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COVID-19 incubation period reflected by delayed solar UV modulation

Laboratory experiments have revealed the meteorological sensitivity of the7

coronavirus disease 2019 (COVID-19) virus. However, no consensus has been8

reached about how outdoor meteorological conditions modulate the virus trans-9

mission as it is also constrained by non-meteorological conditions. Here, we10

find that statistically, non-meteorological factors constrain the growth rate of11

cumulative confirmed cases least when the cases in a country arrive around12

1300–3200. The least-constrained growth rate correlates with the ultraviolet13

flux and temperature significantly (correlation coefficients r=-0.55±0.09 and14

-0.40±0.10 at p < 0.01, respectively), but not with precipitation, humidity, and15

wind. The ultraviolet correlation exhibits a delay of about seven days, pro-16

viding a meteorological measure of the incubation period. Our work reveals a17

seasonality of COVID-19 and a high risk of a pandemic resurgence in winter,18

implying a need for seasonal adaption in public policies.19
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1 Introduction20

A way to predict the COVID-19 transmissions in winter is to quantify the responses of the virus21

survival and transmission to the winter weather conditions. Laboratory experiments revealed22

that the ultraviolet (UV) radiation and air temperature modulate the airborne survival of the virus23

strongly[1, 2, 3]. Meanwhile, several studies have attempted to extract relevant epidemiological24

evidence, e.g., [4, 5, 6, 7], through studying the correlations between the count of confirmed25

cases or mortality and meteorological conditions using data from priorly selected cities. Their26

conclusions, however, are often contradictory. Some attempts did not find the correlation, e.g.,27

[4, 3], whereas the others reported weak or moderate correlations, e.g., [5, 6, 7]. The results are28

not conclusive, mainly because the transmission is constrained by non-meteorological factors29

which can hardly be considered in an appropriate way.30

At the early stage of an uncontrolled outbreak, the infection cases grow exponentially,31

whereas its growth rate is relatively stable, e.g., [8]. Accordingly, here we chose the growth rate32

as an index of the COVID-19 transmission, which is expected to be more susceptible to mete-33

orological conditions than the infection cases. We estimate the growth rate through a sliding34

window regression using the daily count of the accumulative confirmed cases from each county.35

Constrained by insufficient test capability at the early stage, the confirmed cases’ growth might36

not accurately reflect the infection growth. To deal with this problem, we calculate the cor-37

relation between the regressed growth rate and meteorological conditions across all countries38

as a function of the confirmed case count. The range of the accumulative confirmed cases, in39

which the correlation maximizes, is identified as the least-constrained stage. The growth rate40

at this stage is defined as the least-constrained growth rage, and its response to meteorological41

conditions is investigated statistically. As illustrated below, the least-constrained growth rate42

minimizes the contamination from non-meteorological factors, e.g., test capability and artificial43
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controls, and allows revealing meteorological modulations in detail.44

2 Data analyses and results45

This study uses daily cumulative confirmed COVID-19 cases at a country level and daily mete-46

orological variables until 1 September of 2020. The confirmed cases are from COVID-19 Data47

Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins Uni-48

versity, whereas the meteorological variables are extracted from the ERA5 reanalysis dataset49

from the European Centre for Medium-Range Weather Forecasts (ECMWF) (C3S, 2017). The50

meteorological variables analyzed herein include the air temperature at the height of 2 m above51

the surface (land, sea or inland waters), precipitation, relative humidity, wind speed at the height52

of 10 m, downward UV radiation flux at the surface (UV, in the range 250-440 nm), and diur-53

nal temperature range. The daily mean meteorological data were averaged for each country to54

compare with the country-level COVID-19 data. Below, we compare the growth of confirmed55

cases with its theoretical expectation, in an example country in Section 2.1 and statistically56

in Section 2.2, determine the statistical stage modulated most sensitively by weather in Section57

2.3, investigate the geographic distribution of the confirmed case growth and its correlation with58

meteorological factors in Sections 2.4 and 2.5, and diagnose the incubation period in Section59

2.660

2.1 Evolution of the outbreak in an example county: stages of the con-61

firmed case growth62

Fig. 1a displays the cumulative confirmed case number y as a function of time t in for Bulgaria63

as an example. Through a least-square regression, we fit y to an exponential model y = aeb(t−τ)
64

in a 28-day-wide sliding window. Here, τ= 86, 88, ..., 232 day denotes the center of the sliding65

window, a measures the confirmed cases at τ , and the exponent factor b measures the growth66
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rate. The regressed growth rate b is shown in Fig. 1b as a function of time τ . (Besides b, the67

regression yields also a and r2, a measure of the regression goodness equaling to the square68

of the correlation coefficient between y(t) and its regression values as used in the following69

sections. ) The regressed growth rate b can be divided into three stages, labeled as I, II, and70

III and indicated by the blue arrows in Fig. 1. Stages I and III are characterized by decreasing71

growth rates, whereas Stage II is associated with a relatively stable growth rate.72

Theoretically, outbreaks of infectious diseases, e.g., [8, 9, 10], are characterized by two73

phases: the uncontrolled first phase showing stable exponential growth followed by a second74

phase with a decreasing growth rate usually after effective artificial controllers [11, 12]. The75

two-phase theoretical growth is sketched as the green dashed line in Fig. 1b, which are largely76

parallel to the growth of the confirmed case (black line) in Stages II and III, and can explain77

largely these stages. Stage II reflects the uncontrolled transmission of COVID-19, whereas78

Stage III reflects the decline phase where the decreasing growth rate could be explained as79

responses to artificial interventions or controllers, e.g., travel restrictions and changes in human80

behaviors, e.g., [13, 14]. However, in Stage I in Fig. 1b, the black line is not parallel to81

the green. In the beginning of the outbreak, infections cannot be confirmed timely and can82

accumulate until sufficient tests. The decreasing growth rate of the confirmed case, biased from83

the theoretical growth, might reflect more the delayed sufficient test capability than the infection84

growth.85

Compared with Stages I and III, Stage II is characterized by a relatively stable growth rate86

reflecting uncontrolled transmissions confirmed timely and sufficiently. Therefore, we assume87

that in Stage II the growth is modulated most sensitively by the weather and will use Stage II88

for exploring the impacts of weather. In practice, instead of delimiting Stage II for each country89

individually, we explore Stage II statistically for all countries in the following subsection.90
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2.2 Statistical evolution of the outbreak91

The previous section defined a daily growth rate of the cumulative confirmed COVID-19 cases92

in an example country through regression and used the growth rate to describe the evolution of93

the outbreak. We further implement the regression for every country, yielding a, b, and r2 as94

functions of τ . Fig. 2a and 2b display b against a and r2 from the 50% most developed countries,95

respectively. These countries are characterized by the gross domestic product per capita 201996

above the median of all countries, 6200 United States dollars, and therefore are presumably least97

subject more to the socioeconomic factors [15, 16] as discussed further in Section 2.6. Here,98

we use a rather than the date t to coordinate the growth rate since the outbreaks do not occur99

at the same date in different countries. In Fig. 2b, b exhibits a dependence on r2 at r2 <0.9.100

Accordingly, we exclude b values associated with r2 <0.9 from the following analyses.101

In Fig. 2a, the growth curve b(a) does not clearly exhibit the three-stage shape of b(τ)102

in Fig. 1b but looks more complicated. The curve minimizes at a=102, 103–2×103, 104 and103

105. These minima might be signatures of data manipulation, e.g., [17], that some governments104

might try to ”control” the infection cases to cross the orders of magnitude by manipulating the105

data. Neglecting these minima, we divide largely the growth curve b(a) into four stages. The106

final stage is characterized by a decreasing rate b(a), corresponding to Stage III of the b(τ)107

growth in Fig. 1b, and is labeled here also as Stage III. The other stages of b(a) are labeled108

as I-, I, and II, respectively. Stage I- is associated with the small number of infection at an the109

very beginning, and the growth might be susceptible to uncertainties and therefore is excluded110

from the following analyses. Stage I is characterized largely by a decreasing growth rate b(a),111

corresponding to Stage I of b(τ) in Fig. 1b. We assume that the b(a) in-between Stages I and112

III correspond to Stage II in Fig. 1b where the growth is relatively stable and reflects timely113

and sufficiently confirmed uncontrolled transmissions. Assuming that in Stage II the growth114

is modulated most sensitively by weather, we determine the statistical range of Stage II in the115

6 of 22

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 15, 2022. ; https://doi.org/10.1101/2020.10.13.20183111doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.13.20183111
http://creativecommons.org/licenses/by-nc/4.0/


COVID-19 incubation period reflected by delayed solar UV modulation

following subsection.116

2.3 The statistical stage modulated most sensitively by weather117

The statistical Stage II can be denoted as ac · S−1 < a < ac · S where S represents the half-118

width of the stage and ac represents the stage center. We temporally assign S=100.2 and ac= 102,119

search the maximum b(a) in the range ac · S−1 < a < ac · S for each country, and calculate its120

correlation coefficient rUV with the UV flux (as detailed in the following subsections) across all121

countries. Similarly, we search the maximum correlation coefficient rUV in ac ·S−1 < a < ac ·S122

for ac= 102.1,102.2,..., and 104.0, at S=100.2. The absolute value |rUV | as a function of ac is123

displayed as the solid blue line in Fig. 3, which maximizes between ac=2000–4000. The124

maximum implies that at this stage of a the growth is modulated statistically strongest by the125

meteorological conditions.126

Therefore, we take 2000 × 10−0.2 < a < 2000 × 100.2 (approximately 1300< a <3200)127

as the statistical Stage II. In this a range, the maximum growth rate b(a) in each country is128

identified, referred to as the least-constrained growth rate bm. The red crosses in Fig. 2a display129

the bm of all countries, associated with a median a=1424.130

Note that the conclusions of the current work are not subject to our chooses S=100.2 and131

ac = 2000, learn from the same Figures as presented in the current work but for S=100.1 and132

100.3, and for ac=1500 and 2500 (not shown).133

2.4 Geographical distribution of the daily growth rate in percentage134

According to our regression model, the least-constrained growth rate bm is an exponent and135

ebm measures the ratio of the regressed number of confirmed cases of one day over that of the136

previous day. Therefore, g := (ebm − 1) ∗ 100% is the daily growth rate by percentage. When137

bm ≈0, bm is already a first-order approximation of g due to g = bm + O(b2m) ≈ bm, since eb138
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can be expanded into Taylor polynomial eb =
∞∑
n=0

b
n!

= 1 + b + O(b2). Here, O(b2) denotes a139

variable with absolute value at most some constant times |b2| when b is close enough to 0. The140

following analyses are based on g. The geographical distribution of g is shown in Fig. 4. The141

growth rate exhibits obvious spatial clusters, e.g., the distinct difference between east and west142

Europe.143

2.5 Correlations of the daily growth rate with the meteorological factors144

Fig. 5 presents the correlation analyses between the least-constrained growth rate g and six145

meteorological factors, i.e., (a) the ultraviolet (UV) flux in the range 250-440nm, (b) the air146

temperature at 2m above the surface, (c) the diurnal temperature range, (d) the relative humidity,147

(e) the wind speed at the height of 10m, and (f) the precipitation. The meteorological factors148

are sampled and averaged in a 28-day-wide window centering at 7 days before the center of the149

growth rate’s sampling window. The 7-day displacement is used to deal with the COVID-19150

incubation period, e.g., [18]. We determine the length of the incubation period in the following151

subsection.152

The growth rate exhibits a significant correlation with the UV flux and the air temperature153

(r=-0.55±0.09 and -0.40±0.10 at p <<0.01, in Fig. 5a and 5b, respectively), but not with154

the other meteorological conditions, namely, wind speed, relative humidity, diurnal temperature155

range, and precipitation (p >=0.05, Fig. 5c–5f). According to the regressions, an increase in156

UV flux by 1 W/m2 is associated with a decrease in the growth rate by 0.36±0.15% per day,157

and an increase of the temperature by 1◦C is associated with a decrease in the growth rate by158

0.19±0.12% per day.159
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2.6 A cross-correlation analysis suggests an incubation period160

The previous subsection uses a time displacement δt = 7day between the sampling window of161

the growth rate and that of the meteorological factors to deal with the incubation period. To162

determine the incubation period, we calculate the absolute correlation coefficient of the growth163

rate with the UV flux |rUV |, as a function of the displacement δt, displayed in Fig. 6.164

In Fig. 6, |rUV | maximizes at a displacement of seven days, indicating a 7-day delayed165

response of the growth to UV flux. A clinical study [19] suggested a mean of an incubation166

period of 6.4 days, while a cross-sectional and a forward follow-up analysis [16] reported a167

median incubation of 7.76 days. These measures of the incubation period are comparable to168

the 7-day delay diagnosed herein. Our results provide evidence of the incubation period from169

analyzing confirmed cases instead of controlled experiments from clinical studies.170

All results presented above are based on 50% of the most developed countries. For compar-171

ison, we conducted the same investigations with data from all countries (not shown), and found172

that the incubation period signature weakened. The weakening could be attributed to the so-173

cioeconomic factors and potentially less timely tests in less developed countries, e.g., [15, 16].174

The delayed tests could reshape the cross-correlation analysis and bias the quantification of the175

meteorological modulation.176

3 Discussions and conclusions177

Above we illustrate that the least-constrained growth rate exhibits obvious spatial clusters, sig-178

nificant correlations with the meteorological conditions (UV flux and temperature). The UV179

correlation exhibits a delay of about seven days, which is explained as a signature of the incu-180

bation period. While spatial clusters and the correlation might be attributed to socioeconomic181

factors’ spatial difference [15, 16], the delay cannot. The temporal variations of socioeconomic182
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factors are at scales much longer than the 7-day delay, which, therefore, can neither modu-183

late the COVID-19 nor respond to the UV flux at seven days. On the other way around, the184

presence of the incubation period signature indicates the robustness of the UV modulation on185

transmission.186

There are at least three factors through which meteorological conditions can modulate the187

transmission. The first is human behaviors. When the temperature is low, humans typically188

spend more time indoors, with reduced social distancing and less ventilation than outdoors.189

As an example, schools are places of enhanced influenza transmission [20] for intense indoor190

activities. The second factor is the immune system of susceptible hosts. Solar radiation drives191

changes in the human immune system by modulating melatonin [21] and/or vitamin D [22, 23,192

24].193

The last but might be the most important factor is the virus’s survival, namely the UV’s viru-194

cidal effect. Evidence has revealed that aerosols are a medium of transmission of COVID-19,195

as the virus remains active on the surfaces for several hours to days [11]. Intense solar radiation196

may inactivate the virus on the surface through the physical properties (i.e., shape, size) and197

the virus’s genetic material [25, 2, 26]. Simulation results revealed that 90% of the virus could198

be inactive under summer daytime for 6 minutes, whereas the virus becomes inactive for 125199

minutes under night conditions [1]. In addition, high temperature shortens the virus survival200

time [27, 28, 3]. On the opposite, low temperature favors prolonging survival on infected sur-201

faces and aerosols, which promotes the diffusion of the infection. The modulation of relative202

humidity, on the other hand, is negligible, as supported by laboratory experiments[1], which203

is different from the sensitive modulation on the influenza virus survival [29] and transmission204

[30].205

The 7-day-delayed response to the UV flux (Fig. 6) reflects the incubation period, whereas206

the temperature response does exhibit a delay. A potential explanation is that temperature varia-207
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tion is characterized by a temporal scale longer than the incubation period, and therefore cannot208

resolve the incubation period. Another potential explanation is that the temperature might not209

be an independent drive of the transmission but a response to solar radiation. The tempera-210

ture correlates significantly with the UV flux (r=0.86±0.03 at p=1.3×10−17). We carried out211

a canonical-correlation analysis, e.g., [31], between the growth rate and the UV flux and tem-212

perature, resulting in a canonical correlation coefficient cUV,T=-0.58±0.08. The canonical cor-213

relation coefficient is close to the UV correlation coefficient rUV =-0.55±0.09 (Fig. 5a), which214

means that using both the UV and temperature as predictors can not explain more variance than215

using the UV alone.216

The UV impact can drive a seasonality of COVID-19 transmission and explain the following217

geographic dependence of COVID-19. (1) The mortality exhibits a latitudinal dependence [24].218

(2) The late outbreak in Africa and arid central Asia is attributable to intense UV flux due to the219

low cloud fraction prior. (3) The onset of the Asian summer monsoon, increases clouds in early220

May [32] and yields low UV flux, which may account for the late outbreak in India and many221

southeastern Asia countries until early May. (4) The decrease in UV and temperature during222

the coming austral winter can contribute to the sharp increase in South America. For example,223

both the confirmed and dead cases in Brazil ranked second in the world since 13 June, and the224

transmission enhanced at high latitudes, such as North America and Europe November 2020.225

The current study provides evidence to support the hypothesis that the UV radiation and226

air temperature drive the COVID-19 transmission [24]. Our results also imply a seasonality of227

COVID-19 and provide a meteorological measure of the incubation period. The virus transmits228

more readily during winter and during the global monsoon season, which impacts about 70%229

of the global population [33]. Accordingly, we predict a high possibility of a resurgence in the230

boreal winter and suggest adapting the public policy according to the seasonal variability.231
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Figure 1: (a) Cumulative confirmed cases y as a function of time t and (b) its growth rate b
against the regression time parameter τ , for Bulgaria as an example. The growth rate b (black
line in (b)) is regressed according to the model y = aeb(t−τ) in a 28-day-wide sliding window
centering at τ=86, 88, ..., 152, where a represents the model initial confirmed cases (namely, the
regressed y value at τ ). The growth of confirmed cases could be divided into three stages: Stages
I, II and III, sketched by blue symbols in (b). In Stage II, the growth is stable (0.035< b <0.045),
whereas in the other two, b decreases by more than 0.02. In Stages II and III but not in Stage
I, the real growth is largely consistent with the ideal evolution that is sketched as the green line
in (b) according to, e.g. [11, 12]. We attribute the discrepancy in Stage I to an insufficient test
capability at the early stage. The red symbols denote the least-constrained growth rate and its
sampling window (see Sections 2.1–2.3 for details).

17 of 22

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 15, 2022. ; https://doi.org/10.1101/2020.10.13.20183111doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.13.20183111
http://creativecommons.org/licenses/by-nc/4.0/


COVID-19 incubation period reflected by delayed solar UV modulation

0.90.80.70.60.5

0.01

0.02

0.03

0.04
0.05
0.06
0.07
0.08

(b)

102 103 104 105

10-2

10-1 (a)

I- I II III

Figure 2: The growth rate b of the confirmed cases against (a) the regressed initial confirmed
cases a and (b) the goodness r2 of the exponential regression as instanced in Fig. 1. In each
panel, one dot corresponds to one sliding step of the regression; and the bold black solid line and
gray shadow illustrate the median and the interquartile range, respectively. In (a), the green line
sketches the ideal evolution according to, e.g. [12]; the blue symbols sketch different Stages of
the evolution of the outbreak among which Stages I, II and III are the statistical estimations of
Stages I, II and III instanced in Fig. 1. Stage II is centering at the red dashed line ac =2000,
determined in Section 2.3. In (a), the red crosses denote the least-constrained growth rate bm,
namely, the maximum b in Stage II for each country. In (b), the red line displays the threshold
value θr2 =0.9 in (b) used in selecting bm. See Section 2.2 for the details.
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Figure 3: The absolute correlation coefficients |r| (between bm and two meteorological factors)
and valid sampling size N as functions of ac. The black line represents the ac used for calculat-
ing the bm in the current work. See Section 2.3 for the details.
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5 10 15

Figure 4: Global distribution of the daily growth rate g of COVID-19 confirmed cases. Each
point represents one country/region. Both the color and the size of the symbols represent the
growth rate. The growth rate is estimated through a sliding window regression detailed in
Section 2.1 and an optimization in Section 2.3. Here, only 50% of most developed countries are
included (according to the gross domestic product per capita 2019).
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Figure 5: Correlation between the daily growth rate g and six meteorological variables: (a) the
ultraviolet (UV) flux in the range 250-440nm, (b) the air temperature at 2m above the surface,
(c) the diurnal temperature range, (d) the relative humidity, (e) the wind speed at the height of
10m, and (f) the precipitation. In each panel, one cross represents one country, corresponding
to one red cross displayed in Fig. 2a; the solid red line presents a robust regression to a linear
model g = β1 ∗ x+ β0 through the least absolute deviations method, and the dashed and dotted
lines display the significance level α = 0.05 and 0.01, respectively. Here, x denotes one of
the above six variables, and β1 and β0 denote the parameters to be determined. The regression
results are displayed in red on the bottom of each panel, while the Pearson correlation coefficient
r is printed on the upright conner, in the format of r±∆r[rl, ru]. Here, r and ∆r are the mean
coefficient and its standard deviation estimated through a bootstrapping method, and rl and ru
are the lower and upper bounds for a 95% confidence interval. Also displayed on the top is the
p-value for testing the hypothesis of no correlation.
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Figure 6: The absolute correlation coefficients |r| between the growth rate g and two mete-
orological factors, the UV flux and temperature T , as functions of the time displacement δt,
and their slopes calculated using the centered differencing method. The shadow illustrates one
standard deviation of the slopes below and above their average. See Section 2.6 for the details.
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