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The heterogeneity of human populations is a major challenge to mathematical descriptions of
infectious disease outbreaks. Numerical simulations are therefore deployed to account for the many
factors influencing the disease spreading dynamics. Yet, the results from numerical simulations are
often as complicated as the reality, leaving us with a sense of confusion about how the different
factors account for the simulation results. Here, using a multi-type branching together with a graph
tensor product approach, I derive a single equation for the effective reproductive number of an
infectious disease outbreak. Using this equation I deconvolute the impact of crowd management,
contact heterogeneity, testing, vaccination, mask use and smartphone tracing app use. This equation
can be used to gain a basic understanding of infectious disease outbreaks and their simulations.

Infectious disease outbreaks take place in the back-
ground of a heterogenous population of susceptible in-
dividuals. A key source of heterogeneity is the variabil-
ity in the number of potentially transmitting contacts.
For airborne diseases like the ongoing COVID-19 out-
break, the relevant contacts are close physical proxim-
ity for a certain amount of time. Simulations of people
movement within a city has shown that the number of
proximity contacts within a day has a broad distribution
across individuals [1]. Another source of variability are
age groups, which dictate the mixing patterns between
children, adults and the elderly [2]. Finally, the pattern
of adherence to intervention guidelines to manage the
disease introduces heterogeneity in the susceptibility of
individuals to be infected [3].

These heterogeneities may sound too complex to be
handle by means of analytical descriptions, leaving us
with the choice of numerical simulations. Numerical sim-
ulations are indeed the right context to introduce all
kinds of parametrizations of spreading processes on het-
erogenous populations [3-5]. Yet, we would also like to
have a basic understanding of the problem under con-
sideration, albeit sacrificing numerical precision. Here I
demonstrate that a combination of multi-type branch-
ing process theory and graph tensor products allow us
to disentangle the contributions of different factors and
containment strategies to the outbreak dynamics.

The susceptible, infected and recovered (SIR) model
is a good representation of infectious disease outbreaks
when the recovery from the disease confers immunity. In
the case of COVID-19 it is not clear how long a person
remains immune to the disease after infection, but it is
expected to be at least of the order of months. In the SIR
model the individuals of a population can be susceptible
to acquire the disease, infected and as a consequence in-
fectious (with some probability) or dead/recovered from
the disease. Infected individuals can transmit the disease
to susceptible individuals when they are in contact. In
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the case of COVID-19, contact means physical proximity
for a certain amount of time. In the case of HIV con-
tact means sexual intercourse, syringe-needle sharing or
mother giving birth baby. Here is were the population
heterogeneity starts to kick in.

Some individuals may visit crowded places during a
day, getting in contact with several people. Other indi-
viduals may work at home and get in contact mostly with
their house mates. With relevance to HIV or other sex-
ually transmitted diseases, there is a broad distribution
in the number of sexual partners of individuals across a
population [6]. T will call this contact heterogeneity. The
number of physical proximity contacts in a day, or the
number of sexual partners within a year, can vary from
zero to 100s and it is better represented by a probability
distribution.

Individuals are also different regarding their percep-
tion about the effectiveness of containment strategies en-
forced or suggested by the relevant authorities. In the
context of COVID-19, face masks and smartphone trac-
ing apps are not in use by all individuals. In the context
of HIV and other sexually transmitted diseases there are
several sources of heterogeneity, including sexual orien-
tation, condom use, drug use, among other factors. I will
call this type heterogeneity, where a type can be any prop-
erty taking values over a discrete set of small size that
can have an impact on the infectious disease dynamics.
The types are characterized by their frequency in the
population and the mixing patterns between individuals
according to type.

Another potential source of variability is the disease
dynamics within a given individual, from the time of re-
ceiving the infection to recovery. This dynamics could
be, in general, correlated with the contact or type het-
erogeneities. Here I focus on the contact and type het-
erogeneity and assume that the disease dynamics within
individuals is uncorrelated from the contact and type het-
erogeneity. In this case the disease transmission dynam-
ics from an infected to a susceptible individual is char-
acterized by the generating time, denoted by 7, defined
as the interval from the time of infection of an individ-
ual to the time it transmit the disease to a susceptible
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individual. T will denote by g(7) the probability density
function of the generating time.

Using well stablished mathematics from the theory of
multi-type branching processes, I have previously calcu-
lated the expected number of infected individuals of in-
fectious disease outbreaks on heterogeneous populations
[7]. In a nutshell, the multi-type formalism replaces the
average reproductive number, an scalar, by a matrix of
reproductive numbers, making an distinction between pa-
tient zero an any other infected individual. The average
reproductive number matrix for patient zero has elements

Ry = @Teab (1>

where a and b are indexes over the types, (8) is the aver-
age contact rate in the population, 7y is the recovery rate,
r is the probability of infection transmission and ey, is
the probability that an individual of type a reaches a
type b individual upon contact. For infected cases other
than patient zero one needs to take into account that the
disease spreading biases the disease transmission to in-
dividuals with a higher contact rate. The patient zero
can be thought as an individual selected at random from
the population. Any other infected individual will not
be selected at random, but it will be found with a prob-
ability proportional to its contact rate: S/N(f3), where
N is the population size. Once infected, the individual
found by contact will engage in new contacts at a rate 3.
Therefore, the average reproductive number matrix for
patients other than patient zero has elements
s _
oo = gy .
R gives the average number of infectious at the first
generation, those generated by patient zero. RR gives
the average number of infections at the second generation
and RRY1! gives the average number of infections at the
d generation. The actual time when an infected case
at generation d becomes infected equals the sum of d
generation times and it has a probability density function

g*%(t), where the symbol * denotes convolution (g*¢ =

fot g*“@=Y(1)g(t — 7)dr). Therefore, the average number
of new infected individuals at time ¢ is given by (equation
(36) in Ref. [7])

D

=Ny (RRd_l)ab g*4(t) (3)

ab d=1

where N, is the number of patients zero of type a and D is
the maximum generation, when the disease transmission
ends.

If infected individuals become infectious at a rate «
and get recovered at rate 7, then the probability of dis-
ease transmission upon contact between an infected and
a susceptible individual is given by [7]

«
a+y

T =

(4)

and the probability density function of the disease trans-
mission times is exponential

1

—(a+y)T
e 5
( )

g(t) =

Notice that, when the rate of becoming infectious is very
high (a > ), disease transmission is almost certain and
most disease transmissions will take place in a time scale
of the order of 1/a.

Under the assumptions made from (1) to (5), equation
(3) has two different limiting behaviours depending on
the parameter

o=—=— (6)

where p is the largest eigenvalue of R [7]. When p > 1
and 6 > 1, then for (A + p)t < 6 the number of new
infectious grows exponentially according to

I(t) ~ elp—1D)(a+7)t (7)

In contrast, when 6 < 1, then for (A + p)t > 6 the
number of new infectious grows as a power law with an
exponential cutoff

I(t) ~ tP~te=(atmt (8)

These results tell us that the outbreaks dynamics is
mostly determined by the largest eigenvalue of the re-
productive number matrix R and the maximum number
of generations D the outbreak goes through. I have al-
ready made the point that a lockdown is translated into
a small value of D, leading to the manifestation of the
power law growth with an exponential truncation [8, 9].
According to equation (8) this behaviour persist regard-
less of the type heterogeneity, provided 8 < 1. Here I
will focus on the impact of heterogeneities on the largest
eigenvalue p.

The type mixing matrix, with elements ey, can be
represented by a directed weighted graph with loops. A
directed edge (arc) will be drawn from type a to type b
whenever ey, > 0. Loops account for the fact that in-
fected individuals of a given type could infect susceptible
individuals of the same type. The arcs have weights e,
indicating the probability that, starting from a type a,
there is a type b at the other end. Figure 1 provides ex-
amples of the type graphs associated with vaccination,
mask use or smartphone use. In each case there are two
types: vaccinated or not, wears mask or does not, smart-
phone tracing app user or not. The associated mixing
matrices are 2 X 2 matrices and it is straightforward to
calculate the largest eigenvalue. The challenge begins
when we consider a combinations of those or other pop-
ulation stratifications at once. We would have to include
several types and deal with matrices of largest dimen-
sion, making an analytical description cumbersome and
prompting calculation errors.
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Yet, if the different stratifications are not correlated
the problem can be tackle with the use of graph ten-
sor products. Under the assumption of independence,
the type graph taking into account n independent pop-
ulation stratifications can be represented by the graph
tensor product of each independent stratification

G=GDxG? x...x g™ (9)

An example is shown in Fig. 1. In turn, the type mixing
matrix of graph G can be written as a Kronecker product
of the type mixing matrices of graphs G,

e=eM xe® x...xeM (10)

Here comes the trick. The eigenvalues of the Kronecker
product of two matrixes are given by the pairwise product
of the eigenvalues of each matrix (Theorem 13.12, [10]).
An obvious corollary of this theorem if that the largest
eigenvalue of e is equal to the products of the largest
eigenvalues of the e,

A=AAy---A, (11)

where A; denotes the largest eigenvalue of e, Finally,
the largest eigenvalue of R in equation (2) is given by

(B
7= B

We can use equation (12) to estimate the effective-
ness of mixed strategies to contain an infectious disease
outbreak. To illustrate how it is done, let us consider
the case of a population where crowd management, test-
ing, vaccination, mask use and smartphone tracing apps
have been deployed. Crowd management alters the dis-
tribution of 8 across the population and its effect can be
represented by the trasnformation

B (8
B By

where 0 < ¢ < 1 is the reduction in contact heterogene-
ity due to the crowd management. Testing will increase
the rate at with infected individuals are removed from
the disease transmission chain. Assuming that testing is
done at rate £ (test reports per person per unit of time),
then the probability of disease transmission upon contact
should be updated to

T‘A1A2 cee An (12)

(13)

o
r= m (14)

Vaccination can be modelled by the type graph G; in
Fig. 1 and the associated type mixing matrix

01—-w
e(l){()lv] (15)

where v is the fraction of vaccinated individuals in the
population. In this case

A=1-v (16)

G, . G, < G,

O
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FIG. 1. Type graphs for vaccination (G1), mask use (G2),
smartphone tracing app use (G3) and their graph tensor prod-
uct (G1 X G2 x G3). In every case open circles represent in-
dividuals that are not covered by the containment strategy.
Square are vaccinated individuals, symbols with a diagonal
line are individuals that wear mask and solid symbols are in-
dividuals that use the smartphone tracing app

O O

Mask use is modelled by the type graph G5 in Fig. 1 and
the associated type mixing matrix

(2)_ 0 al(l—m)
e = aom 1—m (17)

where m is the fraction of individuals that wear mask,
0 < ay < 1 is the attenuation of the disease transmission
from a mask user to a non-user, and 0 < ag < 1 is the
attenuation of the disease transmission from a non-mask
user to a user. Here we have assumed that there is no
disease transmission between mask users. In this case the
largest eigenvalue equals to

_1=m++/(1—=m)%+4m(l — m)agay

Ao 5

(18)

Finally, smartphone tracing app use is modelled by the
type graph G35 in Fig. 1 and the associated type mixing

matrix
@_101-u
€ _[u 1—u} (19)

where u is the fraction of individuals that use the smart-
phone tracing app. Here we have assumed that there is
no disease transmission between smartphone app users.
This is because, once a smartphone app user test pos-
itive for the disease, any forward transmission to other
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FIG. 2. Largest eigenvalue as a function of the relevant pa-
rameter for the listed containment strategies.

smartphone tracing app users is halted. In this case the
largest eigenvalue equals to

_ 1—u+ /(1 —u)?+4u(l —u)

As 5

(20)

Figure (2) shows the largest eigenvalue of the different
containment strategies as a function of the fraction of
individuals subject to the intervention (vaccinated, mask
user, smartphone tracing app user). It is evident that the
largest eigenvalues associated with mask use and smart-
phone tracing app use are concave functions of the corre-
sponding users fraction. The latter implies that for small
user fractions there is not much reduction of the largest
eigenvalue. These containment strategies requires that
many individuals become users. For example, 50% of
mask users will reduce the reproductive number by just
20%. Another important observation is that, based on
the assumptions make here, mask use is more effective
that smartphone tracing app use. This is because mask
use reduces the probability of transmission between mask
users and non-users, while the smartphone tracing app

does not.

Now we proceed to combine the different containment
strategies. Substituting equations (13)-(20) into equation
(12) we finally obtain

—c<62>7a —v
P Graryrel Y
L—m+ /(1 —m)2+4m(1 —m)aga;
2
1—u+ /(1 —u)?+4u(l —u)

: (21)
This master equation can be used as a starting point to
obtain a comprehensive understanding of how interven-
tion strategies impact the expected reproductive number.
In the absence of contact heterogeneity ({3%) = (3)?), an
instantaneous rate of becoming infectious (o > ) and
no interventions (¢ = 1, v =0, m =0, u = 0, £ = 0),
we obtain p = Ry = (8)/7, which is the basic reproduc-
tive number of the standard SIR model. Due the con-
tact heterogeneity Ry underestimates p in the absence
of interventions. In the present of multiple containment
strategies, we can use (21) to estimate the aggregate im-
pact. For example, combining a 50% of mask users with
a 50% of smartphone tracing app users will reduce the
reproductive number by about a half. Add to that a 50%
vaccination and it will reduce the reproductive number
by about a third.

In conclusion, using a multi-type branching together
with a graph tensor product approach I have derived an
equation for the expected reproductive number of an in-
fectious disease as a function of the parameters of the
disease outbreaks and under the action of multiple con-
tainment strategies.
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