genetic screening using GWAS 

summary data to identify potential causal associations between obesity and other phenotypes. 

Specifically, we apply the LCV method to perform a hypothesis-free phenome-wide screening to 

the extensive collection of phenotypes with GWAS summary data (N = 1 498) compiled in the 

Complex Trait Genetics Virtual Lab (CTG-VL). 

 

METHODS 

Data 

The present study used summary statistics from GWAS for obesity and 1 498 other phenotypes. 

Summary statistics summarise relevant parameters such as allele frequency, effect size, standard 

error and the p-value of genetic variants tested on the trait of interest. Several published GWAS 

have made available their summary statistics to the scientific community to enable researchers to 

advance understanding of the genetic components of several phenotypes. The CTG-VL 

(https://genoma.io/) (Cuéllar-Partida et al. 2019) has compiled a set of 1 610 GWAS summary 

statistics, and the inclusion criteria was a nominally significant heritability derived from LD-score 

regression. CTG-VL includes GWAS summary statistics from the UK Biobank released by Neale’s 

Lab (www.nealelab.is/uk-biobank/) (Neale’s Lab 2018) and from GWAS consortia. For this study, 

we only used GWAS derived from European populations to avoid potential biases due to 

population differences in linkage-disequilibrium and allele frequencies. 

 

Obesity dataset 

The obesity GWAS summary statistics used here correspond to a sample (N=361 194) of European 

ancestry from the second wave of GWAS results released by Neale’s Lab (ICD10 code E66) (Neale’s 

Lab 2018; Cuéllar-Partida et al. 2019) available in the CTG-VL. Obesity was assessed as a binary 

trait based on BMI classification (BMI>30), and GWAS summary statistics were adjusted for age, 

age
2
, inferred_sex, age * inferred_sex, age

2
 * inferred_sex, and 20 genetic ancestry principal 

components (Neale’s Lab 2018; Cuéllar-Partida et al. 2019). 

 

LCV analysis 
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Genetic causal proportion (GCP) between the obesity GWAS and 1 498 GWAS was estimated using 

the phenome-wide LCV pipeline implemented in CTG-VL as described previously (Haworth et al. 

2020; García-Marín et al. 2021). Briefly, GWAS summary statistics for obesity were formatted and 

uploaded onto CTG-VL. Then, we conducted the phenome-wide analysis pipeline (Haworth et al. 

2020), which includes LD-score regression (Bulik-Sullivan et al. 2015b) as well as LCV analysis 

(O’Connor and Price 2018). Lastly, causal architecture plots were used to visualize the results. In 

particular, as part of the phenome-wide analysis pipeline, the LCV method was applied to all traits 

that showed a genetic correlation with obesity based on bivariate LD-score regression (Bulik-

Sullivan et al. 2015b) at Benjamini-Hochberg’s False Discovery Rate (FDR < 5%). Then, to account 

for multiple testing on LCV estimates, we applied an FDR < 5% to the GCP estimates.  

 

The phenome-wide analysis pipeline (Haworth et al. 2020), which is publicly available in CTG-VL, is 

performed in R 4.00 based on the R script that the original authors of the LCV method (O’Connor 

and Price 2018) have made available (https://github.com/lukejoconnor/LCV). Within this pipeline, 

to ensure consistency of alleles and variants across GWAS summary statistics, data is formatted 

using munge_sumstats.py made available by the LD-score software and extracted hapmap SNPs 

using the list of SNPs (w_hm3.snplist) (https://github.com/bulik/ldsc/wiki). Full details about the 

phenome-wide analysis pipeline in CTG-VL are described and illustrated in previous studies 

(Haworth et al. 2020; García-Marín et al. 2021). 

 

The LCV method does not distinguish between the ‘exposure’ and the ‘outcome’ (O’Connor and 

Price 2018). These are exchangeable labels that do not affect the degree of causality; specifically, 

the sign of the result denotes which trait is the determinant and which trait is the outcome 

(O’Connor and Price 2018). Further, the LCV method estimates GCP by assuming a latent variable L 

that mediates the genetic correlation between two traits, which is assumed to be the causal 

component mediating the genetic correlation between the phenotypes (O’Connor and Price 2018; 

Haworth et al. 2020; García-Marín et al. 2021).  The GCP ranges from -1 (full genetic causality of 

Trait 2 on Trait 1) to 1 (full genetic causality of Trait 1 in Trait 2). A |GCP| of 1 indicates that a 

genetic correlation between traits may be explained by vertical pleiotropy, whereas a GCP of 0 

indicates that a genetic correlation between traits may be explained by horizontal pleiotropy. 

(O’Connor and Price 2018; Haworth et al. 2020; García-Marín et al. 2021). Notably, a |GCP| < 0.60 

is considered low and indicates limited partial genetic causality (O’Connor and Price 2018). 
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Sensitivity analysis 

As a sensitivity analysis, we applied Bonferroni correction for multiple testing comparisons to 

identify traits with statistically significant genetic correlations and with evidence of a causal 

relationship with obesity based on their rG and GCP estimates. Bonferroni is a stricter, more 

conservative approach than FDR to determine statistical significance. 

 

RESULTS  

We conducted a phenome-wide LCV analysis between obesity and 1 498 other phenotypes to 

estimate their genetic correlation and GCP. We identified 266 genetic correlations with obesity at 

FDR < 5%. Of those, 105 were inferred to be causally associated (|GCP| > 0.6; FDR < 5%; Online 

Resource 1)  and five showed evidence of a limited partial genetic causality (|GCP| < 0.6; FDR < 

5%; Online Resource 1). Putative outcomes of obesity included cardiovascular diseases, 

anthropometric measurements, the health of the musculoskeletal system, behavioural or lifestyle 

factors, respiratory diseases, body bioelectric impedances, psychiatric disorders, diseases of the 

nervous system, disabilities or long-standing illness, health of the gastrointestinal system, use of 

analgesics, metabolic diseases, inflammatory response and neurodevelopmental disorders, among 

others (Table 1 and  Figure 1). 

 

Our results show 26 cardiovascular phenotypes as potential consequences of obesity. For instance, 

we identified obesity as the inferred causal determinant of self-reports in hypertension (GCP = 

0.94, p-valueGCP = 7.71 x 10 
-76

) and heart attack (GCP = 0.39, p-valueGCP = 1.68 x 10 
-04

). Conditions 

diagnosed by a doctor such as high blood pressure (GCP = 0.93, p-valueGCP = 4.34 x 10 
-55

), heart 

attack (GCP = 0.32, p-valueGCP = 1.58 x 10 
-03

) and angina problems (GCP = 0.63, p-valueGCP = 1.82 x 

10 
-02

) were inferred causal outcomes of obesity. A similar pattern was observed for chronic 

ischaemic heart disease (GCP = 0.72, p-valueGCP = 1.26 x 10 
-04

) allocated in the International 

Classification of Diseases (ICD10) and diastolic blood pressure. In contrast, obesity was found to 

influence a decline in high-density lipoprotein (HDL) cholesterol (GCP = 0.68, p-valueGCP = 1.68 x 10 

-02
; Figure 1 and Table 2). 

 

Our results show a potential causal effect of obesity on 22 anthropometric measurements. In 

particular, obesity influenced increments of 18 traits, including fat percentages throughout the 

body and ankle spacing width, while a decline in height (GCP = 0.72, p-valueGCP = 1.22 x 10 
-04

) and 

handgrip strength were found to be causally influenced by obesity. Similarly, we found evidence of 
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obesity influencing the decrease of five body bioelectrical impedance measures, including in both 

arms and legs.  

 

Obesity was the inferred causal determinant of eight phenotypes involving diseases of the 

musculoskeletal and connective tissue (Table 2). Pain-related phenotypes such as knee (GCP = 

0.87, p-valueGCP = 5.81 x 10 
-14

) and hip (GCP = 0.79, p-valueGCP = 2.44 x 10 
-07

) pain in the last 

month along with self-reported osteoarthritis, arthrosis and gonarthrosis (ICD10), were found to be 

causally influenced by obesity. In contrast, leg pain in calves (GCP = -0.80, p-valueGCP = 4.18 x 10 
-

06
) was an inferred causal determinant of obesity.  

 

Six inferred causal relationships were observed between obesity and respiratory-related 

phenotypes. For instance, obesity was observed to increase shortness of breath (GCP = 0.85, p-

valueGCP = 1.43 x 10 
-10

) and whistling in the chest (GCP = 0.69, p-valueGCP = 8.09 x 10 
-04

). 

Consistently, obesity was found to causally influence the decline of forced vital capacity (FVC; GCP 

= 0.89, p-valueGCP = 1.48 x 10 
-23

) and forced expiratory volume in one second (FEV1; GCP = 0.83, p-

valueGCP = 3.69 x 10 
-12

) (Figure 1 and  Table 2). 

 

Obesity was an inferred causal determinant of four psychiatric-related traits (Figure 1 and  Table 

2), including gaining weight during the worst period of depression (GCP = 0.63, p-valueGCP = 1.82 x 

10 
-02

). Also, obesity was observed to increase irritability through traits such as ever having a 

period of extreme irritability (GCP = 0.85, p-valueGCP = 5.67 x 10 
-13

), experiencing manifestations of 

mania or irritability (GCP = 0.68, p-valueGCP = 1.77 x 10 
-03

) and ever highly irritable for two days. 

Similarly, an increase in the behavioural trait loneliness or isolation (GCP = 0.93, p-valueGCP = 6.11 x 

10 
-52

) was found to be caused by obesity (Figure 1 and  Table 2).  

 

Obesity was an inferred causal determinant of four diseases of the nervous system (GCP = 0.76, p-

valueGCP = 8.77 x 10 
-06

; Table 2) including mononeuropathies of upper limb (ICD10; GCP = 0.72, p-

valueGCP = 1.37 x 10 
-04

), carpal tunnel syndrome (GCP = 0.68, p-valueGCP = 1.27 x 10 
-03

) and nerve, 

nerve root and plexus disorders (GCP = 0.66, p-valueGCP = 3.7 x 10 
-03

; Figure 1). 

 

Three phenotypes related to the gastrointestinal system, including diverticular disease of the 

intestine (ICD10; GCP = 0.67, p-valueGCP = 3.43 x 10 
-03

) and self-reported gastro-oesophageal reflux 

(GCP = 0.62, p-valueGCP = 1.22 x 10 
-02

) were identified as potential outcomes of obesity (Table 2).  
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Diabetes, both self-reported (GCP = 0.72, p-valueGCP = 1.90 x 10 
-03

) and diagnosed by a doctor (GCP 

= 0.75, p-valueGCP = 3.49 x 10 
-04

), showed evidence of being inferred causal outcomes of obesity. 

Also, obesity was also found to pose a causal effect on high leukocyte levels (GCP = 0.66, p-valueGCP 

= 2.00 x 10 
-03

) and attention-deficit / hyperactivity disorder (ADHD; GCP = 0.64, p-valueGCP = 1.84 x 

10 
-02

). 

 

Sensitivity analysis 

As a sensitivity analysis, we applied a Bonferroni correction to our results instead of FDR to 

account for multiple testing (Bonferroni < 0.05; Figure 2). Bonferroni is well-known to be a much 

more conservative approach than FDR (Noble 2009). Using this approach, 86 genetic correlations, 

of which 52 were inferred to be outcomes causally associated with obesity (|GCP| > 0.6; Online 

Resource 2,), were statistically significant, including anthropometric measurements, bioelectrical 

impedance, poor health of the musculoskeletal system, hypertension, diabetes, and ADHD (Table 

3). 

 

DISCUSSION 

In this work, we performed a phenome-wide screening of potential causes and effects of obesity 

on a number of health conditions. Although previous research has made extensive efforts to 

describe how obesity and metabolic syndrome influence several body systems, their relationships 

with inflammatory response, hypertension, cardiovascular disease, neurodevelopmental disorders, 

and the musculoskeletal and nervous system has not been fully elucidated. In this study, we found 

that obesity was causally associated with increased leukocyte count, self-reported hypertension, 

high blood pressure and diabetes diagnosed by a doctor. Leukocytes are white blood cells involved 

in both local and general inflammatory response (Langer and Chavakis 2009; Leick et al. 2014). 

Further, it has previously been reported that obesity increases adipose tissue dysfunction, leading 

to a pro-inflammatory state, which in turn can result in vascular dysfunction impairing 

endothelium vasodilation with an impact on hypertension and affecting the responsiveness of the 

insulin-vasodilator mechanism (Campia et al. 2012; Swarup et al. 2020). Also, obesity is considered 

the main cause of metabolic syndrome components such as high blood pressure and triglycerides, 

while the increased risk of diabetes is attributed to a decrease in insulin secretion as a 

consequence of obesity-related effects (Goodarzi 2018).  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 9, 2021. ; https://doi.org/10.1101/2020.10.20.20216598doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20216598
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 

Obesity and metabolic syndrome are major risk factors for cardiovascular disease (Goodarzi 2018; 

Swarup et al. 2020; Panuganti et al. 2020). In the present study, several cardiovascular diseases 

were found to be causally influenced by obesity. Specifically, our results indicate that obesity is an 

inferred causal determinant of major coronary heart disease events, heart attacks, myocardial 

infarctions, chronic ischaemic heart disease (ICD10) and angina problems. Consistently, an increase 

in Aspirin’s intake, which is commonly prescribed for secondary prevention of cardiovascular 

diseases (Ansa et al. 2019), was also identified as an outcome of obesity. Further, it has been 

previously shown that inflammation is a significant risk factor for heart disease events (Hoffman et 

al. 2004; Kim et al. 2017). Thus, our findings support the hypothesis in which the relationship 

between obesity and cardiovascular diseases is mediated by inflammation from high leukocyte 

levels due to obesity, leading to high blood pressure and hypertension, which are known risk 

factors for cardiovascular disease. Similarly, the increase in the use of Aspirin could be mediated 

by the development of cardiovascular disease. 

 

Obesity influences the increase in the mechanical load across weight-bearing joints, which has 

been associated with musculoskeletal deterioration and neuropathic pain (Anandacoomarasamy 

et al. 2008; Hozumi et al. 2016). Further, previous studies have suggested that an increase in fat 

mass may result in a decrease in bone mass (Anandacoomarasamy et al. 2008). Our findings 

uncovered inferred causal associations in which obesity is the putative causal determinant of 

musculoskeletal pain and diseases such as osteoarthritis. A similar pattern was observed for 

diseases of the nervous system, including mononeuropathies and nerve, nerve root and plexus 

disorders. Consistently, obesity was found to influence an increase in the use of analgesics such as 

Aspirin, Codamol and Paracetamol. Our results suggest that an increase in analgesics use may be 

mediated by the development of musculoskeletal pain and damage to the nervous system. It is 

possible that the inflammatory state induced by obesity may also result in poorer musculoskeletal 

and nervous system health. However, more research is needed to disentangle the complex 

relationships between specific-tissue inflammation, pain and obesity. 

 

Previous studies have described an increased incidence of disability among people with obesity 

(Anandacoomarasamy et al. 2008; Queirós et al. 2015). Our results identified inferred causal 

associations between obesity and disability-related phenotypes such as disability living allowance 

and long-standing illness or disability. Thus, it is possible that the development of disabling 
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conditions is mediated by increases in body fat, which result in poor musculoskeletal and nervous 

system health, which leads to a decrease in quality of life. 

 

Despite extensive efforts to advance our understanding of the relationship between obesity and 

lung function, the effects of obesity on the respiratory system have not been fully elucidated. 

Previous findings suggest that obesity may be associated with complex respiratory diseases such 

as chronic obstructive pulmonary disease (COPD) and its severity (Zammit et al. 2010; Mafort et al. 

2016; Dixon and Peters 2018). Consistently, our results revealed a causal effect of obesity on an 

increment of shortness of breath and whistling in the chest, as well as decreases in FVC and FEV1. 

Moreover, although our results did not identify a direct inferred causal relationship between 

obesity and COPD, traits such as COPD onset and other obstructive pulmonary disease (ICD10) 

were identified as causally associated with obesity. Previous studies have also reported leukocyte 

accumulation in lung tissue in individuals with a chronic obstructive pulmonary disease, which in 

turn increases the expression of adhesion molecules in bronchial blood vessels (Davis et al. 2012; 

Koo et al. 2017). Our results would suggest that obesity poses a deteriorative effect on the 

respiratory system, which could contribute to the development of complex respiratory diseases. 

We speculate that this relationship could be mediated by the accumulation of adipose tissue and 

inflammation arising from an increase in trunk fat mass, which in turn could lead to physiological 

changes decreasing lung capacity and weakening the respiratory muscles. However, more research 

is needed to disentangle the intricate relationship between obesity, inflammation, lung function 

and disease. 

 

Observational studies have reported an association between obesity and gastrointestinal diseases 

such as diverticular diseases and gastro-oesophageal reflux (Camilleri et al. 2017). Similarly, 

increased adipose tissue has been inversely linked with adiponectin levels, which are a protective 

factor of gastro-oesophageal reflux complications (Chang and Friedenberg 2014). Consistently, our 

findings show inferred causal associations in which obesity is an inferred causal determinant of 

diverticular diseases of the intestine (ICD10) and self-reported gastro-oesophageal reflux.  

 

Previous studies have sought to describe the extent to which obesity could be involved in the 

development of depression, leading to an unclear set of conclusions (Mannan et al. 2016; Day et 

al. 2018; Chauvet-Gelinier et al. 2019; Speed et al. 2019). For instance, some studies suggest a 

bidirectional relationship between obesity and depression (Mannan et al. 2016; Chauvet-Gelinier 
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et al. 2019), while others report that anthropometric measurements such as BMI, fat mass and 

height are only risk factors for depression (Speed et al. 2019).  Also, a Mendelian randomisation 

analysis reports a one-way causal association for BMI causing loneliness and a bi-directional causal 

association between BMI and depressive symptoms, suggesting that the relationship between 

these traits is complex and perhaps a consequence of shared biological mechanisms (Day et al. 

2018) or lifestyle factors such as sleep quality, diet and physical inactivity (Hawkley and Cacioppo 

2010). In the present study, we provide evidence for obesity as an inferred causal determinant of 

psychiatric-related phenotypes, such as gaining weight during the worst period of depression and 

loneliness or isolation. Therefore, our results suggest that obesity may contribute to an increased 

risk for depression, which in turn is most likely to partially mediate the association with loneliness. 

However, it may also be possible that there are bidirectional effects between obesity and 

depression (Luppino et al. 2010). As we discuss in the limitations below, LCV is not able to estimate 

bidirectional causality, and more research is required to investigate the extent to which 

depression might mediate the relationship between obesity and loneliness. 

 

Previous research has pointed out an association between ADHD and obesity. However, cause-

effect links and the underpinning molecular mechanisms of this association remain unclear 

(Cortese and Tessari 2017; Cortese 2019). Observational studies have examined the relationship 

between ADHD and obesity with both traits as exposure and outcome, suggesting that this 

association is independent of potential confounding factors (Cortese and Tessari 2017). Also, some 

genetic studies show a one-way causal relationship in which high BMI is a causal determinant of 

ADHD (Martins-Silva et al. 2019), while others suggest that a plausible bidirectional causal 

association may exist between obesity and ADHD (Liu et al. 2020). In the present study, results 

show an inferred causal association in which obesity is an inferred causal determinant of ADHD. 

However, to fully understand the effect of obesity on ADHD, additional research should seek to 

elucidate potential mechanisms underlying this association.  

 

Pleiotropic effects among obesity-related phenotypes have become a focal point of interest in 

genetic epidemiological studies, and pleiotropy has been identified between abdominal obesity 

and immune pathways (Kaur et al. 2019). For instance, it has been reported that abdominal 

obesity increases the risk to develop autoimmune diseases due to a chronic inflammatory state 

(Kaur et al. 2019). Our results add up to the evidence (Lumeng and Saltiel 2011; Andersen et al. 

2016; Kaur et al. 2019) suggesting that obesity prompts an immune response and a chronic 
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inflammatory state with detrimental effects on the overall health. Certainly, the present study 

shows the complexity of investigating vertical (not horizontal) pleiotropic relationships, where a 

third phenotype could act as a mediator between the other two. For example, the association 

between loneliness and obesity could be partially mediated by depression. While we cannot rule 

out a potential causal effect of obesity on loneliness, the most likely explanation is that a shared 

genetic component between obesity, loneliness, and depression drives this association. Future 

improvements in statistical genetics methods could disentangle potential confounding effects by 

using causal architecture networks. 

 

The main strengths of the LCV method as compared to traditional MR methods include (O’Connor 

and Price 2018; Koellinger and de Vlaming 2019; Haworth et al. 2020; García-Marín et al. 2021): (i) 

it is less prone to bias due to horizontal pleiotropy; (ii) it is robust to sample overlap, (iii) it uses 

aggregated information across the entire genome, increasing statistical power and enabling 

analyses between pairs of phenotypes that would be considered “underpowered” for other 

statistical methods.  

 

Our results are consistent with previous studies reporting that LCV is a meaningful tool to detect 

potential causal associations in underpowered phenotypes for which MR methods have not been 

able to determine potential causation (O’Connor and Price 2018; Haworth et al. 2020; García-

Marín et al. 2021).  We suggest that the inferred causal relationships pointed out through LCV 

could be used as a testable hypothesis for future epidemiological observational and genetic 

studies. 

 

Our study highlights the importance of triangulating between multiple study designs, which in turn 

contributes to elucidate our understanding of the complexity of obesity. Therefore, methods and 

findings in the present study must be compared to those in Haworth et al. 2020. The main 

difference between the work by Haworth et al. 2020 and ours is the design of the GWAS involved. 

For instance, the GWAS summary statistics used by Haworth et al. 2020 represent BMI as a 

continuous variable, whereas, in the present study, GWAS summary statistics correspond to 

dichotomised BMI based on its well-established classification for obesity (De Lorenzo et al. 2016; 

Panuganti et al. 2020). This difference in the study design is directly reflected in the genetic 

correlation between the GWAS used here and the one used by Haworth et al., 2020 (rG = 0.67, s.e. 

= 0.11, p-value = 7.87x10
-10

), showing that a continuous BMI measurement does not entirely 
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reflect obesity as a disease. Still, with a well-established classification, BMI can be a useful proxy 

phenotype for obesity. In fact, BMI is the most commonly used proxy for obesity in large-scale 

public health studies (Ghesmaty Sangachin et al. 2018). Furthermore, the study by Haworth et al. 

2020, assessed BMI against 1,389 other phenotypes. In contrast, in the present study, we have 

expanded the panel of traits and tested obesity against 1,498 other phenotypes. 

 

Regarding the results, one of the principal differences is that in our study, we only identified one 

potential causal association in which obesity was the outcome of another phenotype (leg pain in 

calves), which is most likely explained by lack of physical activity. In contrast, the study by Haworth 

et al., 2020 identified 23 traits potentially causing BMI variation. Of those, most of them included 

occupational-related phenotypes, which in turn are most likely explained by lack of physical 

activity and socioeconomic variables such as assortative mating and educational attainment. In 

addition, Haworth et al. 2020 identified 110 traits as outcomes of BMI variation, whereas our 

study identified 109 traits as outcomes of obesity; however, a total of 68 potential causal 

associations were different between studies. Some of the potential causal associations that were 

only observed in the present study include those between obesity and leukocyte levels, ADHD, 

loneliness, long-standing illness or disability, self-reported and diagnosed by a doctor diabetes, 

cardiovascular diseases, diseases of the nervous system, and diseases of the musculoskeletal 

system and connective tissue, among others (Figure 1, Table 2 and Online Resource 1). We 

attribute these substantial differences among the findings of both studies to the design of the 

GWAS involved. 

 

Establishing causal associations should always arise only after convergent evidence from studies 

with multiple designs. Ideally, at least one should be an interventional design (e.g. a randomised 

controlled trial). However, interventional studies are not only expensive and time-consuming, but 

in many instances, are unfeasible or unethical to conduct (i.e. when an exposure known to harm 

participants is evaluated). In these cases, approximations using genetics to assess causality might 

be the best option available. Nonetheless, some limitations of the present study must be 

acknowledged. Although our data included GWAS summary statistics derived from consortia, 

which include only individuals of European ancestry but are on participants from a number of 

countries, most of our data was retrieved primarily from the UK Biobank, which predominantly 

consists of participants of European ancestry, and previous studies have highlighted ethnic 
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differences in obesity (Higgins et al. 2019). Thus, our results’ generalizability is limited to European 

ancestry individuals until tested in other ethnicities. 

 

Differences between methods used to correct for multiple comparisons should be noted. FDR has 

been used in previous studies describing LCV analyses results (O’Connor and Price 2018; Haworth 

et al. 2020; García-Marín et al. 2021). A main advantage of FDR is that it does not require tests to 

be independent of each other, and thus, it is useful when assessing several hypotheses that are 

simultaneously tested (Chen et al. 2017), like in the present study. However, FDR is less stringent 

than other multiple testing correction methods, such as Bonferroni (Chen et al. 2017). Although a 

Bonferroni correction for multiple tests is much stricter and less prone to false-positive findings, it 

assumes that all tests must be independent of each other (Stevens et al. 2017). This condition is 

not met in the present study because some GWAS included in LCV analyses are correlated (i.e., 

cardiovascular phenotypes, anthropometric traits, psychiatric phenotypes, among others). Here, 

we included results for potential causal associations between obesity and 1 498 other phenotypes 

using FDR < 5% correction and, as a sensitivity analysis, we have included the results for the 

phenome-wide analysis pipeline using a Bonferroni < 5% correction; however, we note that our 

tests are not entirely independent from one another.  

 

Regarding potential bias in our analyses due to sample overlap, the LCV method and genetic 

correlations estimated with LD-score regression can handle sample overlap (Bulik-Sullivan et al. 

2015a; O’Connor and Price 2018). Furthermore, our analyses included more than 1,400 

phenotypes; however, causal associations with other traits not tested here may exist. Related to 

this is the interpretability of some of the phenotypes used here, such as taking medication: Aspirin 

which could be considered a proxy trait for pain or cardiovascular disease, taking medication: 

Candesartan cilexetil and lisinopril which could be considered a proxy trait for hypertension. 

Unfortunately, other traits for which GWAS summary statistics are available lack such a 

straightforward proxy interpretation.  

 

Similarly, diabetes phenotypes, both self-reported and diagnosed by a doctor, included gestational 

diabetes, type 1 diabetes, type 2 diabetes, diabetes insipidus and unclassified diabetes. 

Considering that the physiopathology of these phenotypes is substantially different (Skyler et al. 

2017), future studies should aim to further assess the associations between obesity and specific 

types of diabetes. In addition, even though the LCV method uses genetic information aggregated 
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across the entire genome, the GCP estimates are still tied to the statistical power of the GWAS. 

Thus, the ability to infer causal associations for some phenotypes is limited, particularly for those 

with small sample sizes. Also, the LCV may estimate spurious associations when the genetic 

correlation between traits is mediated by multiple latent factors (O’Connor and Price 2018).  

However, the presence of multiple latent factors would reduce statistical power and lower GCP 

estimates biasing results towards the null (O’Connor and Price 2018). Lastly, the LCV method seeks 

to detect the predominant causal direction between two phenotypes (O’Connor and Price 2018; 

Haworth et al. 2020), and therefore, bidirectional causality cannot be tested between traits. This 

limitation is intrinsic to the nature of the LCV method in which a bidirectional causal association 

would mimic horizontal pleiotropy biasing the GCP towards the null. In our study, null findings for 

which a bidirectional causal hypothesis exists should be taken with caution and should be further 

explored in future studies using methods that can test for bidirectionality.  

 

In summary, we assessed potential causal relationships between obesity and 1498 phenotypes 

and identified 110 traits with significant causal associations with obesity. Our findings uncovered 

the effect of obesity on leukocyte-related inflammation, which may incur in a chronic 

proinflammatory state and several metabolic syndrome components. Further, we provide 

evidence for the impact of obesity on cardiovascular disease, poor health of the respiratory and 

musculoskeletal systems and its potential damage to the nervous system. We observe an influence 

of obesity on gastrointestinal disorders, psychiatric phenotypes and the neurodevelopmental 

disorder ADHD. Also, we identified causal associations of obesity on bioelectrical impedances and 

physical disability. Altogether, our results confirm some previously reported associations and flag 

out some new testable hypotheses that could contribute to advance our understanding of the 

effects of obesity on metabolic inflammation in specific tissues and organs, which in turn may 

provide novel perspectives on the metabolic implications of obesity and the development of anti-

inflammatory therapeutics.  
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FIGURES  

Fig.1 Causal associations for obesity (FDR <5%) 

Causal architecture plots showing the latent causal variable exposome-wide analysis results. Each 

dot represents a trait with a significant genetic correlation with obesity. The x-axis shows the GCP 

estimate, whilst the y-axis shows the genetic causality proportion (GCP) absolute Z-score (as a 

measure of statistical significance). The statistical significance threshold (FDR<5%) is represented 

by the red dashed lines, while the division for traits causally influencing obesity (on the left) and 

traits causally influenced by obesity (on the right) is represented by the grey dashed lines. Results 

are shown separately for traits with a positive genetic correlation with obesity (a) and with a 

negative genetic correlation with obesity (b). *Phenotypes causally associated with obesity in the 

present study but not with BMI in Haworth et al., 2020. 

 

 

Fig.2 Causal associations for obesity (Bonferroni <5%) 

Causal architecture plots showing the latent causal variable exposome-wide sensitivity analysis 

results. Each dot represents a trait with a significant genetic correlation with obesity. The x-axis 

shows the GCP estimate, whilst the y-axis shows the genetic causality proportion (GCP) absolute Z-

score (as a measure of statistical significance). The statistical significance threshold 

(Bonferroni<5%) is represented by the red dashed lines, while the division for traits causally 

influencing obesity (on the left) and traits causally influenced by obesity (on the right) is 

represented by the grey dashed lines. Results are shown separately for traits with a positive 

genetic correlation with obesity (a) and with a negative genetic correlation with obesity (b) 
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TABLES 

 

Table 1. LCV method summary results for obesity. 

Category 
Number of potential causal 

relationships 

Number of traits influenced by 

obesity
 

Number of traits that 

influence obesity 

Cardiovascular 26 26 0 

Anthropometric measurements 22 22 0 

Musculoskeletal system 9 8 1 

Behavioural / Lifestyle 9 9 0 

Respiratory  6 6 0 

Bioelectric impedances 5 5 0 

Psychiatric 4 4 0 

Nervous system 4 4 0 

Disabilities 4 4 0 

Gastrointestinal system 3 3 0 

Use of analgesics 3 3 0 

Metabolic disease 2 2 0 

Inflammatory response 1 1 0 

Neurodevelopmental 1 1 0 

Mouth problems 1 1 0 

Others 9 9 0 

The number of potential causal relationships with obesity corresponds to those results with FDR < 5%. Obesity was tested 

against a panel of 1 498 potentially heritable traits in the CTG-VL catalogue. 
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Table 2. Obesity is causally associated with cardiovascular, anthropometric, musculoskeletal, 

behavioural or lifestyle, respiratory, psychiatric, nervous system, gastrointestinal, metabolic, 

inflammatory response and neurodevelopmental phenotypes. 

Category Trait  rG GCP GCP pval 

Cardiovascular Self-reported hypertension 0.42 0.94 7.71E-66
 

Cardiovascular Diastolic blood pressure 0.27 0.85 4.97E-14 

Cardiovascular *Chronic ischaemic heart disease (ICD10) 0.41 0.72 5.94E-04 

Cardiovascular Major coronary heart disease event 0.49 0.74 1.58E-04 

Cardiovascular *Myocardial infarction 0.49 0.70 1.56E-03 

Cardiovascular *HDL cholesterol -0.32 0.68 1.68E-02 

Anthropometric measurement *Height -0.22 0.72 1.22E-04 

Anthropometric measurement *Waist circumference 0.71 0.66 5.02E-03 

Anthropometric measurement Hip circumference 0.64 0.63 9.49E-03 

Musculoskeletal system Self-reported osteoarthritis 0.71 0.91 1.20E-24 

Musculoskeletal system Gonarthrosis (ICD10) 0.57 0.88 7.16E-18 

Musculoskeletal system Knee pain in the last month 0.70 0.87 5.81E-14 

Musculoskeletal system Arthrosis 0.47 0.83 1.29E-11 

Musculoskeletal system Hip pain in the last month 0.55 0.79 2.44E-07 

Behavioural / Lifestyle *Loneliness / Isolation 0.48 0.93 6.11E-52 

Behavioural / Lifestyle *Previous smoker 0.32 0.72 3.11E-05 

Behavioural / Lifestyle Previous alcohol drinker 0.44 0.73 1.87E-04 

Behavioural / Lifestyle *Age first had sexual intercourse -0.50 0.77 2.16E-06 

Respiratory *Forced vital capacity (FVC) -0.37 0.89 1.48E-03 

Respiratory Forced expiratory volume in 1 second (FEV1) -0.27 0.83 3.69E-12 

Respiratory *Shortness of breath walking on level ground 0.76 0.85 2.16E-06 

Respiratory Wheeze or whistling in the chest in the last year 0.46 0.69 8.09E-04 

Psychiatric *Ever had period of extreme irritability 0.36 0.85 5.67e-13 

Psychiatric *Manifestations of mania or irritability 0.43 0.68 1.77E-03 

Psychiatric *Gained weight during worst episode of depression 0.70 0.63 1.82E-02 

Nervous system *Diseases of the nervous system 0.48 0.76 8.77E-06 

Nervous system Mononeuropathies and upper limb (ICD10) 0.39 0.72 1.37E-04 

Nervous system Carpal tunnel syndrome 0.43 0.68 1.27E-03 

Nervous system Nerve, nerve root and plexus disorders 0.51 0.66 3.70-E03 

Gastrointestinal system *Diverticular disease of intestine (ICD10) 0.51 0.67 3.43E-03 

Gastrointestinal system 

*Self-reported gastro-oesophageal reflux / gastric 

reflux 0.50 0.62 1.22E-02 

Metabolic disease *Diabetes diagnosed by a doctor 0.60 0.75 3.49E-04 

Inflammatory response *Leukocyte count 0.20 0.66 2.00E-03 

Neurodevelopmental *Attention-Deficit - Hyperactivity Disorder (ADHD) 0.85 0.64 1.84E-02 

This table shows some traits with a significant (FDR<5%) strong genetic causal proportion (GCP > 0.60) for obesity. The number 

of potential causal relationships corresponds to those results with FDR < 5%. Due to space restrictions, all nominally significant 

genetic correlations for obesity are reported in Online Resource 1. 

Category = Category of trait, Trait = Trait causally associated with obesity, rG = Genetic correlation, GCP = Genetic causal 

proportion, GCP pval = Genetic causal proportion unadjusted p-value. 

*Phenotypes causally associated with obesity in the present study but not with BMI in Haworth et al., 2020. 
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Table 3. Causal associations with obesity in the sensitivity analysis (Bonferroni < 5%). 

Category Trait  rG GCP GCP pval 

Behavioural / Lifestyle Loneliness / isolation 0.48 0.93 
6.11E-52 

Behavioural / Lifestyle Rent accommodation 0.61 0.87 2.32E-15 

Behavioural / Lifestyle No major dietary changes in the last 5 years -0.73 0.82 3.17E-08 

Behavioural / Lifestyle Age first had sexual intercourse -0.50 0.77 2.16E-06 

Cardiovascular Self-reported: Hypertension 0.42 0.94 7.71E-66 

Cardiovascular High blood pressure diagnosed by doctor 0.39 0.93 4.34E-55 

Cardiovascular Diseases of the circulatory system 0.59 0.80 8.77E-07 

Cardiovascular HDL cholesterol -0.32 0.68 1.68E-02 

Disabilities Long-standing illness, disability or infirmity 0.61 0.86 4.59E-15 

Disabilities Blue badge disability allowance 0.69 0.86 2.01E-13 

Disabilities Disability living allowance 0.66 0.80 3.41E-07 

Metabolic disease Diabetes diagnosed by doctor 0.60 0.75 3.49E-04 

Metabolic disease Self-reported diabetes 0.60 0.72 1.90E-03 

Musculoskeletal system Self-reported osteoarthritis 0.71 0.91 1.20E-24 

Musculoskeletal system Gonarthrosis (ICD10) 0.57 0.88 7.16E-18 

Musculoskeletal system Knee pain in last month 0.70 0.87 5.81E-14 

Musculoskeletal system Diseases of the musculoskeletal system and 

connective tissue 

0.57 0.84 7.95E-12 

Musculoskeletal system Other joint disorders 0.63 0.76 4.82E-05 

Neurodevelopmental ADHD 0.85 0.64 1.84E-02 

Respiratory Forced vital capacity (FVC) -0.37 0.89 1.48E-23 

Respiratory Shortness of breath walking on level ground 0.76 0.85 1.43E-10 

Respiratory Wheeze or whistling in the chest in last year 0.46 0.69 8.09E-04 

Behavioural / Lifestyle Loneliness / isolation 0.48 0.93 6.11E-52 

Behavioural / Lifestyle Rent accommodation 0.61 0.87 2.32E-15 

This table shows some traits with a significant (Bonferroni<5%) strong genetic causal proportion (GCP > 0.60) for obesity. Due 

to space restrictions, all nominally significant genetic correlations for obesity are reported in Online Resource 2. Category = 

Category of trait, Trait = Trait causally associated with obesity, rG = Genetic correlation, GCP = Genetic causal proportion, GCP 

pval = Genetic causal proportion unadjusted p-value. 
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SUPPLEMENTARY FILES 

Online Resource 1. LCV output for obesity (FDR<5%). 

Online Resource 2. LCV output for obesity (Bonferroni <5%). 
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