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Abstract 

Background 

The COVID-19 epidemic of 2019-20 is due to the novel coronavirus SARS-CoV-2.  

Following first case description in December, 2019 this virus has infected over 10 million 

individuals and resulted in at least 500,000 deaths world-wide.  The virus is undergoing 

rapid mutation, with two major clades of sequence variants emerging.  This study 

sought to determine whether SARS-CoV-2 sequence variants are associated with 

differing outcomes among COVID-19 patients in a single medical system.  

 

Methods 

Whole genome SARS-CoV-2 RNA sequence was obtained from isolates collected from 

patients registered in the University of Washington Medicine health system between 

March 1 and April 15, 2020.  Demographic and baseline medical data along with 

outcomes of hospitalization and death were collected. Statistical and machine learning 

models were applied to determine if viral genetic variants were associated with specific 

outcomes of hospitalization or death. 

 

Findings 

Full length SARS-CoV-2 sequence was obtained 190 subjects with clinical outcome 

data. 35 (18.4%) were hospitalized and 14 (7.4%) died from complications of infection. 

A total of 289 single nucleotide variants were identified. Clustering methods 

demonstrated two major viral clades, which could be readily distinguished by 12 
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polymorphisms in 5 genes.  A trend toward higher rates of hospitalization of patients 

with Clade 2 was observed (p=0.06). Machine learning models utilizing patient 

demographics and co-morbidities achieved area-under-the-curve (AUC) values of 0.93 

for predicting hospitalization. Addition of viral clade or sequence information did not 

significantly improve models for outcome prediction. 

 

Conclusion 

SARS-CoV-2 shows substantial sequence diversity in a community-based sample. Two 

dominant clades of virus are in circulation. Among patients sufficiently ill to warrant 

testing for virus, no significant difference in outcomes of hospitalization or death could 

be discerned between clades in this sample. Major risk factors for hospitalization and 

death for either major clade of virus include patient age and comorbid conditions.   
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Introduction 

Coronaviruses are a group of enveloped, non-segmented, single-stranded, positive-

sense RNA viruses that are capable of infection in humans and animals 1. SARS-CoV 

and MERS-CoV are two coronaviruses that have previously resulted in large-scale 

pandemics 2.  COVID-19, the disease caused by the coronavirus SARS-CoV-2, has 

affected over 10 million people and resulted in over 500,000 deaths worldwide in a 

seven-month period beginning in December 2019 (https://coronavirus.jhu.edu/map.html, 

accessed 7/31/20).  

 

Clinical outcomes of COVID-19 vary significantly.  Overall, worldwide mortality is 

approximately 6% of clinically confirmed cases, while hospitalization rates in the US 

average approximately 15% of such cases (https://coronavirus.jhu.edu/map.html) (although 

given the high prevalence of asymptomatic or unreported infections, these values likely 

overestimate mortality and hospitalization rate substantially 3).  While age and comorbid 

conditions have been identified as risk factors for hospitalization and death 4-6, 

outcomes appear variable even among large populations.  For example, at present, 

comparing outcomes from two large states in the US (New York and California), the 

former has a nearly 8% mortality rate among confirmed cases compared with a 3.4% 

rate in the latter (https://coronavirus.jhu.edu/map.html).  Rates of hospitalization also differ 

substantially between regions. 
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SARS-CoV-2 is ~30kb in length and contains 16 open reading frames (ORFs) 7,8.   

Despite its very recent emergence as a viral pathogen, SARS-CoV-2 has undergone 

rapid mutation.  The Nextstrain sequencing consortium 9 has identified 2785 variants, 

while the GISAID initiative has collected over 50,000 full length sequences as of 6-28-

20 10-12.  Analysis of these sequences reveals 5 (Nextstrain) or 6 (GISAID) sequence 

clusters, with as many as 18 new mutations in each cluster distinct from the original 

SARS-CoV-2 virus.[6]   

 

Viral genetic variation plays an important role in pathogenicity and virulence in other 

viruses, such as influenza 13.  In this study, we sought to determine if specific viral 

sequence variants are associated with better or worse clinical outcomes in COVID-19, 

by analyzing the clinical course of a cohort of patients within a single medical system for 

whom both full-length viral sequence data and clinical outcome data were available. 

  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.09.24.20201228doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.24.20201228


 

 

Results 

Study population characteristics 

Full length SARS-CoV-2 sequence was obtained from 283 patients; clinical history 

within the UW Medicine system was available from 190 of these. 35 (18.4%) were 

hospitalized and 14 (7.4%) died from complications of the infection. Clinical 

characteristics of this cohort are summarized in Table I.  The mean age of all COVID-19 

patients, regardless of hospitalization status, was 53.4 (range 16-95), 51.1% of patients 

were male, and 14.8% came from a skilled nursing facility (SNF). Of all patients, 56.3% 

were white, 11.6% Black, 11.1% Asian, 1.6% American Indian/Alaskan Native, 1.1% 

Native Hawaiian/Pacific Islander and 18.2% other race or ethnicity. The most common 

comorbidities seen in our patient cohort were hypertension (34.1%), history of cancer 

(18.4%), cardiovascular disease (CVD) (18.4%), diabetes (16.8%), asthma (12.4%), 

and hypothyroidism (12.4%). Less prevalent were chronic kidney disease (CKD) (8.1%), 

chronic heart failure (CHF) (6.5%), chronic obstructive pulmonary disease (COPD) 

(4.9%), a history of deep venous thrombosis (DVT) (4.3%), and previous myocardial 

infarction (MI) (3.2%). With regard to medication use, 15.8% of all COVID patients were 

taking corticosteroids or immunomodulatory therapy, 20.1% were taking an angiotensin 

converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB), and 10.9% 

were on chronic anticoagulation. 10.0% of patients were current smokers.  

 

When stratified between hospitalized and non-hospitalized patients, advanced age, 

admission from a skilled nursing facility, and a history of either HTN, CHF, CVD, CKD, 

and a history of DVT or cancer were significantly associated with hospitalization (p-
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values <0.001 - 0.02). Other characteristics that were associated with hospitalization 

included anti-coagulated status, utilization of an ACE inhibitor or ARB, and use of 

corticosteroid or immunomodulatory therapy (p-values <0.001 - 0.04). Notably, 

comorbidities of diabetes and known tobacco history was not significantly associated 

with hospitalized status (Table 1). 

 

Viral sequence variants 

 

Full-length sequence was obtained from 190 samples acquired from UW Medicine sites 

in Seattle Washington between 3/1/20 and 4/15/20.  Relative to reference SARS-COV-2 

sequence, these samples in aggregate showed 289 sequence variants (283 SNPs, 6 

insertion/deletion, Figure 1).  Most variants were present with frequency less than 5%. 

163 of the sequence variants were missense mutations, 84 were synonymous 

mutations, and the remainder were not in protein coding regions.  

 

UPGMA hierarchical clustering produced two clear clades of sequence variants (Figure 

1), determined by 12 single nucleotide polymorphisms (Table 2). Ninety-seven samples 

corresponded to what we refer to as ‘Clade 1’ and 91 corresponded to ‘Clade 2’. Two of 

190 samples did not fall into either of the two major clades. When mapped onto GISAID 

and NextStrain clades, we find in clade 1 that 89 correspond to clades GH/20C, 6 map 

to G/20A, and 2 map to G/20B. In clade 2 we that that 86 correspond to S/19B, and 5 

mapped onto L/19A (Table 3). The 2 of 190 samples that did not fall into either of the 

major clades corresponded to GH/20C and S/19B. 
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Mapping the 190 sequence variants onto the 2563 available full-length sequences in 

NCBI Virus (05/18/2020) showed that the sequence variants found in Seattle in this 

study represented a substantial fraction of sequence variation seen globally (Figure 1B).  

Of note, the two major clades identified in our Seattle-based samples are found in 

approximately equal proportion among global samples.  No variants were observed in 

the current series that did not map on an existing clade.  In Seattle, there was 

underrepresentation of one clade appearing in the larger dataset, which included 

sequences collected from 20 countries across 5 continents including the USA, China, 

Australia, Italy, Pakistan, and Brazil and contained the reference sequence 

(NC_045512.2). Overall, however, the sequences variants obtained in this study did not 

appear unique to Seattle, and represented a substantial proportion of variation noted 

globally. 

 

To determine if differential selective pressure was driving mutagenesis toward one or 

the other major clade, the number of missense to silent mutations was compared 

between clades.  Overall, the ratio of missense to sense was 1.851 in Clade 1 and 

1.889 in Clade 2.  In each case, this ratio varied significantly from expected random 

mutation which would have predicted a ratio of 3.46 (p < 0.001 for each).  Thus, both 

clades appear to be under selective pressure but neither appears under differential 

pressure. 
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Correlation of sequence variants with clinical outcomes 

 

Viral clade appeared to correlate with several baseline clinical characteristics as shown 

in Table 4. When stratified between clade 1 and clade 2 infections, there was a 

significant difference in patients with a history of CVD, malignancy, steroid/IMT use, and 

anti-coagulation as well as in patients with a smoking history (p-values: 0.005 – 0.03). 

Comorbidity with CVD and cancer history was associated with clade 2 infection (OR: 

3.1, 3.1, respectively). History of steroid/IMT and anticoagulation use was associated 

with clade 2 infection (OR: 2.7, 5.0 respectively). Notably, patients who had never 

smoked tobacco were more likely to be infected with clade 2 (OR: 2.0) while patients 

who were active smokers were more likely to be infected with clade 1 (OR: 3.6). In 

multivariable analyses, a history of malignancy was significantly associated with clade 2 

across all five feature selection models (aOR: 3.4; p-values: .009 - .04) A current 

smoking history was significant associated with clade 1 in all multivariate models except 

for the all-variable model (aOR: 4.1, p-values: 0.01 – 0.07) 

 

Outcomes of patients by viral clade are shown in Figure 2. 13/97 (13.4%) patients from 

Clade 1 were hospitalized compared with 22/91 (24.2%) of Clade 2 (p = 0.063 by Fisher 

exact).  6/97 (6.5%) patients from Clade 1 died from infection compared with 8/91 

(8.8%) from Clade 2 (p = 0.58 by Fisher exact).  Further analysis of individual viral 

sequence polymorphism revealed that no single polymorphism was significantly 

associated with outcomes of hospitalization or death, even without statistical adjustment 

for multiple comparisons. 
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Machine learning (ML) was applied to probe for cooperative effects between viral 

genotype and host risk factors in determining which patients would be hospitalized.  

Death was too infrequent an outcome to allow machine learning modeling from our 

dataset.  Using a Random Forest (SKLearn 14) we trained models using patient 

demographics, clinical features, and viral clade either separately or in combination on 

160 cases, and tested the model on a hold-out set of 30 cases.  For our initial analysis, 

we utilized the most recent 30 cases (which had 3 hospitalized patients out of 30).  As 

shown in Figure 3, the model using solely patient demographics achieved an AUROC of 

0.66.  Addition of clinical information to demographics resulted in a substantially 

improved AUROC of 0.93.  This model correctly predicted hospitalization status in 26 of 

30 patients.  Addition of clade data to either demographics-only or 

demographics+clinical models resulted in minimal improvement (AUROC 0.72 and 0.93, 

respectively).  A final model, in which all genetic polymorphism data was added to the 

demographics+clinical+clade model performed no better than the demographics+clinical 

model (AUROC 0.89). 

 

Because hospitalization was relatively rare (18% in total data set), machine learning 

models could succeed by generally predicting non-hospitalization.  The best trained 

model in our initial analysis (demographic + clinical) correctly predicted hospitalization 

status in 26 of the 30 subjects.  The negative predictive value of this model was 

excellent (0.96), but the pre-test probability of non-hospitalization in this cohort was 

already 0.9.  To test the generalizability of the machine learning approach for a group 

with higher risk of hospitalization, we re-trained the model on the same data, except 
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holding out the most recently collected 15 hospitalized and 15 non-hospitalized patients 

(Figure 4).  Again, AUROC of the demographics-only model was relatively high (0.78).  

Performance was again improved with addition of clinical data (AUROC 0.86), and no 

further improvement was seen with addition of clade or genetic data to the 

demographics+clinical dataset.  Interestingly, with the 50% hospitalization holdout set, a 

demographics + clade model did appear to out-perform demographics-only (AUROC 

0.86), suggesting that there may be some outcome information associated with clade, 

with the model correctly predicting two additional hospitalizations and one non-

hospitalization.  However, addition of clade information to the demographics + clinical 

did not improve performance further, suggesting minimal interaction between viral clade 

and comorbid conditions.   

 

We further tested the machine learning models for sensitivity by training the models on 

datasets in which a specific clade had a ‘spiked’ association with hospitalization, 

ranging from 100% to random assignment (Figure 4C).  Spiked models achieved 

AUROC of 1.0 for clade assignments ranging from perfect correlation to ~10% noise, 

but then degraded toward demographic-only level AUC performance with between 25% 

and 50% noise.  This demonstrates that had viral clade been a dominant determinant of 

outcome the machine learning models would have had sufficient power to detect this 

effect. 
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Discussion 

The COVID-19 pandemic of 2019-2020 has had a dramatic impact on health world-

wide, with 7.8 million cases and over 400,000 attributed deaths world-wide as of June 

14, 2020.  The first case reported in the United States was in the state of Washington in  

January 2020.  In the ensuing 6 months, over 20,000 cases have been reported in 

Washington.  The overall hospitalization rate within Washington State as of 7/31/20 is 

approximately 15%, with an overall mortality rate of 5% 

(https://coronavirus.jhu.edu/map.html), although these numbers are based on Department 

of Health confirmed cases and likely overestimate true population rates (which would 

include asymptomatic and minimally symptomatic infected individuals). 

 

Several possibilities exist for the heterogeneity of outcomes associated with SARS-

CoV-2 infection.  Morbidity may be associated with pre-existing illness; individuals 

already ill from other causes may be more likely to require hospitalization or succumb 

from infection.  Access to quality healthcare may also influence outcomes.  Age itself is 

a predictor of hospitalization and mortality which may significantly influence outcome.  

Host genetic factors are likely to play a role as well, and recent results suggest two host 

susceptibility loci that influence outcome in COVID-19 15. 

 

For some infectious processes, viral strain may play a large role in determination of 

pathogenicity.  The influenza pandemic of 1918 – the last widespread highly morbid 

global pandemic – was caused by a specific strain of influenza virus (H1N1).  Many 
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other viruses have significant sequence variation which influences clinical outcomes 16-

18.  Hepatitis C genomic variants, for example, have been significantly associated with 

outcomes in hepatic disease 19. 

 

The current study is the first to attempt to link SARS-CoV-2 viral sequence variants with 

COVID-19 outcomes.  We found significant variation in viral sequence in our sample, 

with 289 sequence variants found in the 190 sequenced samples.  However, the 

majority of variants occurred with a frequency of less than 10%.  All of the frequently 

encountered variants have been previously described, and several clades have been 

identified in the literature 20-24. 

 

Within our data, two clear clades emerged from UPGMA hierarchical clustering of the 

sequence variants. The clades are determined by 12 base variants as noted in Table 2. 

97 samples corresponded to what we refer to as ‘Clade 1’ and 91 corresponded to 

‘Clade 2’. When mapped onto GISAID and Nextstrain clades, we find in clade 1 that 90 

correspond to clades GH/20C (GISAID/NextStrain), while in clade 2, 86 correspond to 

S/19B.  In analyzing the ratio of synonymous to non-synonymous mutations, we find 

that both major clades appear to be under substantial negative selection, with 

significantly more synonymous than non-synonymous mutations observed than would 

be observed by chance.  However, relative to each other, neither strain appeared to be 

under differential selective pressure. 
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We find that risk factors for hospitalization for patients with COVID-19 include advanced 

age and presentation from skilled nursing facility.  In addition, we found that histories of 

hypertension, cardiovascular disease, deep venous thrombosis, and chronic renal 

disease were associated with hospitalization.  Even though we found several baseline 

clinical factors to be significantly associated with clade 2 in univariate analyses and 

history of malignancy in the multivariate model, rates of hospitalization were not 

significantly different between patients infected with the two major clades of virus in our 

study (p=0.063), nor were mortality rates (p=0.58).  Given the relatively low number of 

fatalities in our study, we were not powered to detect subtle strain-level differences in 

mortality outcome.   

 

Machine learning approaches allowed us to model the predictability of hospitalization.  

Demographics alone was sufficient to allow some prediction of hospitalization with an 

AUROC for the model for the most recent 30 cases of 0.66.  However, addition of 

clinical data improved the AUROC to 0.93.  Addition of clade or individual viral 

sequence data to the model did not further improve performance suggesting that viral 

sequence variants do not independently contribute significantly to risk of hospitalization.  

Sensitivity analysis suggests that had a viral variant had >50% impact on hospitalization 

risk this would have been detected by the machine learning algorithm and resulted in 

higher AUROC. 

 

This study has some unique strengths and weaknesses.  Our data were derived from a 

single health-care system encompassing three hospitals in a major metropolitan area.  
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By using a single medical system, we had access to substantial medical history on 

these subjects as well as reduced concern regarding the influence of hospital system on 

outcomes (i.e. we assume that decisions for hospitalization and quality of care of 

hospitalized patients will be more consistent in patients treated within a single system).  

Our system served as the primary site for COVID-19 testing particularly in March and 

April, 2020, which gave us access to a substantial number of patients with linked 

outcome data.  However, our outcomes at present are limited to hospitalization and 

death.  Use of hospitalization as outcome represents a useful dichotomous outcome 

that is a proxy for disease severity.  However, the decision to admit may be influenced 

by factors other than the patient’s immediate status, and may be biased toward 

admission of patients with significant comorbidities, advanced age, or socio-economic 

considerations.  It is conceivable that viral sequence variants might be associated with 

differential outcomes looking at more granular and direct disease features such as 

pulmonary radiologic outcomes or specific complications.  The use of machine learning 

produced predictive models with excellent overall performance, particularly for 

predicting those patients who would not require hospitalization.  Although we took 

significant steps to limit over-learning by models, including testing on two substantial 

hold-out sets and performing sensitivity analysis with ‘spiked’ datasets, it is possible that 

these machine learning models might not be generalizable to patients in other 

geographic regions or in other health systems. 

 

Overall, our results demonstrate substantial sequence variation in SARS-CoV-2 within a 

single metropolitan area, where the observed sequences represent a substantial 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.09.24.20201228doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.24.20201228


 

 

fraction of sequence clades that have been observed globally.  Viral clade showed a 

trend toward worse outcomes for patients infected with virus from clade 2 but this result 

was of borderline statistical significance in our cohort of 190 patients, and potentially 

confounded by imbalanced distribution of comorbidities between patients infected with 

the two major clades.  Patient demographics and clinical history were strongly predictive 

of hospitalization, and viral clade information did not substantially improve predictions, 

suggesting that it contributes minimally to determination of outcome.  Further analysis 

on larger datasets will be needed to determine if viral clade has significant influence on 

patient outcome. 
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Methods 

Subjects, samples, and sequencing 

Institutional Review Board (IRB) approval for this study was obtained from the 

University of Washington, and all research was conducted in compliance with the 

Declaration of Helsinki.  This study was exempted by the IRB from informed consent 

requirement as a retrospective chart review study.  The subset of nasopharyngeal 

samples collected at University of Washington Medicine (UW Medicine) clinical sites 

between March 5 and April 8, 2020 that tested positive for SARS-CoV2 by quantitative 

PCR with Ct < 32 were subjected to whole viral genome sequencing as described 

previously 25,26.  In brief extracted RNA from positive specimens was converted to cDNA 

using random hexamers and sequencing libraries were prepared using Nextera XT or 

Flex kits (Illumina). Libraries were sequenced on MiSeq, NextSeq or NovaSeq 

instruments (Illumina) using 1x185, 1x75, or 1x100 runs respectively. Raw reads were 

processed to generate consensus sequences using a custom bioinformatics pipeline 

(https://github.com/proychou/hCoV19) that combines de novo assembly and read 

mapping. Raw reads and consensus sequences were deposited to NCBI SRA and 

Genbank respectively under BioProject PRJNA610428.   

 

Patients with medical records in the UW Medicine health care system had their health 

records extracted using manual chart review.  Data extracted included demographics 

(age, sex, ethnicity) as well as co-morbid conditions identified on the documented 
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clinical notes. Finally, clinical outcome measures such as hospitalization and mortality 

were collected as well. Patients without adequate documentation on comorbidities were 

coded as unknown (n=4) and not included in calculations for significance. 

 

Demographic and clinical characteristic data were summarized with descriptive statistics 

including frequencies, percentages and two-sided Pearson chi-square tests with clade 

type and hospitalization status as outcomes of interest. Fisher’s exact test with mid-p 

correction and Student’s t-test were used when appropriate in univariate analysis of 

demographic and clinical characteristics to determine significance. Clopper-Pearson 

confidence intervals were considered for binomial confidence intervals. In an 

exploratory analysis, four models of variable selection for multivariate logistic regression 

were used to determine significance: 1) stepwise Akaike Information Criteria (AIC) 27; 2) 

random forests with area under the receiver operating characteristic curve (AUC) as the 

parameter of interest 28; 3) all univariate significant variables with a p-value <0.1; and 4) 

all covariates. LASSO regression 29 using mean squared error and AUC as the lambda 

tuner was also performed to understand important predictor variables.  

 

Missing data 

Missing data was handled using multiple imputation by chained equations (MICE) after 

a sensitivity analysis revealed that the missingness of the data was not completely 

random (i.e. not MCAR).  Recent literature has concluded that the number of 

imputations should be similar to the percentage of incomplete cases, which in our data 

is 3.4% 30,31.  Taken together with the computational expense, a number of 10 imputed 
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datasets was chosen with 20 cycles to reach convergence of the sampling distribution 

of imputed values 32. Finally, all analytic variables with continuous, dichotomous, and 

categorical data were modelled using predictive mean-matching, Bayesian logistic 

regression, and Bayesian polytomous regression, respectively. 

 

Machine learning 

For machine learning, several models were built with datasets consisting of 

combinations of demographics, clinical, clade, and genetic data.  Genetic data was 

included as a vector of sequence variants for each sample. Each dataset was split into 

train and test sets with 160 and 30 samples respectively.  Model selection was run 

using a nested cross validation (CV) format, with 5 outer folds and leave-one-out CV run 

on each fold. Model tuning was accomplished using 10000 random sets of 

hyperparameters for each of 4 model architectures (AdaBoost, Extra Trees, Gradient 

Boosting, Random Forest). Composite precision-recall curves were produced by 

merging the 5 outer fold predictions, the area under the precision-recall curves 

(AUPRC) and area under the receiver operating characteristic (AUROC) were 

compared, and the parameters that produced the lowest validation bias and highest 

validation score were chosen. Top 1 performance was similar across the models with 

the Random Forest slightly outperforming the others. The chosen hyperparameters and 

model were then used for subsequent testing on the holdout test set. 
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Table 1.  Baseline demographics and medical histories of hospitalized and non-hospitalized patients 

 All (n=190) 
Hospitalized 
(n=35) 

Non-Hospitalized 
(n = 155) 

p-value (Fisher) 

Age (mean, range) 53.4 (16-95) 66.5 (32-95) 50.5 (16-95) <.001** 

Male (n, %) 97 (51.1) 20 (57.1) 77 (49.7) 0.457 

Skilled Nursing Facility 28 (14.8) 13 (37.1) 15 (9.7) <.001** 

Race* (n, %) 

White b 107 (56.3) 24 (68.6) 83 (53.5) 0.108 

Asian 21 (11.1) 6 (17.1) 15 (9.7) 0.555 

Black 22 (11.6) 3 (8.6) 19 (12.3) 0.376 

Native Hawaiian/ Pacific Islander 
2 (1.1) 0 (0) 2 (1.3) 0.942 

American Indian/Alaskan Native 3 (1.6) 1 (2.9) 2 (1.3) 1.000 

Other 35 (24.6) 1 (2.9) 34 (21.9) 0.004* 

Diabetes 31 (16.8) 8 (22.9) 23 (15.3) 0.331 

Hypertension 63 (34.1) 21 (60) 42 (28) 0.001* 

COPD 9 (4.9) 4 (11.4) 5 (3.3) 0.119 

Asthma 23 (12.4) 5 (14.3) 18 (12) 0.852 

Cardiovascular Diseasea 34 (18.4) 17 (48.6) 17 (11.3) <.001** 

Chronic Heart Failure 12 (6.5) 8 (22.9) 4 (2.7) 0.002* 

Chronic Kidney Disease 15 (8.1) 10 (28.6) 5 (3.3) <.001** 

History of cancer 34 (18.4) 13 (37.1) 21 (14) 0.003* 

History of DVT 8 (4.3) 5 (14.3) 3 (2) 0.021* 

Hypothyroid 23 (12.4) 5 (14.3) 18 (12) 1.000 

History of MI 6 (3.2) 3 (8.6) 3 (2) 0.244 

Smoking history 

    Former 40 (21.1) 11 (31.4) 29 (18.7) 0.218 

    Neverb 101 (53.2) 18 (51.4) 83 (53.5) 0.851 

    Current 19 (10) 5 (14.3) 14 (9) 0.402 

    Unknown  30 (15.8) 1 (2.9) 29 (18.7) 0.039* 

Steroids or IMT 29 (15.8) 11 (32.4) 18 (12) 0.013* 

Plaquenil 2 (1.1) 0 (0) 2 (1.3) 0.642 

ACEI/ARB 37 (20.1) 12 (35.3) 25 (16.7) 0.036* 

Anticoagulation 20 (10.9) 11 (32.4) 9 (6) 0.001* 
b Reference value 
a Cardiovascular disease defined as history of MI, CVD/stroke, CHF, valvular diseases (s/p CABG). 
All diseases were defined using ICD-9 and ICD-10 codes.  
Abbreviations: DVT, Deep Venous Thrombosis; COPD, chronic obstructive pulmonary disease; MI, myocardial 
infarction; ACEI, angiotensin-converting enzyme inhibitors; ARB, angiotensin receptor blocker; IMT, 
immunomodulatory therapy.  
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Variant Coding change 
Overall 

prevalence 

Prevalence 

Clade 1 

Prevalence 

Clade 2 

C36T 5'UTR 0.1158 0.0879 0.1443 

C241T 5'UTR 0.4526 0 0.8763 

C1059T NSP2: T85I 0.4737 0 0.9175 

C3037T NSP3: F106F  0.4842 0 1 

C8782T NSP4: S76S  0.4579 0.9451 0 

C14408T NSP12b: P314L  0.4842 0 1 

C17747T NSP13: P504L 0.4579 0.9451 0 

A17858G NSP13: Y541C  0.4579 0.9451 0 

C18060T NSP14: L7L 0.4579 0.9451 0 

A23403G S: D614G 0.4842 0 1 

G25563T ORF3a: Q57H  0.4895 0 0.9485 

T28144C ORF8: L84S 0.4579 0.0549 1 

G29553A 3’UTR 0.2789 1 0.4536 

 

Table 2.  Distribution of sequence variants occurring more frequently than 5% in the study 
population. 
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Nextstrain Clade Clade 1 Clade 2 Clade 3 GISAID 

19A  5  L 

19B  86 1 S 

20A 6   G 

20B 2   GR 

20C 89  1 GH 

Total 97 91 2  

 

Table 3.  Correspondence of Clade 1 and Clade 2 of current cohort to Nextrain and GISAID 
clades 
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Table 4.  Demographic Factors and Baseline Clinical Characteristics of the Study Population 
Stratified by Viral Clade (n=188)a. 
  

 All (n=190) Clade 1 (n= 97) Clade 2 (n= 91) p-value (Fisher) 

Age (mean, range) 53.4 (16-95) 52.1 (16-93) 55.2 (16-95) 0.24 (T-test) 

Male (n, %) 97 (51.1) 54 (55.7) 42 (46.2) 0.20 

Hospitalized for COVID 35 (18.6) 13 (13.4) 22 (24.2) 0.062 

Skilled Nursing Facility 28 (14.7) 15 (15.6) 13 (14.3) 0.88 

Race* (n, %) 

White a 107 (56.3) 51 (52.6) 55 (60.4) 0.30 

Asian 21 (11.0) 8 (8.2) 13 (14.3) 0.46 

Black 22 (11.6) 14 (14.4) 8 (8.8) 0.20 

Native Hawaiian/ Pacific Islander 
2 (1.1) 2 (2.1) 0 (0) 0.24 

American Indian/Alaskan Native 3 (1.6) 2 (2.1) 1 (1.1) 0.62 

Unknown 35 (18.4) 20 (20.6) 14 (15.4) 0.29 

Diabetes 31 (16.3) 18 (18.6) 13 (14.6) 0.35 

Hypertension 63 (33.2) 30 (30.9) 33 (37.1) 0.47 

COPD 9 (4.7) 2 (2.1) 7 (7.9) 0.13 

Asthma 23 (12.1) 12 (12.4) 11 (12.4) 0.96 

Cardiovascular Diseaseb 34 (17.9) 10 (10.3) 24 (27) 0.008** 

Chronic Heart Failure 12 (6.3) 4 (4.1) 8 (9) 0.36 

Chronic Kidney Disease 15 (7.9) 8 (8.2) 7 (7.9) 0.62 

History of cancer 34 (17.9) 10 (10.3) 24 (27) 0.005** 

History of DVT 8 (4.2) 1 (1.0) 7 (7.9) 0.09 

Hypothyroid 23 (12.1) 9 (9.3) 14 (15.7) 0.25 

History of MI 6 (3.2) 1 (1.0) 5 (5.6) 0.25 

Smoking history 

    Former 40 (21.0) 21 (21.6) 19 (20.9) 0.34 

    Nevera 101 (53.2) 43 (44.3) 56 (61.5) 0.019* 

    Current 19 (10.0) 14 (14.4) 5 (5.5) 0.017* 

   Unknown  30 (15.8) 19 (19.6) 11 (12.1) 0.06 

Steroids or IMT 29 (15.2) 9 (9.7) 20 (22.5) 0.032* 

Plaquenil 2 (1.1) 1 (1.1) 1 (1.1) 0.90 

ACEI/ARB 37 (19.5) 17 (18.3) 20 (22.5) 0.49 

Anticoagulation 20 (10.5) 4 (4.3) 16 (18.2) 0.011* 
a Reference value 
b Cardiovascular disease defined as history of MI, CVD/stroke, CHF, valvular diseases (s/p CABG). 
All diseases were defined using ICD-9 and ICD-10 codes.  
Abbreviations: DVT, Deep Venous Thrombosis; COPD, chronic obstructive pulmonary disease; MI, myocardial 
infarction; ACEI, angiotensin-converting enzyme inhibitors; ARB, angiotensin receptor blocker; IMT, 
immunomodulatory therapy.  
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Figure legends 
 

Figure 1.  Top – SARS-CoV-2 sequence variants among 190 full length genomes sequenced 
from outbreak in Seattle, WA March-April 2020  Purple = Clade 1, Gold = Clade 2.  Bottom: 
dendrogram of sequence relations, mapped to identical analysis of 2753 full length sequences 
in NCBI database. 
 
Figure 2.  Outcomes of COVID-19 in cohort, divided by viral clade.  Color code and dendrogram 
as in Figure 1.  Date refers to relative date of sample acquisition over 35 days, darker color is 
more recent. 
 
Figure 3.  AUROC for machine learning models for prediction of hospitalization using test set of 
30 most recent cases.  Bottom:  Optimal model performance for each dataset model for 
prediction of hospitalization.   
 
Figure 4.  Machine learning models for prediction of hospitalization using hold-out set of 15 
most-recent hospitalizations and 15 most-recent non-hospitalizations.  A:  AUROC for machine 
learning models on hold-out set.  B:  Optimal model performance for each dataset model for 
prediction of hospitalization.   C:  Model AUROC for spiked dataset ranging from 100% strain 
concordance with hospitalization (0) to complete randomization of outcome with respect to clade 
(190).  Note that models approach observed AUROC with 50/160 randomized with respect to 
clade. 
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