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ABSTRACT  

BACKGROUND: Understanding inequality in infectious disease burden requires clear and unbiased 

indicators. The Gini coefficient, conventionally used as a macroeconomic descriptor of inequality, is 

potentially useful to quantify epidemiological heterogeneity. With a potential range from 0 (all 

populations equal) to 1 (populations having maximal differences), this coefficient is used here to show 

the extent and persistence of inequality of malaria infection burden at a wide variety of population 

levels.  

METHODS: We first applied the Gini coefficient to quantify variation among WHO world regions for 

malaria and other major global health problems. Malaria heterogeneity was then measured among 

countries within the geographical sub-region where burden is greatest, among the major 

administrative divisions in several of these countries, and among selected local communities. Data 

were analysed from previous research studies, national surveys, and global reports, and Gini 

coefficients were calculated together with confidence intervals using bootstrap resampling methods.  

RESULTS: Malaria showed a very high level of inequality among the world regions (Gini coefficient, G 

= 0.77, 95% CI 0.66-0.81), more extreme than for any of the other major global health challenges 

compared at this level. Within the most highly endemic geographical sub-region, there was substantial 

inequality in estimated malaria incidence among countries of West Africa, which did not decrease 

between 2010 (G = 0.28, 95% CI 0.19-0.36) and 2018 (G = 0.31, 0.22-0.39). There was a high level of 

sub-national variation in prevalence among states within Nigeria (G = 0.30, 95% CI 0.26-0.35), but 

more moderate variation within Ghana (G = 0.18, 95% CI 0.12-0.25) and Sierra Leone (G = 0.17, 95% 

CI 0.12-0.22). There was also significant inequality in prevalence among local village communities, 

generally more marked during dry seasons when there was lower mean prevalence. The Gini 

coefficient correlated strongly with the Coefficient of Variation which has no finite range. 

CONCLUSIONS: The Gini coefficient is a useful descriptor of epidemiological inequality at all population 

levels, with confidence intervals and interpretable bounds. Wider use of the coefficient would give 

broader understanding of malaria heterogeneity revealed by multiple types of studies, surveys and 

reports, providing more accessible insight from available data. 
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BACKGROUND 

Describing levels of inequality of disease burden among populations is vital for epidemiology and 

global health, to highlight those who are affected disproportionately, and better target control 

interventions [1]. Most infectious disease and epidemiological reports do not give clear quantitative 

overviews on inequality, and the topic has been noted as requiring more attention in pursuit of the 

United Nations Sustainable Development Goals (UNSDGs) [2]. The particular UNSDG focusing on 

health includes an aim to end malaria as a public health problem by the year 2030 [3], encouraging 

control efforts, surveillance, and estimates of the situation through the World Health Organization 

(WHO) annual World Malaria Reports as well as national Malaria Indicator Surveys [4]. 

The Gini coefficient, an index widely used to describe income inequality, has been utilised previously 

to analyse general global health inequality [5, 6], sub-national differences in mortality [7], and for 

ecological studies [8], but only rarely for specific infectious diseases [9, 10]. Disease burden variation 

among populations is more commonly presented using general measures of dispersion such as 

interquartile range, standard deviation, and sometimes the coefficient of variation (a scale-invariant 

coefficient obtained by dividing the standard deviation by the mean) [11]. However, these typical 

descriptors do not easily facilitate comparisons, whereas a benefit in using the Gini coefficient of 

inequality is that it has a standardised range from 0 (all populations equal) to 1 (populations having 

maximal differences) so that levels of inequality can be benchmarked.  

Here the Gini coefficient is applied to illustrate inequality in malaria at several population levels, 

global, regional, sub-national and local. This shows that global inequity is higher than for other 

diseases, and is not decreasing in the areas that are most highly affected, while there are significant 

differences among countries in levels of sub-national inequity, and local as well as seasonal 

variation.  

 

METHODS 

Gini coefficient of inequality 

The Gini coefficient is a measure of variation among different populations or groups, either of a 

positive resource or of an undesired burden, that is derived from the Lorenz curve of inequality [12]. 

In macroeconomics, it compares the proportion of ‘wealth’ owned by each single sub-population or 

group and describes the resulting inequality when considering the total. Applied to malaria or other 

diseases, it can be focused on comparing data at any level, for example among geographical regions 

globally or among local communities within a defined area. In such analysis, the Lorenz curve 
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estimates how the distribution of disease burden (or other relevant measure such as infection 

prevalence) deviates from a theoretical line of perfect equality, and this deviation is summarised in 

the Gini coefficient. A coefficient of 1 is ‘perfectly unequal’, whereas a zero value represents 

‘perfectly equal’ distribution.  

The Gini coefficient (G) is estimated by comparing the values of the relevant indicator (such as 

prevalence) among all populations, and calculating all pairwise differences among them, using the 

following formula: 

where xi is the value for each individual population i, and xj is the value for each of the individual 

populations j with which it is compared pairwise, there are n populations and µ is the mean value 

across all populations.  

Gini coefficients were calculated in this study using STATA Version 15.3, with replicate analyses 

performed using Microsoft Excel and R version 3.6.3 to ensure consistency. Confidence intervals 

around the Gini coefficient were calculated using bootstrap resampling [13]. Equal bootstrap 

samples of size n are repeatedly drawn by sampling, and data are replaced after each sample. 

Bootstrap confidence intervals were calculated using R version 3.6.3, using command scripts as 

detailed in Supplementary Text S1, with resampling of k = 500 replicates as there is no significant 

benefit in using higher values of k in this context [14]. 

Global and regional estimates for malaria and other public health challenges  

Variation in disease burden across the different WHO world regions (African Region, Region of the 

Americas, South-East Asia Region, European Region, Eastern Mediterranean Region, and Western 

Pacific Region) was first analysed using estimates of numbers of cases in the most recent WHO 

annual report or fact sheet for each global health problem. Malaria was analysed [4], as well as 

tuberculosis [15], HIV/AIDS [16], and Hepatitis C infection [17] representing major global infectious 

diseases, and the four groups of non-communicable diseases with highest overall mortality (cancer, 

respiratory disease, cardiovascular disease, and diabetes) [18-20]. Data were expressed as estimated 

number per 100,000 of the population in each region before calculating Gini coefficients 

(Supplementary Table S1). Malaria estimates were also presented as a percentage proportion of 

population at risk yearly between 2010 and 2018 (Supplementary Table S2). 

The Gini coefficient was also calculated for variation across 16 West African countries using World 

Malaria Report estimates of numbers of cases for each year between 2010 and 2018 (Supplementary 
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Table S3) [4], based on  estimated numbers of cases in proportion to the number of people in areas of 

risk.  

Malaria data at national, sub-national and local levels 

Recent national Malaria Indicator Surveys (MIS) in four West African countries (Nigeria, Ghana, Sierra 

Leone and Burkina Faso) were analysed to compare the levels of sub-national variation in heavily 

affected countries [21-24]. Data were analysed from surveys of infection prevalence in under 5 year 

old children in 35 States in Nigeria (excluding one state that did not have sufficient data) [21], 10 

Regions as previously defined in Ghana [22], 13 Regions in Burkina Faso [23], and 14 Districts in Sierra 

Leone [24]. Sub-national prevalence measurements from the MIS data analysed are tabulated in 

Supplementary Table S4. 

To illustrate local variation in malaria infection prevalence and investigate temporal variation in 

highly endemic communities, data from The Garki Project were examined, given the availability of 

data from multiple cross-sectional surveys of multiple local village communities in an area of high 

prevalence in northern Nigeria in the early 1970s [25], from the archived database 

(http://garkiproject.nd.edu/). This analysis focused on an 18-month pre-intervention phase of the 

study during which eight successive parasitological cross-sectional surveys were conducted 

approximately every 10 weeks in each of 16 villages (data on a further six villages were not analysed 

as they were not surveyed at all eight rounds). Presence of P. falciparum was determined by 

microscopy and village-specific prevalence of P. falciparum at each survey is shown in 

Supplementary Table S5, after extraction from the archived project database. Data from a more 

recent study from The Gambia were also analysed for comparison, incorporating 20 villages with 

similar malaria seasonality [26], with variation in percent prevalence of P. falciparum determined by 

microscopy compared among villages in wet and dry seasons. Gini coefficient estimation from these 

and other previous data was performed using STATA version 15.3 with bootstrap confidence 

intervals calculated using R version 3.6.3. 

 

RESULTS 

 

Global variation in major health problems  

Across the six WHO world regions, inequality was greater for each of the infectious diseases 

compared to the major non-communicable diseases (Figure 1). There was most extreme inequality 
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in malaria burden (Gini coefficient, G = 0.77, 95% CI 0.66-0.81), which was significantly higher than 

for each of the other diseases as demonstrated by bootstrap confidence intervals (Figure 1 and 

Supplementary Table S1).  

Removing the Europe WHO region from the malaria calculation (which had no reported cases in 

2018) did not greatly reduce the index of inequality (G = 0.73, 95% CI 0.59-0.77). Removing the 

African WHO region (containing approximately 90% of all malaria cases), showed residual inequality 

among remaining regions to be much lower but still substantial (G = 0.40, 95% CI = 0.26-0.54), 

reflecting that most other global cases are in Asia or the Western Pacific. There was no decline in 

levels of global inequality between 2010 and 2018 based on data estimates from the World Malaria 

Report (G values for each year remained between 0.76 and 0.78, Supplementary Table S2).  

 

Variation in malaria within West Africa 

As the African region has the majority of the malaria burden, and more than half of the cases are 

estimated to occur in West Africa, we analysed the inequality among the 16 countries that constitute 

The West African sub-region according to the UN definition. This shows the variation in estimated 

malaria burden as a proportion of overall populations among countries in West Africa between 2010 

and 2018, and the persistent inequality is revealed by the Gini coefficient (Figure 2 and 

Supplementary Table S3). Although there have been moderate reductions in malaria overall, and 

notable reductions in a few countries, the average burden is still high and variation among countries 

persists (Figure 2A). Accordingly, the Gini Coefficient of inequality remained high, between 0.27 and 

0.32 in each year (Figure 2B). In 2018, the final year estimated, there was still marked inequality in 

malaria burden among countries in West Africa (G = 0.31, 95% CI 0.22-0.39) and no indication of this 

having reduced from 2010 onwards.  

 

Sub-national variation in malaria within high burden countries in West Africa 

Sub-national variation within four of the highest burden countries was analysed using Malaria 

Indicator Survey data of malaria infection prevalence in children under 5 years of age, with surveys 

between the years of 2014 and 2016 allowing prevalence to be analysed for each of the principal 

formal administrative divisions within each country (States in Nigeria, Regions in Ghana and Burkina 

Faso, Districts in Sierra Leone) (Figure 3 and Supplementary Table S4). Sierra Leone had the highest 

mean prevalence, but the highest level of sub-national inequality in malaria parasite prevalence was 

seen in Nigeria (G = 0.30, 95% CI 0.26-0.35), followed by Burkina Faso (G = 0.25, 95% CI 0.19-0.29), 
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with more moderate sub-national inequality within Ghana (G = 0.18, 95% CI 0.12-0.25) and Sierra 

Leone (G = 0.17, 95% CI 0.12-0.22).  

 

Seasonal malaria heterogeneity among villages in a highly endemic area 

Local variation was investigated among villages in the Garki Project, a large study conducted in 

northern Nigeria in the early 1070s [25]. The P. falciparum prevalence was compared among 16 

villages for which there were data at eight different survey timepoints (each survey separated by 

approximately 10 weeks) during the pre-intervention phase of the project (Figure 4A and 

Supplementary Table S5). An overall seasonal peak of malaria prevalence is evident which 

corresponds to the late wet season and immediate post-wet season (surveys 5 and 6), while lower 

prevalence is seen during the annual dry seasons (surveys 2 and 3 for one year, and surveys 7 and 8 

for the following year). The Gini coefficients are highest at survey timepoints 2, 3, and 7, which 

coincide with the dry seasons (Figure 4B). This demonstrates the ability of the Gini coefficient to 

track local variation in epidemiology, including temporal changes and effects of seasonality. To test 

for consistency in variation among villages across years, the rank order of prevalence in villages at 

survey 2 and survey 7 (representing similar points in consecutive dry seasons) was tested and shown 

to be significantly correlated (Spearman’s rho = 0.55, P=0.028). This indicates that a significant 

component of the inter-village variation was maintained for at least a year.  

Data were then analysed from a study of 20 villages in The Gambia [26], where malaria endemicity is 

lower and surveys were conducted shortly after malaria had declined significantly throughout the 

country [27, 28]. Comparing across all villages surveyed, heterogeneity was higher in the dry season 

(G = 0.55) than the wet season (G = 0.40). Focusing on the eastern part of The Gambia where malaria 

prevalence is highest, there was greater contrast in variation among villages in the dry season 

compared to the wet season (Supplementary Figure S1). Variation among villages was generally 

higher than seen in the data from The Garki Project in which the infection prevalence was higher at 

all times of the year.  

 

Comparison to the Coefficient of Variation 

There is a strong correlation between the values of the Gini Coefficient presented here, and the 

values of the Coefficient of Variation (CV, standard deviation divided by the mean) calculated for 

each of the same datasets (Spearman’s rho = 0.982, P < 10-4). Gini coefficient values ranged from 

0.05 to 0.77, while CV values ranged from 9 % to 198 %, with a strong correlation over the whole 
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range (Figure 5). As the Gini coefficient is bounded between 0 and 1 and has bootstrap confidence 

intervals (not plotted in Figure 5), it offers advantages for interpretation compared to the use of an 

unbounded CV index.  

 

DISCUSSION 

Inequality in malaria burden among populations is effectively summarised into a single index using 

the Gini coefficient, as shown here. Among leading global infectious and non-communicable public 

health problems, malaria shows the highest amount of inequality among different world regions, 

with a Gini coefficient of 0.77 being closer to the theoretically maximum possible value of 1.0 than 

to zero which would indicate equitable distribution. This coefficient has not been reduced in recent 

years, so there clearly needs to be increased effort to reducing the malaria burden in the most highly 

affected African region, while sustaining recent reductions of malaria elsewhere. This global need is 

already qualitatively clear [4], but the use of the Gini coefficient highlights the extreme situation for 

malaria in comparison to other diseases, and shows the measurability of inequality which is essential 

for future monitoring of progress. 

Of equal importance, the Gini coefficient is also shown to be useful for summarising inequality at 

other population levels, from regional to local. Within West Africa, the sub-region with the highest 

overall malaria burden globally, the coefficient shows that malaria inequality among countries has 

not declined in recent years, reflecting that relative reductions in malaria burden have not been 

particularly great in the countries with most malaria. Moreover, the amount of sub-national 

inequality within four high burden countries in West Africa is also shown to be significantly variable. 

For example, there is more inequality in the infection prevalence among different states in Nigeria 

than among the major administrative areas within Ghana or Sierra Leone, analysing data from 

national Malaria Indicator Surveys that employ broadly comparable survey methods. The causes of 

such sub-national inequality will be complex and require more research attention for future malaria 

control. 

The Gini coefficient is sensitive to village-level, area-level, and seasonal variation, as illustrated here 

by re-analyses of research survey data from studies previously conducted in different parts of West 

Africa. The coefficient has features that make it potentially a more useful descriptor of 

epidemiological heterogeneity than other summary indices. The Gini coefficient demonstrates a 

defined lower and upper boundary of 0 (perfect equality) and 1 (perfect inequality) while the 

coefficient of variation (CV) based on standard deviation does not. Although there is a strong 
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correlation in their quantification of heterogeneity, the CV summarises variation in an unbounded 

range that can transcend 100%. The Gini coefficient is therefore more appropriate for use in the 

context of epidemiological studies and disease reports, to enable a more standardised quantitative 

interpretation of inequality.  

While the Gini coefficient is a useful descriptor, limitations should be considered. Technically, 

although bootstrap resampling is a generally robust method of calculating confidence intervals for 

the Gini coefficient, it has been suggested that in small samples of uniform, normal, or lognormal 

distributions bootstrap confidence intervals may be calculated as too narrow [14, 29], and 

robustness of these intervals increases with larger numbers of sampled populations. Statistical 

methods have been developed to mitigate this issue by approximating the Lorenz curve of a log-

normal distribution [30], and could be investigated in future to check the sensitivity of confidence 

interval estimations. Also, although this was not a particular issue with the data analysed here, Gini 

coefficients could be skewed by ‘small number bias’ if they were based on samples of populations 

with extremely low prevalence, essentially corresponding to sampling noise that gives a systematic 

bias towards an inflated Gini coefficient in such situations. 

Epidemiologically, we note that the Gini coefficient needs to be recognised as a simple relative 

measure that does not present absolute differences, and different distributions of measurements 

may produce the same Gini coefficient. Demographic and socioeconomic differences, as well as 

ecological, genetic and geographical determinants all combine together [31, 32] and the effect of 

each is not explored or separately accounted for by the Gini coefficient. Clearly, the coefficient does 

not substitute for separate analyses of the epidemiological determinants, or for maps of disease 

distribution, where these are available or where they may be estimated [33, 34]. Instead, it should 

be applied alongside presentation of more detailed or qualitative data, and used to advocate focus 

on populations most affected and where control of malaria is most needed, aiming to reduce the 

extreme inequity that continues to prevail at multiple levels. 

 

CONCLUSION 

The Gini coefficient is a useful index for descriptive epidemiology, particularly relevant for malaria 

which shows exceptional levels of global inequality compared to other diseases. As illustrated here, 

it is applicable to a wide variety of data sources to highlight the degree of inequality among world 

regions, or countries within a region, as well as sub-nationally or locally. We encourage its use more 

widely in the presentation of prevalence data, as it would be straightforward to interpret in 
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publications including disease reports, national indicator surveys, and for a broad range of 

population-based research. 
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Figure Legends 

Figure 1. Exceptionally high global inequality of malaria burden compared with other major public 

health indices. Gini coefficients of inequality of disease burdens among the six major regions of the 

world were calculated for eight major public health problems. The world regions are Africa, The 

Americas, South East Asia, Europe, Western Pacific, and Eastern Mediterranean as defined by the 

World Health Organization (WHO). Analyses are based on data or estimates extracted from the most 

recent fact sheets or world reports, or Global Health Estimates by WHO (listed in Supplementary 

Table 1). Malaria, HIV, and tuberculosis (TB) estimates represent new infections in 2018 [4, 15, 16], 

while Hepatitis C estimates represent new infections in 2015 [17]. For the four non-communicable 

diseases with highest mortality, different types of estimates are used as examples: diabetes 

estimates were based on prevalence in adults in 2014 [18], cancer estimates refer to new cases in 

the year of 2018 [19], while estimates for cardiovascular and respiratory disease refer to attributable 

deaths in 2016 [20]. The inequality of malaria burden was higher than for the other indices, as 

shown by the Gini coefficient estimates (with 95% bootstrap confidence intervals).  

Figure 2. Inequality of malaria burden among countries in West Africa has not reduced between 

2010 and 2018. A. Malaria burden in individual West African countries was calculated as the 

estimated annual number of cases divided by population at risk. Estimated number of cases were as 

presented in the WHO World Malaria Report annexes [4], divided by the estimated population at risk 

(Supplementary Table 3). Data are plotted for all countries except Cape Verde for which numbers of 

cases were at or close to zero in each year. B. The Gini coefficient estimates (with 95% confidence 

intervals) show no decreases in inequality of malaria burden among the countries over time, values 

of the coefficient being moderately high and remaining between 0.27 and 0.31 in all years (with 

overlapping 95% confidence intervals).  

Figure 3. Inequality of malaria prevalence among major administrative regions within four high 

burden countries in West Africa. A. Each point represents the community prevalence of slide-

positive malaria infection in children 6-59 months of age in the major administrative geographical 

regions within each of four countries as reported their most recent malaria indicator surveys (MIS). 

Data are analysed for 35 States in Nigeria from the 2015 MIS (having excluded one that did not have 

sufficient data) [21], 10 Regions within Ghana from the 2016 MIS [22], 13 Regions in Burkina Faso 

from the 2017 MIS [23], and 14 Districts in Sierra Leone from the 2016 MIS [24], as presented in 

Supplementary Table 4. B. The within-country Gini coefficient of inequality was highest for Nigeria 

(G = 0.30, 95% CI 0.26-0.35), indicating a similar amount of variation within that country as exists 
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among all 16 countries of West Africa. This was significantly greater variation than within Ghana or 

Sierra Leone.  

Figure 4. Local inter-village heterogeneity in malaria prevalence varies over time and shows 

seasonality captured by the Gini coefficient. Temporal variation is analysed in data from successive 

community surveys during the pre-intervention phase of The Garki Project, a classic epidemiological 

study previously conducted in a rural district in northern Nigeria. (A) Malaria parasite slide positive 

prevalence data were obtained from 8 cross-sectional surveys conducted 10 weeks apart (spanning 

70 weeks in total). Annual peak of infection prevalence was seen during and immediately following 

the rainy season (survey 5 and 6), and lower prevalence is evident during and immediately following 

the dry season (surveys 2 and 3 for one year, surveys 7 and 8 for the following year). Data are shown 

for the 16 villages that had surveys at all 8 timepoints (data from a total of 5797 participants were 

included). Prevalence data were extracted from The Garki Project archived database 

(http://garkiproject.nd.edu/) and are shown in Supplementary Table S5. (B) Gini coefficients 

representing the extent of inter-village heterogeneity in malaria in each of the surveys with 

bootstrap confidence intervals. Overall variation among the villages was moderately low, with a 

peak G = 0.17, with significant seasonal variation in Gini coefficients as most inequality occurred in 

the dry season when average prevalence was lower. 

Figure 5. Gini Coefficient compared to Coefficient of Variation for inter-population comparisons. 

This shows strong correlation between the Gini coefficient and the standard coefficient of variation 

(standard deviation divided by the mean) illustrating the Gini coefficient as a robust general 

statistical descriptor of variation. This is alongside its interpretive utility as being bounded between 0 

and 1 (whereas the Coefficient of Variation is an unbounded proportional value that does not offer 

an intuitive scale for epidemiological comparisons). There were 21 values compared for each index 

here, representing data from different analyses presented in this paper: eight for various diseases 

among world health regions (from Figure 1), one for malaria across the countries of West Africa 

(Figure 2), four of sub-national variation in malaria prevalence in selected West African countries 

(Figure 3), and eight sequential surveys across villages in The Garki Project (Figure 4).   
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3 

 

 

 

 

0

10

20

30

40

50

60

2010 2011 2012 2013 2014 2015 2016 2017 2018

M
al

ar
ia

 B
u

rd
en

 %

Benin Burkina Faso The Gambia
Ghana Guinea Guinea-Bissau
Ivory Coast Liberia Mali
Mauritania Niger Nigeria
Senegal Sierra Leone Togo

0

0.1

0.2

0.3

0.4

0.5

2010 2011 2012 2013 2014 2015 2016 2017 2018

G
in

i C
o

ef
fi

ci
en

t

A 

B 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.19.20197939doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.19.20197939
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B 

A 

0

10

20

30

40

50

60

70

0.45 1.45 2.45 3.45 4.45

P
re

va
le

n
ce

 %

0

0.1

0.2

0.3

0.4

0.5

Nigeria Ghana Burkina Faso Sierra Leone

G
in

i C
o

ef
fi

ci
en

t

    Nigeria            Ghana            Burkina             Sierra                 

                  Faso                Leone    

    Nigeria            Ghana            Burkina             Sierra                 

                  Faso                Leone    

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.19.20197939doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.19.20197939
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

 

FIGURE 4 
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