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Abstract 6 

The COVID-19 pandemic has had severe impacts on global public health. In England, social 7 

distancing measures and a nationwide lockdown were introduced to reduce the spread of the virus. 8 

Green space accessibility may have been particularly important during this lockdown, as it could 9 

have provided benefits for physical and mental wellbeing. However, the effects of public green 10 

space use on the rate of COVID-19 transmission are yet to be quantified, and as the size and 11 

accessibility of green spaces vary within England’s local authorities, the risks and benefits to the 12 

public of using green space may well be context-dependent. To evaluate how green space affected 13 

COVID-19 transmission across 98 local authorities in England, we first split case rates into two 14 

periods, the pre-peak rise and the post-peak decline in cases, and assessed how baseline health 15 

and mobility variables influenced these rates. Next, looking at the residual case rates, we 16 

investigated how landscape structure (e.g. area and patchiness of green space) and park use 17 

influenced transmission. We first show that pre- and post-peak case rates were significantly reduced 18 

when overall mobility was low, especially in areas with high population clustering, and high 19 

population density during the post-peak period only. After accounting for known mechanisms behind 20 

transmission rates, we found that park use (showing a preference for park mobility) decreased 21 

residual pre-peak case rates, especially when green space was low and contiguous (not patchy). 22 

Whilst in the post-peak period, park use and green landscape structure had no effect on residual 23 

case rates. Our results suggest that a reduction in overall mobility is a good strategy for reducing 24 

case rates, endorsing the success of lockdown measures. However, if mobility is necessary, 25 

outdoor park use is safer than indoor aggregated activities (e.g. shopping or office-based working), 26 

especially during an exponential phase of transmission. 27 

  28 
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Introduction 32 

The COVID-19 pandemic has had severe impacts on public health (Mahase, 2020) and remains an 33 

emergency of international concern. In response to the first wave of the pandemic, the UK 34 

government implemented social distancing measures and a nationwide lockdown to control the 35 

spread of the virus (UK Government, 2020b). During this period, the general public was limited in 36 

the distances they could travel and the number of times they could leave their residence each day; 37 

with an allowance of one non-essential trip during the peak of transmission (UK Government, 38 

2020b). This restriction meant that members of the public were unusually reliant on amenity spaces 39 

close to their residences for daily exercise and/or recreation. Green spaces may provide a 40 

comparatively safe place for these activities, though the amount and structure of green space 41 

available for public use differs widely across the UK. Here we evaluate if differences in the 42 

availability and structure of public green space within local authorities in England influenced the 43 

local rate of incidence of COVID-19.  44 

Green spaces, which we define as vegetated non-arable areas - see Taylor & Hochuli (2017) for 45 

further details - provide important cultural and recreational ecosystem services, benefiting both 46 

mental and physical health (Beyer et al., 2014; Cohen-Cline, Turkheimer, & Duncan, 2015). These 47 

benefits are usually considered in terms of reducing the prevalence or severity of conditions such as 48 

mental stress (Nutsford, Pearson, & Kingham, 2013) or cardiovascular disease (Seo, Choi, Kim, 49 

Kim, & Park, 2019), and some of these benefits have continued throughout the pandemic (Slater, 50 

Christiana, & Gustat, 2020; Soga, Evans, Tsuchiya, & Fukano, 2020). However, the influence of 51 

green space use on disease transmission rates has received less investigation, but is of great 52 

importance as green space use has increased rapidly during the pandemic (Venter, Barton, 53 

Gundersen, Figari, & Nowell, 2020). Furthermore, its unclear how safe green spaces are, especially 54 

in densely populated areas (Shoari, Ezzati, Baumgartner, Malacarne, & Fecht, 2020).  55 
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We anticipate that green space could impact COVID-19 incidence in two ways: general health and 56 

wellbeing, and transmission. It is conceivable that general health and well-being is greater in areas 57 

with more green space, as higher levels of green space are associated with healthier populations 58 

(Maas, Verheij, Groenewegen, De Vries, & Spreeuwenberg, 2006; Mitchell & Popham, 2007; van 59 

den Berg et al., 2015). As COVID-19 has a greater impact on those with underlying health 60 

conditions and sedentary lifestyles (Hamer, Kivimäki, Gale, & Batty, 2020; Jordan, Adab, & Cheng, 61 

2020), green space may, therefore, indirectly provide some level of resilience to the disease and/or 62 

reduce incidence. Regarding transmission, evidence suggests that COVID-19 is spread via droplet 63 

infections, contact with contaminated individuals or surfaces, and potentially through aerosol 64 

transmission (Bahl et al., 2020). These risks are likely minimised in green space areas, as generally, 65 

they are less spatially confined, and with fewer surfaces prone to frequent touching or contact. 66 

Consequently, green space use may represent a safe form of recreation by minimising risk of 67 

infecton.  68 

In England and Wales approximately 87% of the population are within a 10-minute walk of public 69 

parks and gardens (Shoari et al. 2020). However, both the structure and amount of green space 70 

vary between local authorities, and both could influence COVID-19 incidence. Generally, it has been 71 

found that greater health benefits are derived from larger areas of green space (Ekkel & de Vries, 72 

2017). In the context of disease transmission, larger areas may offer more space per individual, 73 

lowering transmission risk. However, smaller fragmented areas of green space are common in 74 

many residential areas and are, therefore, more accessible to much of the population and may be 75 

used more frequently. Further, if public use is distributed across fragmented green spaces, the 76 

wider effects of a transmission incident could be reduced, as contacts would be isolated to the 77 

members of a neighbourhood or community adjacent to a particular green space. This process can 78 

be seen in animal diseases where habitat fragmentation reduces transmission due to limiting 79 

interactions between groups in different patches (Mccallum & Dobson, 2002). However, 80 

fragmentation also typically results from reductions in the total area of green space (Fahrig, 2013), 81 

leading to less overall space per individual, possibly increasing transmission rates.  82 

Whilst the effects of green space on COVID-19 transmission are currently unclear, other 83 

environmental and social factors are known to influence both the spread and severity of the 84 
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disease. For example, human mobility drives the spread of infectious diseases (Kraemer et al., 85 

2019) and studies have shown that reducing social interactions by restricting mobility can lead to a 86 

decrease in transmission rates of COVID-19 (Chinazzi et al., 2020; Gatto et al., 2020). Furthermore, 87 

as diseases are often spread along transport links and in offices (Zhang, Huang, Su, Ma, & Li, 2018; 88 

Gatto et al., 2020), enforcing lockdown situations that curtail movement, such as requiring people to 89 

work from home, can have a great effect on reducing transmission rates. In addition to mobility, 90 

health and social factors have been associated with increased severity of the disease such as age, 91 

underlying health conditions and deprivation (Richardson et al., 2020; Williamson et al., 2020). 92 

Consequently, any possible effects of green space must be considered after attempting to account 93 

for factors that could increase recorded incidence. 94 

Given the stated benefits of green space, it is important to attempt to evaluate using available 95 

evidence, the impact of green space use on transmission rates. In addition, understanding the 96 

influence of green space on COVID-19 incidence could provide an estimate of the value of green 97 

space for maintaining public health if subjected to a resurgence of the COVID-19 pandemic. And, in 98 

the longer term, indicate the potential benefits of local green space on future pandemics of 99 

comparative severity.  Here, using time series of local authority cases in England, we explore how 100 

both green space use and access influence COVID-19 incidence, which we define as the pre-peak 101 

rise, and post-peak drop in cases during the first wave of the pandemic. Our approach is to first 102 

construct a baseline health model to attempt to control for factors likely to influence recorded 103 

COVID-19 incidence and then to explore how green space influenced case rates above or below 104 

this baseline. We predict that green space and the way it is structured, in itself, will have no effect 105 

on case rates. However, we expect that an increase in park use (i.e. spending time in green space) 106 

will make the structure and availability of green space important (Figure 1). Specifically, when green 107 

space is low, park use will likely represent a safer form of movement (e.g. compared to shopping), 108 

unless the green space becomes a congregation zone that inflates transmission risk. Furthermore, 109 

we predict that case rates will be lower when green space is fragmented, as the disease will be 110 

contained in more localised areas. For example, if the local authority has one large park the 111 

presence of an infected individual puts more people at risk than an infected individual attending one 112 

of many parks. Further, we predict, as others have found (Kraemer et al., 2020), that increased 113 
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mobility will increase incidence, but that park use (measured as relative use of parks) is the safest 114 

form of mobility (e.g. preferable over shopping).   115 

 116 

Figure 1.  Mechanisms by which green space and patchiness could interact with park use to influence 117 

COVID-19 transmission.  The upper two rows describe the primary predictions, whilst the bottom row explains 118 

alternate predictions. All variables (e.g. population density) except green space and patchiness, respectively, 119 

are held at a constant in these predictions. Green circles with a tree icon indicate the presence of green 120 

space. Dotted lines indicate walking routes, which becomes park use when the line overlaps a green space. 121 

The green health symbol indicates that the landscape metric and park use is beneficial, whilst the red toxic 122 

symbol indicates a risk. 123 

Methods 124 

Data compilation 125 

COVID-19 case rates 126 

We compiled daily lab-confirmed cases (incidence) of COVID-19 in England from January 1st up to 127 

29th June 2020 (available from https://coronavirus.data.gov.uk/). Cases were recorded at the local 128 

authority level for 343 administrative areas. These local authorities vary in size (3 – 26,000km2), 129 

demographics, cultures, and in socio-economic circumstances. Incidence over this time consists of 130 

a period with zero cases at the beginning of the year, sporadic cases for a short time, followed by a 131 

period of rapid case increases, and then a subsequent decline. To focus only on the pandemic, we 132 
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first reduced the dataset to only include the period where new COVID-19 cases were reported in six 133 

out of seven consecutive days in each local authority. This, by visual inspection, captured the period 134 

of rapid incidence across authorities. Authorities were then further excluded if this period consisted 135 

of less than 10 consecutive days of cases. We then modelled the rapid growth and decline of 136 

incidence over time using two log-linear exponential growth models in each local authority (Ma, 137 

Dushoff, Bolker, & Earn, 2014). The first model was fitted to the time-period up to the peak of 138 

incidence in each local authority, and the second to the period from the peak of incidence. The 139 

coefficients of these models provided a daily pre- and post-peak case rate. We converted these 140 

coefficients into a daily percentage change in cases. 141 

Baseline transmission variables 142 

We compiled variables which describe the mechanisms known to influence case rates. Firstly, we 143 

derived two variables which describe the structure of the local authority population: population 144 

density – residential population density (controls for green space in the green transmission 145 

difference model below); and population clustering – Moran’s I spatial autocorrelation of residential 146 

population density (controls for patchiness in the green transmission difference model below). 147 

Secondly, we compiled three variables which describe the health of the human population in each 148 

local-authority prior to COVID-19: health – risk of premature death or a reduction in quality of life 149 

due to poor mental or physical health (Ministry of Housing Communities & Local Government, 150 

2019); demography - the proportion of the population over 70 (Office for National Statistics, 2019); 151 

economy – the percentage of unemployed-individuals in the non-retired local authority population 152 

(UK Government, 2018). A high baseline health, whereby few individuals have pre-existing 153 

underlying health conditions, may decrease the chances of an individual presenting with severe 154 

symptoms of COVID-19 and further passing the virus to others (Clark et al., 2020). Accounting for 155 

this baseline health may also assist in controlling for the presence of asymptomatic undetected 156 

infections in case rates.  157 

Finally, to obtain information on population movements during the COVID-19 pandemic, we used 158 

Google Community Mobility Reports (Google, 2020). These reports chart movement trends over 159 

time across six categories: retail and recreation, groceries and pharmacies, transit stations, 160 
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workplaces, residential, and parks. These trends describe how visitors to, or time spent in, each of 161 

the six categories changed compared to a pre-pandemic 5-week period (the median value from 3rd 162 

January to 6th February 2020). Gaps in the mobility data do not indicate a lack of movement, 163 

instead, gaps occur when the data fall below the required quality and privacy thresholds to ensure 164 

anonymity. Complete data were only available for 44 of the 343 local authorities in England, but 165 

were available in six of England’s 9 higher level regions (Greater London, South East, South West, 166 

West Midlands, North West, North East, Yorkshire and the Humber, East Midlands, East of 167 

England). Missing local authority mobility values were populated with their regional estimates, 168 

producing a complete dataset of 98 local authorities. From this mobility dataset, we derived a 169 

variable which described overall mobility change, which is the change in overall mobility since 170 

baseline, averaged across each of the six categories. We calculated overall mobility separately for 171 

the pre-and post-peak period in each local authority, with the same respective start and end date as 172 

the COVID-19 case rate models. 173 

Green variables 174 

We compiled three variables which describe the structure of green spaces in each local authority: 175 

patchiness – median frequency of parks within a 1km2 radius around households in the local 176 

authority (Office for National Statistics, 2020); gardens – percentage of addresses with gardens 177 

(Office for National Statistics, 2020); green space – available green space per person (m2) within 178 

the local authority, derived by dividing the green-cover area by the local authority population size. 179 

Green-cover area was calculated from the UKCEH 2015 25metre land cover raster (Rowland et al., 180 

2017) and included the following landscape categories: broadleaved woodland, coniferous 181 

woodland, improved grassland, neutral grassland, calcareous grassland, acid grassland, fen, marsh 182 

and swamp, heather, heather grassland, and bog. For this green-cover area calculation, we set a 183 

1km buffer around the local authority, to represent green space access of households on the local 184 

authority border. 185 

Using the mobility dataset, we also produced a park use variable, which represents how parks are 186 

used relative to overall mobility. This park use metric is derived by fitting a linear model between 187 

park use and overall mobility, and extracting the residual park use, where positive values represent 188 
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a preference for using parks over other forms of mobility (in the original percentage units). Parks 189 

include public gardens, castles, national forests, campsites, observation points, and national parks, 190 

but exclude surrounding countryside in rural areas. As a result, the Google (2020) definition of parks 191 

differs slightly to the landscape categories used in our green space metric but are our best available 192 

representation of how green space was used during the pandemic.  193 

Modelling 194 

We developed three core model types (Figure 2): baseline transmission – aimed at controlling for 195 

the major mechanisms influencing case-rate changes; green transmission difference – impact of 196 

landscape structure and park use on case rates; and park use – impact of landscape structures on 197 

park usage, providing a mechanistic understanding of the green transmission difference model e.g. 198 

if park use is important, what influences park use. The baseline transmission and green 199 

transmission difference models are both focussed on case rates, but we anticipated that any effects 200 

of green space on COVID-19 case rates were likely to be much smaller than variables known to 201 

affect disease transmission (e.g. population density). As a result, we structured our analyses to first 202 

account for the presence of these more influential variables in a baseline transmission model, and 203 

then in the green transmission difference model, we explored how green areas (the focus of this 204 

study) can alter the residuals of these case rates. Conventionally, it is advised to include all 205 

variables within one regression instead of analysing the residuals separately (Freckleton, 2002). 206 

However, variables were highly correlated (e.g. population density and green space per person are 207 

derived in similar ways), and resulted in multicollinearity issues. Dealing with the major 208 

mechansisms first (e.g. population density) mitigated these multicollinearity issues. 209 
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 210 

Figure 2. Model structure for baseline transmission, green transmission difference, and park use models, 211 

depicting the process for developing the response variables, as well as the predictors used in each model. In 212 

the green transmission difference models, the red text represents the main model predictions. 213 

 214 

We z-transformed all predictor variables in the models to determine effect sizes and reduce 215 

multicollinearity where interactions are present. Each of the models described below was repeated 216 

for the pre- and post-peak period, and all model assumptions passed e.g. multicollinearity, absence 217 

of spatial autocorrelation, homogeneity of variance, and normality of residuals. When summarising 218 

results, we report the mean ± standard deviation, and when describing model outputs we report the 219 

following: coef = standardised slope coefficient, t = model test-statistic, and p = significance value. 220 

We report the model accuracy using two metrics described in Mayer (2020): wR2 – a weighted r-221 

squared which describes the proportion of deviance captured by the model; and wmae – the 222 

weighted mean absolute error. Both of these metrics describe the accuracy of the model predicted 223 

values, and were derived within the dataset, rather than through an independent sub-sample. These 224 

metrics cannot indicate which aspect of the model contributed most to the prediction accuracy (e.g. 225 

model accuracy will be influenced by the fixed effects, random effects, the spatial correlation 226 

structure, and weighting structure).  227 
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Baseline transmission models 228 

To control for the baseline health and transmission mechanisms influencing COVID-19 case rates, 229 

we developed linear mixed effect models, with case rate (pre- or post-peak) as the response. We 230 

included the following predictor parameters: health, demography, economy, population density, 231 

population clustering, and mobility change. We also included interactions between population 232 

density and clustering, population density and mobility change, and population clustering and 233 

mobility change. Lastly, in the post-peak case-rate models, we wanted to control for instances 234 

where the case-rate drop was steeper because it had a higher starting point. As a result, we 235 

included the maximum daily case count within the model, as well as pre-peak mobility change which 236 

was found to be influential in the pre-peak case rate model. 237 

We allowed the model to vary by region with a random intercept to account for the non-238 

independence of some regions sharing mobility data. We also set an exponential spatial correlation 239 

structure (using the local authorities’ latitude and longitude centroid) to account for the spatial 240 

autocorrelation of neighbouring local authorities sharing similar case rates. Case rates were also 241 

weighted according to their variance (i.e. the variance of the slope in the log-linear case rate 242 

regressions), such that areas where pre- and post-case rates were less certain contributed 243 

proportionally less to the model fit. We extracted the residuals from these models for the green 244 

transmission difference models. 245 

It should be noted, even though variance inflation factors were suitably low for the baseline 246 

transmission models, the precision of the coefficients may be reduced as many predictors were 247 

correlated. Our justification for retaining these predictors in the baseline model is that the primary 248 

goal was identifying the impact of green space use after controlling for other factors, and 249 

multicollinearity has no impact on predictive performance. However, to support inference and 250 

explanation, we also report a simplified version of these baseline transmission models in Table S1, 251 

where the health, demography and economy variables were removed.  252 

Green transmission difference models 253 

To assess how landscape structure and park use influenced residual case rates, we developed 254 

linear mixed effect models, with pre- or post-peak residual case rates form the baseline 255 
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transmission models as the response, as well as the following predictor parameters: park use 256 

(inverse hyperbolic sine transformed), green space (log10 transformed), patchiness, an interaction 257 

between park use and green space, and finally an interaction between park use and patchiness. 258 

These models also included region as a random intercept, but we did not control for the spatial 259 

structure of the data, which was addressed in the earlier baseline transmission model. We did, 260 

however, still include the variance weighting to specify that residuals from local authorities with a 261 

smaller variance in case rates should contribute more to the model. 262 

Park use models 263 

To understand how landscape structure influences park use and in turn, clarify the mechanisms by 264 

which park use influences case rates, we developed linear mixed effect models, with pre- or post-265 

peak park use (inverse hyperbolic sine transformed) as the response, and the following predictor 266 

parameters: gardens, green space (log10 transformed), patchiness, and an interaction between 267 

green space and patchiness. We also included the region random intercept and a spatial correlation 268 

structure for the same reasons as in the baseline transmission model.  269 

Sensitivity analysis 270 

As the mobility data contained a high frequency of missing values, which we filled (where possible) 271 

with regional estimates, we were conscious this may introduce error in the inference. When values 272 

are imputed, it is recommended to repeat the modelling with imputed values excluded (i.e. complete 273 

case analysis) to assess how model coefficients change (Johnson, Isaac, Paviolo, & González-274 

Suárez, 2021) . As a result, we determined the sensitivity of coefficients to the inclusion of regional 275 

mobility values by repeating all models after excluding the regional data – see Supplementary 276 

material. Throughout the results, we only report the regional imputed model coefficients as 277 

coefficient agreement was high, with all regional imputed model coefficients confidence intervals 278 

overlapping complete-case model coefficients. A lack of overlap could indicate a significant 279 

difference in model coefficients which may indicate inference errors (Johnson et al., 2021) 280 

Results 281 

Across the 98 local authorities, the pre-peak cases rose 9.8% (± 4.6) per day and peaked between 282 

24th March and the 8th May. The peaks ranged in size from 9 to 132 daily cases, and then post-283 
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peak, the daily case rate declined at -4.8% per day (±2.2).  Mobility reduced substantially in the pre-284 

peak period (-28.3% ± 8.5) and further again in the post-peak period (-37.0% ± 6.4), but not equally 285 

across England, with mobility increasing in 20.4% of local authorities between the pre- and post-286 

peak period (Figure 3). In the pre-peak period, park use ranged from -19.7% to 22.4%, but post-287 

peak this range increased from -43.3% to 30.8%. Between this pre- and post-peak period, some 288 

authorities altered their park use, for example, park use decreased by 38% in Peterborough, whilst 289 

park use increased by 22% in Luton. 290 

 291 

Figure 3. Change in a) pre-peak case rate, b) post-peak case rate, c) pre-peak mobility, d) post-peak mobility, 292 

e) pre-peak park use, and f) post-peak park use, across 98 local authorities in England. X and Y axes indicate 293 

longitude and latitude in decimal degrees.  294 

 295 
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Baseline transmission models 296 

Pre-peak case rates were lower in areas with a reduction in mobility (coef = 2.39, t = 4.56, p < 297 

0.001; Figure S1). Population density had no effect on pre-peak case rates. Population clustering 298 

had a weak effect when interacting with mobility change, where the effect of mobility diminished 299 

when population clustering was low (coef = 0.96, t = 1.76, p = 0.08; Figure 4a) - this interactive 300 

effect was lost in the simplified baseline transmission model and in the full complete-case model 301 

(Table S1-S2). Given the variation in pre-peak case rates (Figure 3a), where daily case rises ranged 302 

from 2 – 21%, the model error was reasonably low (wmae = 2.42% the wR2 = 0.43). 303 

The post-peak case rates were also lower in areas with a greater reduction in mobility (coef = 0.99, t 304 

= 5.52, p < 0.001; Figure S2a). We also observed an interaction between population clustering and 305 

mobility change, where the effect of mobility diminished when population clustering was low (coef = 306 

0.28, t = 2.0, p = 0.048; Figure 4b), as in the pre-peak model. A similar result was found for the 307 

interaction between mobility change and population density, where the effect of mobility increasing 308 

post-peak case rates diminished at low population densities (coef = 0.65, t = 4.18, p < 0.001; Figure 309 

4c). Case rates also declined faster in authorities with a high population density (coef = -0.35, t = 310 

2.20, p = 0.04) and clustering (coef = -0.48, t = -2.11, p = 0.04), but only when population density 311 

was low (coef = 0.42, t = 2.81, p = 0.006; Figure 4d). 312 

Post-peak case-rates were also influenced by pre-peak activity, as areas with a larger peak in cases 313 

had a faster decline in post-peak case-rate (coef = -0.54, t = -5.16, p < 0.001; Figure S2c; no effect 314 

in complete-case analysis), and case rates were lower in areas with a reduction in pre-peak mobility 315 

(coef = 0.46, t = 2.40, p = 0.02; Figure S2b; no effect in complete-case analysis). The model error in 316 

post-peak case rates was lower than in the pre-peak case rates, with a moderately high post-peak 317 

prediction accuracy (wmae = 0.69% the wR2 = 0.61). 318 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 31, 2021. ; https://doi.org/10.1101/2020.10.20.20215731doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20215731


14 

 

 319 

Figure 4. Marginal effects of important interaction parameters in the baseline transmission models. Marginal 320 

effects are held at zero for all other parameters as variables were z-transformed. In panels a and b, population 321 

clustering was set at 0.35 (Low) and 0.7 (High), where 0 indicates a random distribution of clustering, and 1 322 

indicates a complete separation in clustering. Error bars represent the 95 confidence intervals. 323 

 324 

 325 

Green transmission difference models 326 

Park use decreased residual pre-peak case rates (coef = -0.61, t = 1.99, p = 0.049; Figure 5a), but 327 

there was an interaction between park use and green space, with the effect of park use diminishing 328 

when green space was high (coef = 0.95, t = 2.59, p = 0.01; Figure 5b). There was also a weak 329 

interactive effect between park use and patchiness, as park use decreased the residual pre-peak 330 

case rate when patchiness was low, but increased the case rate when patchiness was high (coef = 331 

0.55, t = 2.03, p = 0.04; Figure 5c). Green space and patchiness had no general effect on residual 332 

pre- or post-peak case rates, whilst park use and the interactive effects also had no effect on 333 

residual post-peak case rates (Table S2). Nevertheless, incorporating these park use and 334 

landscape structure effects led to a modest decrease in case rate prediction error; wmae decreased 335 
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from 2.43% to 2.33% in the pre-peak period, and from 0.69% to 0.64% in the post-peak period. This 336 

equated to more dramatic improvements in the wR2, where accuracy jumped from 0.43 to 0.5 in the 337 

pre-peak period, and from 0.61 to 0.68 in the post-peak period, which represent a 18% and 11% 338 

accuracy increase, respectively. 339 

  340 
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 341 

 342 

Figure 5. Marginal effects of a selection of parameters in the green transmission difference (a-c) and park use 343 

(d-f) models. All other parameters are held at their mean (zero) for the marginal sffects. In panels d-f, the y-344 

axes are inverse hyperbolic sine scaled, as are the x-axes in panels a-c. In panels e & f, the x-axis is log10 345 

scaled. Error bars represent the 95 confidence intervals. 346 

 347 

Park use models 348 

Access to gardens, patchiness, and the interaction between green space and patchiness had no 349 

effect on pre-peak park use, but pre-peak park use was marginally greater in authorities with high 350 

green space (coef = 0.79, t = 1.77, p = 0.08; Figure 5e). However, in the post-peak period, green 351 

space had no effect on park use (Figure 5f), except in the interactive effect with patchiness, where 352 

post-peak park use increased with patchiness, but only when green space was high (coef = 0.42, t = 353 

2.51, p = 0.01; Figure 5d). Patchiness and gardens did not have an overall effect on post-peak park 354 

use (Table S3). 355 

 356 
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Discussion 357 

In this study, we attempted to quantify the effects of local green space on COVID-19 case rates 358 

after accounting for mechanisms known to influence pandemics in our baseline transmission model. 359 

We found that high overall mobility increased both pre- and post-peak case rates, especially when 360 

population clustering and density were high (this mobility-density interaction effect was only 361 

important in the post-peak period). After accounting for these variables, we found that higher park 362 

use, compared to other amenity areas, led to a reduction in pre-peak case rates, especially in areas 363 

with low and contiguous green space. These results suggest that utilising green spaces rather than 364 

carrying out other activities (e.g. visiting shops and workplaces) may reduce the transmission rate of 365 

COVID-19, especially during an exponential phase of transmission. 366 

From our baseline transmission model results, population density (Figure 4c) and clustering (Figure 367 

4a-b) were only important when considered in an interaction with mobility, and population density 368 

was only important in the post-peak period. This is surprising, but is consistent with person-person 369 

contact as the major mechanism of transmission i.e. even a very dense and clustered population 370 

will have slow transmission rates if there are few interactions between people. This appears to 371 

demonstrate the general effectiveness of lockdown measures in reducing case rates, as others 372 

have demonstrated previously (Davies et al., 2020; Lau et al., 2020). However, we found mobility 373 

had less impact in low density, low clustered areas, which again may be expected, as people are 374 

more likely to be able to maintain distance and the potential number of interactions is reduced. 375 

However, even in these conditions, mobility still slightly increased post-peak case rates and so 376 

lockdown still appeared to have some effect on reducing case rates even in low density and low 377 

clustered areas. 378 

Previous research has shown the importance of health, deprivation, demography and economic 379 

prosperity on COVID-19 case rates (Abedi et al., 2020; Atkins et al., 2020; Dowd et al., 2020). 380 

However, in our baseline health transmission models, these variables did not explain differences in 381 

COVID-19 case rates found in our dataset. This is likely due to the variables being somewhat 382 

correlated with population density, with consequent reductions in the information available in the 383 

data to assess their effects (as described in Methods). For example, an older population is 384 
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correlated with decreased population density, and though older people seem to be more vulnerable 385 

to COVID-19 (Jordan et al., 2020), they are more likely to reside in safer (low population density) 386 

areas; consequently separating these effects may simply not be possible given the data used. 387 

Another consideration between findings for demographic/social groups at a national scale and local 388 

case rates, is that the assemblages being compared contain varying proportions of the groups in 389 

question i.e. we ask ‘does an older population lead to higher local case rates?’, not ‘are there 390 

differences in the per-capita rate of cases between different demographic, economic, and health 391 

groups?’. We suggest that our analysis is unsuited to resolving questions of the second type and 392 

that the baseline transmission model is best viewed simply as controlling for possible factors in an 393 

attempt to isolate the effects of green space.  394 

Once we had accounted for known drivers of case-rates, we investigated how landscape structure 395 

and park use (i.e. mobility in green spaces) affected residual case rates using the green 396 

transmission model. Here we found that using parks, relative to other types of mobility, led to a 397 

reduction in pre-peak case rates (Figure 5a). However, reducing overall mobility (i.e. mobility to all 398 

amenity areas) led to a far more substantial decline in both pre- and post-peak case rates, 399 

especially in dense and clustered populations as found in the baseline transmission model. For 400 

example, continuing mobility at pre-pandemic levels led to 15.4% daily increase in cases when park 401 

use was at its highest, compared to a 17.4% daily increase when park use was at its lowest - a 2% 402 

case rate reduction. In contrast, halving overall mobility reduced case rates by 13.6%. This 403 

suggests that the use of parks may have modestly helped in reducing transmission rates in some 404 

areas during the increasing phase of the pandemic, but reducing overall mobility is substantially 405 

more beneficial than maintaining mobility at pre-pandemic levels and spending that mobility in 406 

parks.  407 

Whilst park use, overall, had a relatively small effect, we did note stronger effects of park use when 408 

the context of the local area was considered as using parks was beneficial in authorities with low 409 

and contiguous green space (Figure 5b and 5c). That park use has a minor beneficial effect overall 410 

seems to support our hypothesis that recreation in green space and parks may be safer than in 411 

other amenity areas. This is probably because it is easier to maintain distance and green spaces 412 

have fewer surfaces which could result in transmission if contaminated. However, the limiting impact 413 
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of this when green space is high and accessible seems to suggest diminishing returns in how park 414 

use can impact COVID-19 transmission. This is perhaps not surprising if the main value of parks in 415 

this context is as an alternative to other relatively more hazardous amenity areas. Consequently, if 416 

there are other safe options outside of public parks then parks will likely have little impact. However, 417 

our findings do suggest that the use of public parks in a highly urbanised area may be 418 

advantageous, though as noted above the strongest effect was from the reduction of all forms of 419 

mobility. Therefore, cautiously, and given that it corresponds with common sense, we suggest that 420 

reducing mobility is a successful strategy for reducing case-rates but given a need for some non-421 

essential time outside of a home, using green spaces such as local parks may be the next best 422 

thing, particularly in highly urbanised areas.       423 

As we demonstrated the importance of park use over other types of mobility in reducing the 424 

exponential rise in cases, we then aimed to understand what green space parameters (area and 425 

patchiness of green space and access to gardens) influenced pre- and post-peak park use. We 426 

found that, overall, accessible green space marginally predicted an increase in pre-peak park use 427 

(Figure 5e), but not post-peak (Figure 5f). We also noted an interaction between use of parks and 428 

the amount and patchiness of the green space (Figure 5d). We found that if an area had high green 429 

space, but it was not patchy, then it was used less, but that in low green space areas patchiness 430 

had little effect. A possible explanation for this is that in less green areas overall, large areas of 431 

concentrated green space act as a stronger attractor for a certain kind of experience for members of 432 

the public. For example, a large park in a heavily urbanised area provides a walking experience that 433 

may not be readily substituted by walking through other local areas, whereas a walk in an overall 434 

greener area may be more comparable to that in a park. This is supported by evidence that 435 

suggests greater psychological benefits when walking in green parks as opposed to urban streets 436 

(Johansson, Hartig, & Staats, 2011), as well as evidence highlighting the combined health benefits 437 

of physical activity within green spaces (Pretty et al., 2007). Consequently, as would be predicted 438 

from basic considerations of scarcity, local green space provision seems to have more consistent 439 

value in areas where there is less green space, independent of its structure, however, overall, 440 

accessibility seems to be a driving factor of usage. 441 
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A major limitation of the work is the difficulty in comparing across local authorities that vary 442 

simultaneously in many different variables likely important to case rates. As mentioned previously, 443 

this makes inference about the importance of their individual effects very difficult, or simply not 444 

possible. Therefore, we reiterate that our results do not provide evidence that the demographic and 445 

social groups included are not more or less affected by COVID-19, and we suggest that any findings 446 

from studies directly addressing questions about these groups are given priority. Another challenge 447 

is that pandemics are rare events, consequently, our analysis covers only a snapshot of time for 448 

each local authority. During this period, many different factors not included in the analysis (e.g. 449 

chance super spreading events) may have explained much of the variation between local 450 

authorities. Despite this, the model fits are reasonably high, especially after incorporating the green 451 

transmission models. However, the modest beneficial effect of park use on COVID-19 transmission 452 

could be useful in the general attempt to develop guidance for which spaces to use during an 453 

exponential phase of transmission.  454 

A further limitation in the work is the underlying quality of the COVID-19 case data. In the first wave 455 

of the pandemic, COVID-19 testing capacity was very limited and there were reports of testing 456 

demand exceeding capacity, where people showing COVID-19 symptoms were unable to receive a 457 

test (Wise, 2020). Furthermore, during this period, testing was primarily only available to 458 

symptomatic individuals (UK Government, 2020a), and so daily cases ignore the prevalence of 459 

asymptomatic individuals. This is important, as the prevalence of asymptomatic cases could be 460 

linked to the underlying health and demographics, skewing local authorities’ daily case estimates. 461 

Whilst we tried to capture health and demographic features within our models, including these 462 

additional terms is not a true substitute for surveillance-based testing schemes. As a a result, our 463 

daily case estimates, and the rates we derived, are subject to some unknown degree of error that 464 

cannot be captured, which may have impacted on the robustness of our results.  465 

An additional limitation in our analyses is the absence of Google mobility data in the majority of local 466 

authorities. We handled these missing values by filling in local authorities with regional mobility 467 

estimates (where available), and attempted to ensure models were robust by comparing regional 468 

imputed models with complete-case models. Encourangingly, our complete-case and regional 469 

imputed results are similar, which suggests the regional imputation has not introduced any missing 470 
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data bias (Johnson et al., 2021). However, there is no guarantee that the complete-case or regional 471 

imputation models are sound, as both could be equally error-prone. Given this uncertainty, and the 472 

further limitations we have identified above, our mobility findings should be interpreted cautiously.  473 

Understanding the risks of different amenity areas could be important for longer-term management 474 

of COVID-19 and the landscape-dependency of this advice could be important for developing ‘local-475 

lockdown’ guidance. In particular, access to green spaces has been shown to have benefits for 476 

mental and physical well-being (Slater et al., 2020; Soga et al., 2020), and consequently, 477 

understanding the relative risks of using these areas is important. Our results show that spending 478 

time in parks, relative to other amenity areas may reduce COVID-19 case rates especially in 479 

urbanised, high-density areas. Although further research is needed, these findings suggest that the 480 

use of parks for recreational activity in these contexts could be advisable, demonstrating a possible 481 

additional utility of these green spaces in addition to the known benefits to health and wellbeing (de 482 

Vries, Verheij, Groenewegen, & Spreeuwenberg, 2003; Mitchell & Popham, 2007; Nutsford et al., 483 

2013) in normal non-pandemic conditions.     484 
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