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Abstract22

The Advanced Normalizations Tools ecosystem, known as ANTsX, consists of multiple open-23

source software libraries which house top-performing algorithms used worldwide by scientific24

and research communities for processing and analyzing biological and medical imaging data.25

The base software library, ANTs, is built upon, and contributes to, the NIH-sponsored26

Insight Toolkit. Founded in 2008 with the highly regarded Symmetric Normalization image27

registration framework, the ANTs library has since grown to include additional functionality.28

Recent enhancements include statistical, visualization, and deep learning capabilities through29

interfacing with both the R statistical project (ANTsR) and Python (ANTsPy). Additionally,30

the corresponding deep learning extensions ANTsRNet and ANTsPyNet (built on the popular31

TensorFlow/Keras libraries) contain several popular network architectures and trained models32

for specific applications. One such comprehensive application is a deep learning analog33

for generating cortical thickness data from structural T1-weighted brain MRI, both cross-34

sectionally and longitudinally. These pipelines significantly improve computational efficiency35

and provide comparable-to-superior accuracy over multiple criteria relative to the existing36

ANTs workflows and simultaneously illustrate the importance of the comprehensive ANTsX37

approach as a framework for medical image analysis.38
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The ANTsX ecosystem: A brief overview39

Image registration origins40

The Advanced Normalization Tools (ANTs) is a state-of-the-art, open-source software toolkit41

for image registration, segmentation, and other functionality for comprehensive biological42

and medical image analysis. Historically, ANTs is rooted in advanced image registration43

techniques which have been at the forefront of the field due to seminal contributions that44

date back to the original elastic matching method of Bajcsy and co-investigators.54,55,5945

Various independent platforms have been used to evaluate ANTs tools since their early46

development. In a landmark paper,65 the authors reported an extensive evaluation using47

multiple neuroimaging datasets analyzed by fourteen different registration tools, including48

the Symmetric Normalization (SyN) algorithm,60 and found that “ART, SyN, IRTK, and49

SPM’s DARTEL Toolbox gave the best results according to overlap and distance measures,50

with ART and SyN delivering the most consistently high accuracy across subjects and label51

sets.” Participation in other independent competitions62,69 provided additional evidence of the52

utility of ANTs registration and other tools.13,14,42 Despite the extremely significant potential53

of deep learning for image registration algorithmic development,41 ANTs registration tools54

continue to find application in the various biomedical imaging research communities.55

Current developments56

Since its inception, though, ANTs has expanded significantly beyond its image registration57

origins. Other core contributions include template building,64 segmentation,68 image pre-58

processing (e.g., bias correction52 and denoising),56 joint label fusion,53,63 and brain cortical59

thickness estimation57,66 (cf Table 1). Additionally, ANTs has been integrated into multiple,60

publicly available workflows such as fMRIprep50 and the Spinal Cord Toolbox.49 Frequently61

used ANTs pipelines, such as cortical thickness estimation,66 have been integrated into Docker62

containers and packaged as Brain Imaging Data Structure (BIDS)48 and FlyWheel applica-63

tions (i.e., “gears’ ’). It has also been independently ported for various platforms including64

Neurodebian47 (Debian OS), Neuroconductor46 (the R statistical project), and Nipype4565
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Figure 1: An illustration of the tools and applications available as part of the ANTsRNet
and ANTsPyNet deep learning toolkits. Both libraries take advantage of ANTs functionality
through their respective language interfaces—ANTsR (R) and ANTsPy (Python). Building
on the Keras/TensorFlow language, both libraries standardize popular network architectures
within the ANTs ecosystem and are cross-compatible. These networks are used to train
models and weights for such applications as brain extraction which are then disseminated to
the public.

(Python). Additionally, other widely used software, such as FreeSurfer,61 have incorporated66

well-performing and complementary ANTs components52,56 into their own libraries. According67

to GitHub, recent unique “clones” have averaged 34 per day with the total number of clones68

being approximately twice that many. 50 unique contributors to the ANTs library have made69

a total of over 4500 commits. Additional insights into usage can be viewed at the ANTs70

GitHub website.71

Over the course of its development, ANTs has been extended to complementary frameworks72

resulting in the Python- and R-based ANTsPy and ANTsR toolkits, respectively. These73

ANTs-based packages interface with extremely popular, high-level, open-source programming74

platforms which have significantly increased the user base of ANTs. The rapidly rising75

popularity of deep learning motivated further recent enhancement of ANTs and its extensions.76

Despite the existence of an abundance of online innovation and code for deep learning77

algorithms, much of it is disorganized and lacks a uniformity in structure and external data78

interfaces which would facilitate greater uptake. With this in mind, ANTsR spawned the deep79
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Functionality Citations

SyN registration5 2616
bias field correction16 2188
ANTs registration evaluation6 2013
joint label fusion18 669
template generation14 423
cortical thickness: implementation20 321
MAP-MRF segmentation15 319
ITK integration12 250
cortical thickness: theory19 180

Table 1: The significance of core ANTs tools in terms of their number of citations (from
October 17, 2020).

learning ANTsRNet package32 which is a growing Keras/TensorFlow-based library of popular80

deep learning architectures and applications specifically geared towards medical imaging.81

Analogously, ANTsPyNet is an additional ANTsX complement to ANTsPy. Both, which we82

collectively refer to as “ANTsXNet”, are co-developed so as to ensure cross-compatibility83

such that training performed in one library is readily accessible by the other library. In84

addition to a variety of popular network architectures (which are implemented in both 2-D85

and 3-D), ANTsXNet contains a host of functionality for medical image analysis that have86

been developed in-house and collected from other open-source projects. For example, an87

extremely popular ANTsXNet application is a multi-modal brain extraction tool that uses88

different variants of the popular U-net44 architecture for segmenting the brain in multiple89

modalities. These modalities include conventional T1-weighted structural MRI as well as90

T2-weighted MRI, FLAIR, fractional anisotropy, and BOLD data. Demographic specialization91

also includes infant T1-weighted and/or T2-weighted MRI. Additionally, we have included92

other models and weights into our libraries such as a recent BrainAGE estimation model,2393

based on > 14, 000 individuals; HippMapp3r,43 a hippocampal segmentation tool; the winning94

entry of the MICCAI 2017 white matter hyperintensity segmentation competition;40 MRI95

super resolution using deep back-projection networks;22 and NoBrainer, a T1-weighted brain96

extraction approach based on FreeSurfer (see Figure 1).97
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Figure 2: Illustration of the ANTsXNet cortical thickness pipeline and the relationship to
its traditional ANTs analog. The hash-designated sections denote pipeline steps which have
been obviated by the deep learning approach. These include template-based brain extraction,
template-based n-tissue segmentation, and joint label fusion for cortical labeling. In our prior
work, execution time of the thickness pipeline was dominated by registration. In the deep
version of the pipeline, it is dominated by DiReCT. However, we note that registration and
DiReCT execute much more quickly than in the past in part due to major improvements in
the underlying ITK multi-threading strategy.

The ANTsXNet cortical thickness pipeline98

The most recent ANTsX innovation involves the development of deep learning analogs of99

our popular ANTs cortical thickness cross-sectional66 and longitudinal51 pipelines within100

the ANTsXNet framework. Figure 2, adapted from our previous work,66 illustrates some of101

the major changes associated with the single-subject, cross-sectional pipeline. The resulting102

improvement in efficiency derives primarily from eliminating deformable image registration103

from the pipeline—a step which has historically been used to propagate prior, population-104

based information (e.g., tissue maps) to individual subjects for such tasks as brain extraction58105

and tissue segmentation68 which is now configured within the neural networks and trained106

weights.107

These structural MRI processing pipelines are currently available as open-source within the108
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ANTsXNet libraries. Evaluations using both cross-sectional and longitudinal data are de-109

scribed in subsequent sections and couched within the context of our previous publications.51,66110

Related work has been recently reported by external groups38,39 and provides a context for111

comparison to motivate the utility of the ANTsX ecosystem.112

Results113

Cross-sectional performance evaluation114

1) caudal anterior cingulate (cACC) 17) pars orbitalis (pORB)
2) caudal middle frontal (cMFG) 18) pars triangularis (pTRI)
3) cuneus (CUN) 19) pericalcarine (periCAL)
4) entorhinal (ENT) 20) postcentral (postC)
5) fusiform (FUS) 21) posterior cingulate (PCC)
6) inferior parietal (IPL) 22) precentral (preC)
7) inferior temporal (ITG) 23) precuneus (PCUN)
8) isthmus cingulate (iCC) 24) rosterior anterior cingulate (rACC)
9) lateral occipital (LOG) 25) rostral middle frontal (rMFG)
10) lateral orbitofrontal (LOF) 26) superior frontal (SFG)
11) lingual (LING) 27) superior parietal (SPL)
12) medial orbitofrontal (MOF) 28) superior temporal (STG)
13) middle temporal (MTG) 29) supramarginal (SMAR)
14) parahippocampal (PARH) 30) transverse temporal (TT)
15) paracentral (paraC) 31) insula (INS)
16) pars opercularis (pOPER)

Table 2: The 31 cortical labels (per hemisphere) of the Desikan-Killiany-Tourville atlas. The
ROI abbreviations from the R brainGraph package are given in parentheses and used in
later figures.

Due to the absence of ground-truth, we utilize the evaluation strategy from our previous115

work66 where we used cross-validation to build and compare age prediction models from116

data derived from both the proposed ANTsXNet pipeline and the established ANTs pipeline.117

Specifically, we use “age” as a well-known and widely-available demographic correlate of118

cortical thickness30 and quantify the predictive capabilities of corresponding random forest119

classifiers19 of the form:120
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AGE ∼ V OLUME +GENDER +
62∑

i=1
T (DKTi) (1)

with covariates GENDER and V OLUME (i.e., total intracranial volume). T (DKTi) is the121

average thickness value in the ith Desikian-Killiany-Tourville (DKT) region35 (cf Table 2).122

Root mean square error (RMSE) between the actual and predicted ages are the quantity123

used for comparative evaluation. As we have explained previously,66 we find these evaluation124

measures to be much more useful than other commonly applied criteria as they are closer to125

assessing the actual utility of these thickness measurements as biomarkers for disease21 or126

growth. In recent work39 the authors employ correlation with FreeSurfer thickness values as127

the primary evaluation for assessing relative performance with ANTs cortical thickness.66128

This evaluation, unfortunately, is fundamentally flawed in that it is a prime example of a129

type of circularity analysis29 whereby data selection is driven by the same criteria used to130

evaluate performance. Specifically, the underlying DeepSCAN network used for the tissue131

segmentation step employs training based on FreeSurfer results which directly influences132

thickness values as thickness/segmentation are highly correlated and vary characteristically133

between software packages. Relative performance with ANTs thickness (which does not use134

FreeSurfer for training) is then assessed by determining correlations with FreeSurfer thickness135

values. Almost as problematic is their use of repeatability, which they confusingly label136

as “robustness,” as an additional ranking criterion. Repeatability evaluations should be137

contextualized within considerations such as the bias-variance tradeoff and quantified using138

relevant metrics, such as the intra-class correlation coefficient which takes into account both139

inter- and intra-observer variability.140

In addition to the training data listed above, to ensure generalizability, we also compared141

performance using the SRPB data set15 comprising over 1600 participants from 12 sites. Note142

that we recognize that we are processing a portion of the evaluation data through certain143

components of the proposed deep learning-based pipeline that were used to train the same144

pipeline components. Although this does not provide evidence for generalizability (which is145

why we include the much larger SRPB data set), it is still interesting to examine the results146

since, in this case, the deep learning training can be considered a type of noise reduction on147
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Figure 3: Distribution of mean RMSE values (500 permutations) for age prediction across the
different data sets between the traditional ANTs and deep learning-based ANTsXNet pipelines.
Total mean values are as follows: Combined—9.3 years (ANTs) and 8.2 years (ANTsXNet);
IXI—7.9 years (ANTs) and 8.6 years (ANTsXNet); MMRR—7.9 years (ANTs) and 7.6 years
(ANTsXNet); NKI—8.7 years (ANTs) and 7.9 years (ANTsXNet); OASIS—9.2 years (ANTs)
and 8.0 years (ANTsXNet); and SRPB—9.2 years (ANTs) and 8.1 years (ANTsXNet).

the final results. It should be noted that training did not use age prediction (or any other148

evaluation or related measure) as a criterion to be optimized during network model training149

(i.e., circular analysis).29150

The results are shown in Figure 3 where we used cross-validation with 500 permutations151

per model per data set (including a “combined” set) and an 80/20 training/testing split.152

The ANTsXNet deep learning pipeline outperformed the classical pipeline66 in terms of age153

prediction in all data sets except for IXI. This also includes the cross-validation iteration154

where all data sets were combined. Additionally, repeatability assessment on the regional155

cortical thickness values of the MMRR data set yielded ICC values (“average random rater”)156

of 0.99 for both pipelines.157

A comparative illustration of regional thickness measurements between the ANTs and158

ANTsXNet pipelines is provided in Figure 4 for three different ages spanning the lifespan.159

Linear models of the form160
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T (DKTi) ∼ GENDER + AGE (2)

were created for each of the 62 DKT regions for each pipeline. These models were then used161

to predict thickness values for each gender at ages of 25 years, 50 years, and 75 years and162

subsequently plotted relative to the absolute maximum predicted thickness value (ANTs:163

right entorhinal cortex at 25 years, male). Although there appear to be systematic differences164

between specific regional predicted thickness values (e.g., T (ENT )ANT s > T (ENT )ANT sXNet,165

T (pORB)ANT s < T (pORB)ANT sXNet)), a pairwise t-test evidenced no statistically significant166

difference between the predicted thickness values of the two pipelines.167
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Figure 4: Radar plots enabling comparison of relative thickness values between the ANTs
and ANTsXNet cortical thickness pipelines at three different ages sampling the life span. See
Table 2 for region abbreviations.
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(a)

(b)

Figure 5: Performance over longitudinal data as determined by the variance ratio. (a) Region-
specific 95% confidence intervals of the variance ratio showing the superior performance of
the longitudinally tailored ANTsX-based pipelines, including ANTsSST and ANTsXNetLong.
(b) Residual variability, between subject, and variance ratio values per pipeline over all DKT
regions.

Longitudinal performance evaluation168

Given the excellent performance and superior computational efficiency of the proposed169

ANTsXNet pipeline for cross-sectional data, we evaluated its performance on longitudinal170
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Figure 6: Measures for the supervised evaluation strategy where log p-values for diagnostic
differentiation of LMCI-CN, AD-LMCI, and AD-CN subjects are plotted for all pipelines
over all DKT regions.

data using the longitudinally-specific evaluation strategy and data we employed with the171

introduction of the longitudinal version of the ANTs cortical thickness pipeline.51 We also172

evaluated an ANTsXNet-based pipeline tailored specifically for longitudinal data. In this173

variant, an SST is generated and processed using the previously described ANTsXNet cross-174

sectional pipeline which yields tissue spatial priors. These spatial priors are used in our175

traditional brain segmentation approach68. The computational efficiency of this variant is176

also significantly improved, in part, due to the elimination of the costly SST prior generation177

which uses multiple registrations combined with joint label fusion.53178

The ADNI-1 data used for our longitudinal performance evaluation51 consists of over 600179

subjects (197 cognitive normals, 324 LMCI subjects, and 142 AD subjects) with one or180

more follow-up image acquisition sessions every 6 months (up to 36 months) for a total181

of over 2500 images. In addition to the ANTsXNet pipelines (“ANTsXNetCross” and182

“ANTsXNetLong”) for the current evaluation, our previous work included the FreeSurfer61183

cross-sectional (“FSCross”) and longitudinal (“FSLong”) streams, the ANTs cross-sectional184

pipeline (“ANTsCross”) in addition to two longitudinal ANTs-based variants (“ANTsNative”185

and “ANTsSST”). Two evaluation measurements, one unsupervised and one supervised, were186

used to assess comparative performance between all seven pipelines. We add the results of187

the ANTsXNet pipeline cross-sectional and longitudinal evaluations in relation to these other188
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pipelines to provide a comprehensive overview of relative performance.189

First, linear mixed-effects (LME)20 modeling was used to quantify between-subject and

residual variabilities, the ratio of which provides an estimate of the effectiveness of a given

biomarker for distinguishing between subpopulations. In order to assess this criteria while

accounting for changes that may occur through the passage of time, we used the following

Bayesian LME model:

Y k
ij ∼ N(αk

i + βk
i tij, σ

2
k) (3)

αk
i ∼ N(αk

0, τ
2
k ) βk

i ∼ N(βk
0 , ρ

2
k)

αk
0, β

k
0 ∼ N(0, 10) σk, τk, ρk ∼ Cauchy+(0, 5)

where Y k
ij denotes the ith individual’s cortical thickness measurement corresponding to the

kth region of interest at the time point indexed by j and specification of variance priors

to half-Cauchy distributions reflects commonly accepted best practice in the context of

hierarchical models.28 The ratio of interest, rk, per region of the between-subject variability,

τk, and residual variability, σk is

rk = τk

σk

, k = 1, . . . , 62 (4)

where the posterior distribution of rk was summarized via the posterior median.190

Second, the supervised evaluation employed Tukey post-hoc analyses with false discovery

rate (FDR) adjustment to test the significance of the LMCI-CN, AD-LMCI, and AD-CN

diagnostic contrasts. This is provided by the following LME model

∆Y ∼Ybl + AGEbl + ICVbl + APOEbl +GENDER +DIAGNOSISbl (5)

+ V ISIT : DIAGNOSISbl + (1|ID) + (1|SITE).

Here, ∆Y is the change in thickness of the kth DKT region from baseline (bl) thickness191

Ybl with random intercepts for both the individual subject (ID) and the acquisition site.192

The subject-specific covariates AGE, APOE status, GENDER, DIAGNOSIS, ICV , and193
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V ISIT were taken directly from the ADNIMERGE package.194

Results for all pipelines with respect to the longitudinal evaluation criteria are shown in195

Figures 5 and 6. Figure 5(a) provides the 95% confidence intervals of the variance ratio for196

all 62 regions of the DKT cortical labeling where ANTsSST consistently performs best with197

ANTsXNetLong also performing well. These quantities are summarized in Figure 5(b). The198

second evaluation criteria compares diagnostic differentiation via LMEs. Log p-values are199

provided in Figure 6 which demonstrate excellent LMCI-CN and AD-CN differentiation for200

both deep learning pipelines.201

Discussion202

The ANTsX software ecosystem provides a comprehensive framework for quantitative biologi-203

cal and medical imaging. Although ANTs, the original core of ANTsX, is still at the forefront204

of image registration technology, it has moved significantly beyond its image registration205

origins. This expansion is not confined to technical contributions (of which there are many)206

but also consists of facilitating access to a wide range of users who can use ANTsX tools207

(whether through bash, Python, or R scripting) to construct tailored pipelines for their own208

studies or to take advantage of our pre-fabricated pipelines. And given the open-source209

nature of the ANTsX software, usage is not limited, for example, to non-commercial use—a210

common constraint characteristic of other packages such as the FMRIB Software Library211

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Licence).212

One of our most widely used pipelines is the estimation of cortical thickness from neuroimag-213

ing. This is understandable given the widespread usage of regional cortical thickness as a214

biomarker for developmental or pathological trajectories of the brain. In this work, we used215

this well-vetted ANTs tool to provide training data for producing alternative variants which216

leverage deep learning for improved computational efficiency and also provides superior perfor-217

mance with respect to previously proposed evaluation measures for both cross-sectional66 and218

longitudinal scenarios.51 In addition to providing the tools which generated the original train-219

ing data for the proposed ANTsXNet pipeline, the ANTsX ecosystem provides a full-featured220
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platform for the additional steps such as preprocessing (ANTsR/ANTsPy); data augmenta-221

tion (ANTsR/ANTsPy); network construction and training (ANTsRNet/ANTsPyNet); and222

visualization and statistical analysis of the results (ANTsR/ANTsPy).223

It is the comprehensiveness of ANTsX that provides several advantages over much of the224

deep learning work that is currently taking place in medical imaging. In other words, various225

steps in the deep learning training processing (e.g., data augmentation, preprocessing) can all226

be performed within the same ecosystem where such important details as header information227

for image geometry are treated the same. In contrast, related work39 described and evaluated228

a similar thickness measurement pipeline. However, due to the lack of a complete processing229

and analysis framework, training data was generated using the FreeSurfer stream, deep230

learning-based brain segmentation employed DeepSCAN27 (in-house software), and cortical231

thickness estimation57 was generated using the ANTs toolkit. The interested researcher must232

ensure the consistency of the input/output interface between packages (a task for which the233

Nipype development team is quite familiar.)234

Although potentially advantageous in terms of such issues as computational efficiency and235

other performance measures, there are a number of limitations associated with the ANTsXNet236

pipeline that should be mentioned both to guide potential users and possibly motivate future237

related research. As is the case with many deep learning models, usage is restricted based on238

training data. For example, much of the publicly available brain data has been anonymized239

through various defacing protocols. That is certainly the case with the training data used for240

the ANTsXNet pipeline which has consequences specific to the brain extraction step which241

could lead to poor performance. We are currently aware of this issue and have provided242

a temporary workaround while simultaneously resuming training on whole head data to243

mitigate this issue. Related, although the ANTsXNet pipeline performs relatively well as244

assessed across lifespan data, performance might be hampered for specific age ranges (e.g.,245

neonates), whereas the traditional ANTs cortical thickness pipeline is more flexible and might246

provide better age-targeted performance. This is the subject of ongoing research. Additionally,247

application of the ANTsXNet pipeline would be limited with high-resolution acquisitions.248

Due to the heavy memory requirements associated with deep learning training, the utility of249
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any resolution greater than 1 mm isotropic would not be leveraged by the existing pipeline.250

However, there is a potential pipeline variation (akin to the longitudinal variant) that would251

be worth exploring where Deep Atropos is used only to provide the priors for a subsequent252

traditional Atropos segmentation on high-resolution data.253

In terms of additional future work, the recent surge and utility of deep learning in medical254

image analysis has significantly guided the areas of active ANTsX development. As demon-255

strated in this work with our widely used cortical thickness pipelines, there are many potential256

benefits of deep learning analogs to existing ANTs tools as well as the development of new257

ones. Performance is mostly comparable-to-superior relative to existing pipelines depending258

on the evaluation metric. Specifically, the ANTsXNet cross-sectional pipeline does well for259

the age prediction performance framework and in terms of the ICC. Additionally, this pipeline260

performs relatively well for longitudinal ADNI data for disease differentiation but not so261

much in terms of the generic variance ratio criterion. However, for such longitudinal-specific262

studies, the ANTsXNet longitudinal variant performs well for both performance measures.263

We see possible additional longitudinal extensions incorporating subject ID and months as264

additional network inputs.265

Methods266

The original ANTs cortical thickness pipeline267

The original ANTs cortical thickness pipeline66 consists of the following steps:268

• preprocessing: denoising56 and bias correction;67269

• brain extraction;58270

• brain segmentation with spatial tissue priors68 comprising the271

– cerebrospinal fluid (CSF),272

– gray matter (GM),273

– white matter (WM),274

– deep gray matter,275

– cerebellum, and276
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– brain stem; and277

• cortical thickness estimation.57278

Our recent longitudinal variant51 incorporates an additional step involving the construction279

of a single subject template (SST)64 coupled with the generation of tissue spatial priors of280

the SST for use with the processing of the individual time points as described above.281

Although the resulting thickness maps are conducive to voxel-based36 and related analyses37,282

here we employ the well-known Desikan-Killiany-Tourville (DKT)35 labeling protocol (31283

labels per hemisphere) to parcellate the cortex for averaging thickness values regionally (cf284

Table 2). This allows us to 1) be consistent in our evaluation strategy for comparison with285

our previous work51,66 and 2) leverage an additional deep learning-based substitution within286

the proposed pipeline.287

Overview of cortical thickness via ANTsXNet288

The entire analysis/evaluation framework, from preprocessing to statistical analysis, is made289

possible through the ANTsX ecosystem and simplified through the open-source R and290

Python platforms. Preprocessing, image registration, and cortical thickness estimation are291

all available through the ANTsPy and ANTsR libraries whereas the deep learning steps are292

performed through networks constructed and trained via ANTsRNet/ANTsPyNet with data293

augmentation strategies and other utilities built from ANTsR/ANTsPy functionality.294

The brain extraction, brain segmentation, and DKT parcellation deep learning components295

were trained using data derived from our previous work.66 Specifically, the IXI,18 MMRR,31296

NKI,17 and OASIS16 data sets, and the corresponding derived data, comprising over 1200297

subjects from age 4 to 94, were used for network training. Brain extraction employs a298

traditional 3-D U-net network44 with whole brain, template-based data augmentation32299

whereas brain segmentation and DKT parcellation are processed via 3-D U-net networks with300

attention gating33 on image octant-based batches. Additional network architecture details301

are given below. We emphasize that a single model (as opposed to ensemble approaches302

where multiple models are used to produce the final solution)40 was created for each of these303

steps and was used for all the experiments described below.304
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Implementation305

Software, average DKT regional thickness values for all data sets, and the scripts to perform306

both the analysis and obtain thickness values for a single subject (cross-sectionally or307

longitudinally) are provided as open-source. Specifically, all the ANTsX libraries are hosted308

on GitHub (https://github.com/ANTsX). The cross-sectional data and analysis code309

are available as .csv files and R scripts at the GitHub repository dedicated to this paper310

(https://github.com/ntustison/PaperANTsX) whereas the longitudinal data and evaluation311

scripts are organized with the repository associated with our previous work51 (https://github312

.com/ntustison/CrossLong).313

314
import ants315
import antspynet316

317
# ANTsPy / ANTsPyNet processing for subject IXI002 -Guys -0828 - T1318
t1_file = "IXI002 -Guys -0828 - T1.nii.gz"319
t1 = ants. image_read ( t1_file )320

321
# Atropos six - tissue segmentation322
atropos = antspynet . deep_atropos (t1 , do_preprocessing =True , verbose =True)323

324
# Kelly Kapowski cortical thickness ( combine Atropos WM and deep GM)325
kk_segmentation = atropos ['segmentation_image ']326
kk_segmentation [ kk_segmentation == 4] = 3327
kk_gray_matter = atropos ['probability_images '][2]328
kk_white_matter = atropos ['probability_images '][3] + atropos ['probability_images '][4]329
kk = ants. kelly_kapowski (s= kk_segmentation , g= kk_gray_matter , w= kk_white_matter ,330

its =45 , r=0.025 , m=1.5 , x=0, verbose =1)331
332

# Desikan -Killiany - Tourville labeling333
dkt = antspynet . desikan_killiany_tourville_labeling (t1 , do_preprocessing =True , verbose =True)334

335
# DKT label propagation throughout the cortex336
dkt_cortical_mask = ants. threshold_image (dkt , 1000 , 3000 , 1, 0)337
dkt = dkt_cortical_mask * dkt338
kk_mask = ants. threshold_image (kk , 0, 0, 0, 1)339
dkt_propagated = ants. iMath (kk_mask , " PropagateLabelsThroughMask ", kk_mask * dkt)340

341
# Get average regional thickness values342
kk_regional_stats = ants. label_stats (kk , dkt_propagated )343344

Listing 1: ANTsPy/ANTsPyNet command calls for a single IXI subject in the evaluation study for
the cross-sectional pipeline.

In Listing 1, we show the ANTsPy/ANTsPyNet code snippet for cross-sectional processing345

a single subject which starts with reading the T1-weighted MRI input image, through the346

generation of the Atropos-style six-tissue segmentation and probability images, applica-347

tion of ants.kelly_kapowski (i.e., DiReCT), DKT cortical parcellation, subsequent label348
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propagation through the cortex, and, finally, regional cortical thickness tabulation. The349

cross-sectional and longitudinal pipelines are encapsulated in the ANTsPyNet functions350

antspynet.cortical_thickness and antspynet.longitudinal_cortical_thickness, re-351

spectively. Note that there are precise, line-by-line R-based analogs available through352

ANTsR/ANTsRNet.353

Both the ants.deep_atropos and antspynet.desikan_killiany_tourville_labeling354

functions perform brain extraction using the antspynet.brain_extraction function. Inter-355

nally, antspynet.brain_extraction contains the requisite code to build the network and356

assign the appropriate hyperparameters. The model weights are automatically downloaded357

from the online hosting site https://figshare.com (see the function get_pretrained_network358

in ANTsPyNet or getPretrainedNetwork in ANTsRNet for links to all models and weights)359

and loaded to the constructed network. antspynet.brain_extraction performs a quick360

translation transformation to a specific template (also downloaded automatically) using the361

centers of intensity mass, a common alignment initialization strategy. This is to ensure362

proper gross orientation. Following brain extraction, preprocessing for the other two deep363

learning components includes ants.denoise_image and ants.n4_bias_correction and an364

affine-based reorientation to a version of the MNI template.34365

We recognize the presence of some redundancy due to the repeated application of certain366

preprocessing steps. Thus, each function has a do_preprocessing option to eliminate this367

redundancy for knowledgeable users but, for simplicity in presentation purposes, we do not368

provide this modified pipeline here. Although it should be noted that the time difference is369

minimal considering the longer time required by ants.kelly_kapowski. ants.deep_atropos370

returns the segmentation image as well as the posterior probability maps for each tissue371

type listed previously. antspynet.desikan_killiany_tourville_labeling returns only372

the segmentation label image which includes not only the 62 cortical labels but the remaining373

labels as well. The label numbers and corresponding structure names are given in the program374

description/help. Because the DKT parcellation will, in general, not exactly coincide with375

the non-zero voxels of the resulting cortical thickness maps, we perform a label propagation376

step to ensure the entire cortex, and only the non-zero thickness values in the cortex, are377
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included in the tabulated regional values.378

As mentioned previously, the longitudinal version, antspynet.longitudinal_cortical_thickness,379

adds an SST generation step which can either be provided as a program input or it can380

be constructed from spatial normalization of all time points to a specified template.381

ants.deep_atropos is applied to the SST yielding spatial tissues priors which are then used382

as input to ants.atropos for each time point. ants.kelly_kapowski is applied to the383

result to generate the desired cortical thickness maps.384

Computational time on a CPU-only platform is approximately 1 hour primarily due to385

ants.kelly_kapowski processing. Other preprocessing steps, i.e., bias correction and de-386

noising, are on the order of a couple minutes. This total time should be compared with 4− 5387

hours using the traditional pipeline employing the quick registration option or 10− 15 hours388

with the more comprehensive registration parameters employed). As mentioned previously,389

elimination of the registration-based propagation of prior probability images to individual390

subjects is the principal source of reduced computational time. For ROI-based analyses, this391

is in addition to the elimination of the optional generation of a population-specific template.392

Additionally, the use of antspynet.desikan_killiany_tourville_labeling, for cortical393

labeling (which completes in less than five minutes) eliminates the need for joint label fusion394

which requires multiple pairwise registrations for each subject in addition to the fusion395

algorithm itself.396

Training details397

Training differed slightly between models and so we provide details for each of these com-398

ponents below. For all training, we used ANTsRNet scripts and custom batch generators.399

Although the network construction and other functionality is available in both ANTsPyNet400

and ANTsRNet (as is model weights compatibility), we have not written such custom batch401

generators for the former (although this is on our to-do list). In terms of hardware, all402

training was done on a DGX (GPUs: 4X Tesla V100, system memory: 256 GB LRDIMM403

DDR4).404

T1-weighted brain extraction. A whole-image 3-D U-net model44 was used in conjunction405
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with multiple training sessions employing a Dice loss function followed by categorical cross406

entropy. Training data was derived from the same multi-site data described previously407

processed through our registration-based approach.58 A center-of-mass-based transformation408

to a standard template was used to standardize such parameters as orientation and voxel size.409

However, to account for possible different header orientations of input data, a template-based410

data augmentation scheme was used32 whereby forward and inverse transforms are used411

to randomly warp batch images between members of the training population (followed by412

reorientation to the standard template). A digital random coin flipping for possible histogram413

matching26 between source and target images further increased data augmentation. The414

output of the network is a probabilistic mask of the brain. The architecture consists of415

four encoding/decoding layers with eight filters at the base layer which doubled every layer.416

Although not detailed here, training for brain extraction in other modalities was performed417

similarly.418

Deep Atropos. Dealing with 3-D data presents unique barriers for training that are often419

unique to medical imaging. Various strategies are employed such as minimizing the number420

of layers and/or the number of filters at the base layer of the U-net architecture (as we421

do for brian extraction). However, we found this to be too limiting for capturing certain422

brain structures such as the cortex. 2-D and 2.5-D approaches are often used with varying423

levels of success but we also found better performance using full 3-D information. This led424

us to try randomly selected 3-D patches of various sizes. However, for both the six-tissue425

segmentations and DKT parcellations, we found that an octant-based patch strategy yielded426

the desired results. Specifically, after a brain extracted affine normalization to the MNI427

template, the normalized image is cropped to a size of [160, 190, 160]. Overlapping octant428

patches of size [112, 112, 112] were extracted from each image and trained using a batch size429

of 12 such octant patches with weighted categorical cross entropy as the loss function. The430

architecture consists of four encoding/decoding layers with 16 filters at the base layer which431

doubled every layer.432

As we point out in our earlier work,66 obtaining proper brain segmentation is perhaps the433

most critical step to estimating thickness values that have the greatest utility as a potential434
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biomarker. In fact, the first and last authors (NT and BA, respectively) spent much time435

during the original ANTs pipeline development66 trying to get the segmentation correct which436

required manually looking at many images and manually adjusting where necessary. This437

fine-tuning is often omitted or not considered when other groups24,25,39 use components of our438

cortical thickness pipeline which can be potentially problematic70. Fine-tuning for this partic-439

ular workflow was also performed between the first and last authors using manual variation of440

the weights in the weighted categorical cross entropy. Specifically, the weights of each tissue441

type were altered in order to produce segmentations which most resemble the traditional442

Atropos segmentations. Ultimately, we settled on a weight vector of (0.05, 1.5, 1, 3, 4, 3, 3) for443

the CSF, GM, WM, Deep GM, brain stem, and cerebellum, respectively. Other hyperparam-444

eters can be directly inferred from explicit specification in the actual code. As mentioned445

previously, training data was derived from application of the ANTs Atropos segmentation68446

during the course of our previous work.66 Data augmentation included small affine and447

deformable perturbations using antspynet.randomly_transform_image_data and random448

contralateral flips.449

Desikan-Killiany-Tourville parcellation. Preprocessing for the DKT parcellation train-450

ing was similar to the Deep Atropos training. However, the number of labels and the451

complexity of the parcellation required deviation from other training steps. First, labeling452

was split into an inner set and an outer set. Subsequent training was performed separately453

for both of these sets. For the cortical labels, a set of corresponding input prior probability454

maps were constructed from the training data (and are also available and automatically455

downloaded, when needed, from https://figshare.com). Training occurred over multiple456

sessions where, initially, categorical cross entropy was used and then subsquently refined457

using a Dice loss function. Whole-brain training was performed on a brain-cropped template458

size of [96, 112, 96]. Inner label training was performed similarly to our brain extraction459

training where the number of layers at the base layer was reduced to eight. Training also460

occurred over multiple sessions where, initially, categorical cross entropy was used and then461

subsquently refined using a Dice loss function. Other hyperparameters can be directly462

inferred from explicit specification in the actual code. Training data was derived from463

application of joint label fusion63 during the course of our previous work.66 When call-464
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ing antspynet.desikan_killiany_tourville_labeling, inner labels are estimated first465

followed by the outer cortical labels.466

Other softwares467

Several R1 packages were used in preparation of this manuscript including R Markdown,10–12468

lme4,7 RStan,6 ggplot2,9 and ggradar2.8 Other packages used include Apple Pages,3 ITK-469

SNAP,2 LibreOffice,4 and diagrams.net.5470
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