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Traditionally, expert epidemiologists devise policies for disease control through a mixture of in-
tuition and brute force. Namely, they use their know-how to narrow down the set of logically
conceivable policies to a small family described by a few parameters, following which they conduct
a grid search to identify the optimal policy within the set. This scheme is not scalable, in the sense
that, when used to optimize over policies which depend on many parameters, it will likely fail to
output an optimal disease policy in time for its implementation. In this article, we use techniques
from convex optimization theory and machine learning to conduct optimizations over disease poli-
cies described by hundreds of parameters. In contrast to past approaches for policy optimization
based on control theory, our framework can deal with arbitrary uncertainties on the initial condi-
tions and model parameters controlling the spread of the disease. In addition, our methods allow
for optimization over weekly-constant policies, speci�ed by either continuous or discrete government
measures (e.g.: lockdown on/o�). We illustrate our approach by minimizing the total time required
to eradicate COVID-19 within the Susceptible-Exposed-Infected-Recovered (SEIR) model proposed
by Kissler et al. (March, 2020).

I. INTRODUCTION

At the time of writing, the COVID-19 pandemic had already caused more than half a million deaths worldwide;
at the time of re-writing, some weeks later, this number was approaching one million. The e�ects of the virus have
been widespread and substantial, from the collapse of healthcare systems [1�3] to the enforcement of isolation and
quarantine. In the case of Nepal, the national lockdown lasted for 120 days uninterrupted [4].
In these circumstances, identifying reliable and e�ective disease control policies is of utmost importance. Here by

�policy� we mean a deliberate intervention intended to mitigate the e�ects of a disease as it runs its course. In much
of the mathematical literature on epidemiology, the process of generating a policy is as follows [5]: (1) based on their
intuition, expert epidemiologists propose a number of suitable policies to control the disease; (2) the impact on the
population of each of the considered policies is assessed through dynamical models of disease spread; (3) the outcomes
of all policies are compared and a decision is taken as to which one is deemed to be the best.
This three-step process has two disadvantages. First of all, the class of policies devised by an expert could well

be suboptimal, since the optimal policy (under some �gure of merit) could be extremely complicated and counter-
intuitive. Second, the method requires one to numerically simulate each policy. Given the exponential growth of the
number of policies in the number of control parameters, the number of policies considered may be on the order of
billions; hence, this strategy is not guaranteed to identify the optimal disease control policy in time to enforce it.
More sophisticated approaches for disease control rely on optimal control theory to identify a suitable policy (see,

e.g., [6�9]). The starting point of all these works is that both the initial conditions (namely, the number of infected,
exposed, etc.) and the model parameters (such as the disease's reproduction number) specifying the spread of the
disease are known with high precision. This requirement is never met in a real-life epidemic, especially close to the
outbreak, when the uncertainty of the disease's reproduction number can be very high [10, 11]. Policies derived
through optimal control theory are thus not guaranteed to have the desired e�ects in practice.
An additional disadvantage of optimal control theory is that government measures in the model cannot be con-

strained to be discrete, such as a lockdown which is either on or o�, a policy that so far has dominated global e�orts
to control the COVID-19 epidemic [12]. Last but not least, optimal control theory can only handle scenarios where
the policies continuously vary over time, thus not making it compatible with observed government measures to control
COVID-19, which for the most part have been applied on a weekly basis.
In this paper we introduce a general framework that maps any disease control scenario to an optimization problem.

Contrary to the optimal control approach, our framework can accommodate constraints on the disease dynamics which
must hold for whole regions of the initial conditions and the disease's model parameters. Our framework can enforce
policies to be weekly and/or discrete. Invoking tools from optimization theory and machine learning [13], we propose
e�cient heuristics to solve the optimization problem and hence identify the government policy that best controls the
disease.
To illustrate the power of our approach, we use these optimization techniques to generate long-term plans to �ght

COVID-19, under the assumption that the disease's dynamics are accurately captured by a variant of the Susceptible-
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Exposed-Infected-Recovered (SEIR) compartmental model [5] proposed in [14]. Our results con�rm that optimal
policies tend to be too complicated to be devised by a human.
In reality, most epidemiological models only provide short-term approximations to the spread of the disease, with

long term projections becoming less and less reliable [15]. In addition, notwithstanding the enormous knowledge
gathered since the initial COVID-19 outbreak, many questions remain to be answered regarding the correctness and
accuracy of compartmental models such as SEIR: their basic assumptions (e.g., are recovered patients temporarily
or permanently immune to the disease?); the actual value of the model's parameters (e.g., the basic reproduction
number R0); and the role of variables not modeled (e.g., age, geographic distribution, contact tracing policies, role of
superspreaders).
In this regard, the goal of this work is not to propose a concrete government policy, but rather to present an e�cient

method to obtain an optimal one, given all the available information. To estimate the e�ect of our methods in a
realistic scenario, we conduct a numerical simulation where we re-calculate the optimal policy plans every month,
based on new, incoming data. The very �nal policy plan that we present requires less stringent physical distancing
measures compared with the one which is not re-calculated every month. All the code used in our simulations is freely
available at [16].

II. THE FRAMEWORK

Our starting point is an epidemic that a�ects a closed population. This assumption is not limiting, since a large
ensemble of population centres where individuals are free to commute can also be modeled as a closed system [17].
To gain an understanding of how the disease spreads, it is standard to divide the population into di�erent sectors or
compartments [5] (see Fig. 1). One can de�ne, e.g., the compartment of all those individuals who are currently infected.
This compartment can, in turn, be sub-divided into di�erent compartments, such as symptomatic/asymptomatic.
Once the number of relevant compartments is �xed, one can estimate the occupation of each of them and arrange the
resulting numbers in a vector x. The disease is subsequently analysed by looking at how x changes with time.
In order to control or even extinguish an epidemic, governments can enforce a number of di�erent measures:

mass vaccination, physical (or social [18]) distancing measures, or even a full lockdown, are common examples of
interventions aimed at �ghting the disease. When and to which degree such measures are applied is determined
by the disease control policy. Consider a disease control policy based on random vaccination campaigns, where the
intervention consists of vaccinating a number of individuals at random per day. Call v(t) the number of individuals
vaccinated on day t. This function, between the initial and �nal times t0 and tf (i.e. on the interval [t0, tf ]) determines
the government's vaccination policy. Similarly, let s(t) take the value 1 if the country is in lockdown on day t and 0
if it is not. Then the government's lockdown policy between times t0 and tf corresponds to the function s(t).

s(t) =

{
0 lockdown o�

1 lockdown on
t ∈ [t0, tf ] . (1)

If the government is intervening both through vaccination and lockdown, then its disease control policy will be
identi�ed by both the functions v(t) and s(t).
The above are instances of non-adaptive policies for disease control, because the functions s, v just depend on the

time t, and not, e.g., on the current value of the death toll. A general (adaptive) policy for disease control would
take into account the whole past history of data gathered by the government before deciding what to do at each
step. Although in the following all our proposed policies are non-adaptive, the formalism we introduce allows one to
optimize over adaptive policies as well.
In conclusion, a disease control policy can always be identi�ed with a vector function α of the time t and perhaps

some other observed variables o, where each vector entry represents a type of government intervention at time t. In
turn, we can use a variable vector µ ∈ Rn to parametrize the class of considered policies, that is, α(t,o) = α(t,o;µ).
Since µ completely determines the policy α, we can also regard the parameters µ as the disease policy. We will do
so from now on.
The applied policy µ is assumed to in�uence the compartment occupation within the time interval [t0, tf ]. That is,

x is both a function of t and µ. In this work we are interested in devising policies for disease control which guarantee
that the spread of the disease evolves under certain conditions. For example, any country has a �xed number of critical
care capacity beds, which we denote by Bc. At each time t ∈ [t0, tf ], it is desirable that the number of individuals
admitted to critical care in hospitals, C(t), does not exceed that capacity. That is, we require that

C(t) ≤ Bc, for t ∈ [t0, tf ]. (2)
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We will call any such condition on the evolution of the disease a constraint.
Finally, among all policies satisfying the desired constraints, we typically wish to identify the one that minimizes a

certain quantity. For example, for many diseases, a simple physical distancing policy that satis�es the constraint (2)
consists of declaring a lockdown throughout the whole time interval [t0, tf ], i.e., s(t) = 1 for t ∈ [t0, tf ]. This policy
is arguably impractical, di�cult to enforce and harmful to its citizens' psychological health as well as to the national
economy. More rationally, one is interested in �nding alternative disease policies which, while respecting the critical
care occupation constraint, minimize the number of days of lockdown. Alternatively, one may wish to minimize the
total number of deaths during the interval [t0, tf ], or the number of infected people. In general, the �gure of merit,
or quantity that we wish to minimize will be a complicated functional f of the considered policy α and x. We will
call this functional the objective function.

III. MODELS AND OPTIMIZATION

The optimization problem sketched above is mathematically ill-de�ned, unless we specify how x varies with the
parameters µ determining the policy. In order to predict the natural course of a disease or how a given policy might
a�ect its spread, epidemiologists make use of mathematical models. In this paper, we will mainly be concerned
with deterministic compartmental models. In these models, the whole population is divided into a number of basic
compartments and the interactions between those compartments are modeled through a system of ordinary di�erential
equations. Given the occupation x0 of the compartments at time t0, these models allow us to compute the value of
x at any instant t ∈ [t0, tf ] as a function of the policy µ. That is, each model provides an implicit functional relation
of the form x = x(t;µ,x0).
Past literature on disease control has made extensive use of compartmental models to recommend speci�c strategies

for policy-makers in an e�ort to control the spread of disease. In many cases, suitable policies are devised through a
mixture of intuition and grid search, see [14, 19�21]. The starting point is a family of disease control policies with one
or two unknowns. For instance, in pulse vaccination [20], those unknowns are the time intervals between two random
mass vaccinations and the vaccination rate. In this paper, we propose a scheme that allows for the optimization over
policies speci�ed by thousands of parameters in the space of a few hours. Our scheme, detailed in Appendices B and C,
is based on a standard tool in optimization theory and machine learning known as gradient descent [22, 23]. Starting
with a rough guess for the optimal policy µ(0), gradient descent methods generate a sequence of policies µ(1),µ(2), ...
which typically exhibit increasingly better performance. Although the gradient method is not guaranteed to converge
to the optimal policy, after many iterations it generates solutions that are good enough for many practical problems.
In fact, gradient descent is the method most commonly used to train deep neural networks [13] and support vector
machines [24].
Importantly, the computational resources required to carry out the gradient descent method are comparable to the

cost of running a full simulation between times t0 and tf with the considered disease model. Furthermore, the necessary
computations can be parallelized for policies depending on many parameters. Although the focus of this paper is on
compartmental disease models, our main ideas can also be used to understand ecological systems undergoing a more
complex dynamics [25], see Appendix E. Even in such complicated scenarios, the former scaling laws hold: provided
that we can run the considered disease model, we can apply the gradient method to optimize over policies of disease
control.
To illustrate our approach for policy design, we will use a variant of the extended �susceptible-exposed-infected-

recovered� (SEIR) disease model proposed in [14] to predict the impact of COVID-19 in the USA, a schematic of
which is shown in Fig. (1) and the details of which appear in Appendix A. The clinical parameters of the model, such
as recovery and hospitalization rates, were estimated in [26, 27], based on early reports from COVID-19 cases in the
UK, China and Italy. Following the model in [14], the disease transmission is assumed to be seasonal by analogy with
the known behavior of betacoronaviruses such as HCoV-OC43 [27], with a baseline reproduction number between 2
and 2.5, following �ts of the early growth-rate of the epidemic in Wuhan [10, 11].
A relevant compartment in this model is C(t), the population occupying a critical care bed1 at time t. The

patients sent to critical care cannot breathe unassisted, and thus it is fundamental to ensure that such capacity is
not surpassed, namely, that the constraint (2) holds. For our simulations, we chose a population size of Npop = 47
million and Bc = 9.5 × Npop × 10−5. That is, we assumed that the healthcare system provides 95 critical care beds

1 More precisely, in our model, the relevant compartment is CC(t), or the fraction of the population in critical care at instant t. This
has to be compared with Bc, the number of critical care beds per inhabitant. C(t),Bc relate to CC(t), Bc through the expressions
C(t) = NpopCC(t),Bc = NpopBc, where Npop is the population size.
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FIG. 1: A possible compartment model for COVID-19 (adapted from [14]). The main compartments are: susceptible;
exposed; infected; hospitalized; critical and recovered. This compartmental splitting captures di�erent possible evolutions as
well as time delays between transitions. The �infected� compartment, for instance, contains those who will recover without
hospitalization (IR); those who will be hospitalized but won't need critical care (IH); and those who will end up receiving
critical care (IC). The �exposed� compartment is introduced here to model the time delay between the exposure to the disease
and the development of symptoms (incubation period), in particular, the possibility of infecting others, which is what is relevant
for the model. In this model, the compartment �recovered� includes both dead and alive individuals; in principle, it could be
sub-divided further.
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FIG. 2: Occupation of critical care beds over two years with no policy intervention. The red dashed line indicates
the critical care capacity of the healthcare system.

per million inhabitants. This is a good approximation to the healthcare capacity of many European countries, as well
as the USA.
According to the chosen model, without intervention the number of citizens requiring a bed in a critical care unit

evolves according to Figure 2 (see Appendix A for the exact initial conditions of our numerical simulations). As the
reader can appreciate, between the third and seventh month, the number of people in need of critical care exceeds
the capacity of the considered healthcare system by 18 times.
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At the time of this writing, none of the potential vaccines for COVID-19 have passed the necessary clinical trials to
be considered safe to administer [28]. In lieu of this, most governments have opted to control the disease via distancing
measures and/or lockdowns. The e�ect of implementing a policy s(t) is to multiply the disease's basic reproduction
number R0 by a factor of r [14, 27], i.e. R0 → rR0, where

r := (r̄ − 1)s+ 1. (3)

At this point we shall make a distinction: a policy s which outputs a binary value {0, 1} shall be known as discrete

and correspond to situations in which a lockdown is either on or o�. For discrete s(t) as in Eq. (1), the e�ect of a
lockdown (s = 1) results in the reduction of the transmission rate r = r̄ in Eq. (3). On the other hand, when the
population is free to interact (s = 0) then r = 1 and there is no change in the disease's basic reproduction number.

On the other hand, a policy s, which outputs a value on the interval [0, 1] will be known as continuous and correspond
to physical-distancing measures. Continuous values of s(t) correspond to intermediate policies (for example mandatory
face masks, suspension of sport events, remote working, school closures), the e�ect of which can be tentatively
estimated from available data [26].
If distancing measures are the only type of intervention that a government uses, then a non-adaptive continuous

policy is fully determined by the function s(t;µ) ∈ [0, 1]. To begin with, we will assume that the government can
only declare new measures at the beginning of each week, i.e., that s(t) does not vary within the weekly intervals
t ∈ [7k, 7(k + 1)] =: Ik, for k ∈ Z. With these conditions, s(t) can be expressed as

s(t) =
∑
k

σ(s̃k)χIk(t). (4)

where χIk(t) is the characteristic function of week number k, i.e., χIk(t) equals 1 if t is in the k-th week; and 0,
otherwise. The characteristic function, thus, ensures that there is only one policy s(t) per week. σ(y) = 1

1+exp(y)

denotes the sigmoid function, which guarantees that s(t) ∈ [0, 1] by continuously mapping the variables {s̃k}k, such
that it is everywhere di�erentiable, making it amenable to the gradient method. The parameters to optimize over are
µ ≡ {s̃k}k, since they fully de�ne the government's disease policy.
Having chosen either discrete or continuous measures, one must choose a �gure of merit or objective function to

optimize over. Our formalism, explained in detail in Appendix C, allows us to minimize expressions of the form

A(µ,x0) =

∫
dt L (t,µ,x(t;µ,x0)) . (5)

In this paper, we consider optimizations that never allow the number of people in the critical care compartment to
exceed the maximal occupancy, i.e., we impose the constraint in Eq. (2). Thus we consider optimizations of the form

min
µ

∫
dt L (t,µ,x(t;µ,x0))

subject to C(t) ≤ Bc .
(6)

In what follows, we split our analysis by choosing di�erent objective functions L (t,µ,x(t;µ,x0)) to minimize over,
considering policies s(t;µ) which are either continuous, as in Eq. (4), or discrete as in Eq. (1).

A. Objective function 1: minimizing physical distancing and lockdown measures

Suppose, for instance, that one is con�dent that a vaccine for COVID-19 will be developed within the next two years.
In this case, one is interested in minimizing the aggregate economic cost E associated with the physical-distancing
measures implemented by the government over these two years. Thus for the optimization in Eq. (6), we consider
Lagrangians (objective functions) of the form

L (t,µ,x(t;µ,x0)) = E(s(t;µ)) . (7)

Figure 3 shows the result of applying the gradient method to minimize this functional for the cost function E(s) = s,
under continuous policies s(t) of the form (4) satisfying the critical care capacity constraint (2). The plot shows both
the critical care occupancy C(t) and the physical-distancing measure s(t) between times t0 and tf = t0 + 2 × 365.
The aggregate cost of the optimal policy is equal to the economic cost of sustaining a full lockdown for 294 days. As
anticipated, the optimal policy found by the computer is very complicated. Notice that the critical care occupancy
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FIG. 3: Occupation of critical care beds (red) and physical-distancing measures (blue) for a period of two
years. The optimization has been performed over continuous weekly policies, 104 continuous parameters, i.e., any value of
physical-distancing measure s between 0 and 1 is accepted. The algorithm, however, tends to prefer 0/1 con�gurations, i.e.,
full lockdown or no lockdown in most instances.

grows quickly towards the end of the plot. The reason for this is that we asked the computer to minimize the total
time in lockdown over a �xed period of two years, which is exactly what it did: it minimized the physical-distancing
measures in the �rst two years with complete disregard for what could happen next. To overcome such a pathological
case, one can introduce additional terms into Eq. (7) that would constrain the �nal slope of the curve C(t), to make
it less steep, or even decreasing.
In some circumstances, the only distancing measures considered by governments are discrete: lockdown on or o�

as in Eq. (1). These kinds of optimizations over discrete variables cannot be carried out directly with the gradient
method. In Appendix D, we propose two di�erent ways to tackle this problem.
One way consists of using stochastic gradient descent to obtain an optimal non-deterministic weekly policy that is

later �binned� to arrive at a deterministic policy for disease control, see Appendix D. The results of this �rst method
are shown in Figure 4. This time the critical care occupancy curve touches the critical care capacity just after the
end of year 1. The reason for this is that we demanded lockdowns to last exactly one week: had we allowed the
government to declare a lockdown on any day of the week, the computer would have found a tighter solution, with
every peak of the red curve touching the dashed line. Even under this discrete weekly simpli�cation, the solution
found by the computer is non-trivial: it requires the government to declare a lockdown 27 times. The total length of
the lockdown in the course of two years is 371 days.
Our second discretization method consists in parametrizing the disease control policy through the speci�c times

where lockdown is declared. In other words, µ = (t1, t2, ..., t2N ), and lockdown is assumed to take place within the
time intervals [t1, t2], [t3, t4], .... In this parametrization, lockdowns can be declared or lifted at arbitrary times within
[t0, tf ], and not only on Mondays, like in the �rst method. This second discretization method has the advantage of
allowing one to set the maximum number N of lockdowns throughout the period [t0, tf ]. For N = 9, the corresponding
critical care occupation and lockdown graphs are shown in Figure 5. The total length of the lockdown is 338 days.

B. Objective function 2: achieving herd immunity

One problem with the policies above is that they require one to implement lockdown measures over long periods
of time. Another strategy to �ght COVID-19 consists of steering the population towards herd immunity, without
violating the constraint on the critical care capacity. This is captured by using a functional of the form

L (t,µ,x(t;µ,x0)) = |S(t)− Sh|, (8)

in Eq. (6), where S (as depicted in Fig. 1) is the component of x that denotes the proportion of individuals in the
population who are susceptible to the disease. Sh = 1

R0
is the proportion of susceptible individuals required for
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FIG. 4: Occupation of critical care beds (red) and lockdown (blue) for a period of two years. The plot shows the
result of the optimization over probabilistic policies via gradient descent over a period of two years.
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FIG. 5: Occupation of critical care beds (red) and lockdown measures (blue) for a period of two years. Optimiza-
tion over deterministic policies with arbitrary initial and �nal times for each lockdown period. A total of 9 lockdown periods
has been �xed prior to the optimization. Notice that the �rst lockdown period, around day 60, has been basically removed by
the optimization procedure.

herd immunity to be guaranteed; thus, once S(t) < Sh although people will continue to become infected, the natural
evolution of the disease will be such that the rate and number of infected quickly dies out.
Fig. 6 illustrates the results of optimizing the objective function in Eq. (8) for continuous physical-distancing

measures. The number of susceptible individuals reaches Sh on day 864, after which the disease can be considered
extinct.
Notwithstanding the unprecedented velocity in the development of a COVID-19 vaccine, with many pharmaceutical

companies and research institutions that already reached advanced stages in clinical trials on humans, as of now, no
vaccine has completed all testing phases before being approved [28]. One may wonder what will happen if the situation
were di�erent with a possible vaccine not available in a time span of months.
A possible policy to reach faster herd immunity, while not saturating the critical care capacity, could be to deliber-

ately infect a fraction of the population at the same time as imposing physical distance measures. It is important to
remark that, even allowing this procedure on a voluntary basis among the population which are at the lowest health
risk (e.g., young adults in good health), this practice poses high ethical concerns; as such, we remark that we do
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FIG. 6: Occupation of critical care beds (red) and population of susceptible individuals (blue) for a period of
three years. The blue line corresponds to the level of susceptibles guaranteeing herd immunity over the whole year.

not endorse applying such �infection policies� on a human population. We just consider them in this paper for the
academic purpose of exploring the power of the gradient method to devise complex policies for disease control. In
fact, the results of our simulations indicate that the advantage with respect to simple physical distancing policies are
minimal (cf. Fig. 7).
That being said, consider the following model of such an unethical policy. Let λ(t) be the rate at which the

government intentionally infects the general population on day t. Then, a lockdown-infection policy is identi�ed with
the functions s(t) and λ(t). As with s, one can parametrize the function λ to change once per week. Denoting by Λ
the maximum rate of this deliberate infection, a suitable parametrization for λ(t) is

λ(t) = Λ
∑
k

σ(λk)χIk(t). (9)

The disease model used to predict the impact of this policy will depend on how the government decides to deal
with those infected: (a) the infected are quarantined until they overcome the disease; (b) the infected are allowed to
mingle with the general population. In either compartmental model, one can compute the functions x(t;µ,x0), with
µ = {s̃k}k ∪ {λk}k. We are interested in minimizing the functional given by (8) for the problem in Eq. (6).

The results for both quarantined/non-quarantined policies for Λ = 104

Npop
are shown in Figure 7, where we included

the curves of the no-infection policy for comparison. As can be seen, the unethical policy of intentional infection
brings the population to herd immunity, and thus the disease eventually to extinction, just slightly earlier than the
optimal policy based on physical-distancing measures only.
Note how tight the constraint on critical care bed occupation becomes for policy (b). Figure 8 shows the strategy

achieving this result. As in the previous cases, the optimal policy is extremely complicated in terms of physical
distancing measures. The infection policy is, however, very simple: except at the beginning of the outbreak and
after the disease's extinction, infection occurs at the maximum rate. Notice also that, once the disease is extinct, the
computer recommends a permanent lockdown, the reason being that the objective function in Eq. (8), contrary to
Eq. (7), does not penalize the overzealous use of physical distancing measures.

IV. MODELS VS. REALITY

In practice, the predictions of any mathematical model for a physical system will not be perfect for a number of
reasons. First, basic parameters of the model, such as the transmission rate or the initial occupation x0, are only
known up to approximations. Even if reality were exactly described by a particular mathematical model, small errors
in such parameters would accumulate in the long run, making long-term predictions unreliable. Second, reality is
never exactly described by mathematical models: on the contrary, any tractable disease model is, at best, a rough
approximation to reality. Consequently, even the most successful disease models in the market cease to deliver solid
predictions beyond 4 weeks [15].
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FIG. 7: Occupation of critical care beds (red) and population of susceptible individuals (blue) for a period of
three years under di�erent policies for disease control. The dotted lines represent the e�ects a physical distancing
measures-only policy (dotted lines), infection policy (a) (dashed-dotted lines) and infection policy (b) (solid line).
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FIG. 8: Government infection (green) and physical distancing measures (blue) under infection policy (b). The
algorithm recommend an almost constant infection rate, except for a brief initial period, which goes to zero after reaching herd
immunity. Notice that, since we are minimizing the distance from the herd immunity threshold (cf. Eq (8)), the algorithm does
not care about minimizing physical distancing measures. This is the reason why after reaching herd immunity, a full lockdown
is suggested. This type of behavior of the algorithm can be easily corrected by hand after the solution is obtained.

These considerations make us question how practical a two-year disease control policy really is. Consider the policy
depicted in Figure 3, which was obtained by applying the gradient method to the SEIR model in [14]. Here, the model
parameters ν correspond to the average values ν̄ of the parameter ranges in Table A of Appendix A. In reality of
course, the values of the parameters are never all equal to their averages, so we proceed to generate sets of parameters
with some �uctuations. Let ∆ν be the vector with entries given by the di�erence between the upper and lower
bounds of all the entries of the table, and suppose that the actual parameters of �reality� are unknown and uniformly
distributed in the region of values Na = {ν : −a∆ν

2 ≤ ν − ν̄ ≤ a∆ν
2 }, where a can be interpreted as the amount of

noise or uncertainty. How robust is a policy to uncertainty in the initial parameters?
Fig. 9 shows the result of generating 1000 independent parameter samples from the region N0.05, corresponding to

a 5% uncertainty, with respect to the given interval of values, and running the corresponding models for the optimal
physical distancing policy in Fig. 3. As one can see, for some sampled values of parameters, the critical care capacity
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FIG. 9: Occupation of critical care beds (red) and (unoptimized) physical distancing measures (blue) for a
period of two years under random parameters in N0.05. The region in red is obtained by sampling 1000 times from the
region of model parameters N0.05 and evolving the corresponding models with the physical distancing policy optimized over
the model with average-value parameters (as in Fig. 3). More precisely, the red region is the one delimited by the minimum
and the maximum critical care occupation for all the 1000 models, at each time. The red line represents the average critical
care occupation in all those simulations.

of the healthcare system is exceeded. This is not surprising, since the policy depicted in Fig. 3 was devised to perform
well under the assumption that ν = ν̄ and not ν ∈ N0.05, i.e., for the model parameters corresponding to their average
value.
In order to tame the behavior in the plot in Fig. 9, one can employ a variant of the gradient method called

stochastic gradient descent (see Appendix B). This allows one to optimize over long-term policies without violating
the constraints of the problem for a range of values for the parameters of the model as well as the initial conditions
x0

2. Fig. 10 shows a lockdown policy minimizing the physical distancing measures under the condition that constraint
(2) holds for di�erent values of ν ∈ N0.05, i.e., the critical care capacity is not exceeded. This time, the violation of
condition (2) is neither so extreme nor so frequent. This comes, however, at the cost of enforcing physical distancing
measures with a cost equivalent to 331 days of lockdown. Repeating the optimization for N0.25, Fig. 11, we see that
the critical care capacity is rarely surpassed. However, this time the total cost is equivalent to 414 days of lockdown.
This result is what one would have expected. As time goes by, the predictions of the disease model for di�erent

values of ν diverge: any policy which aims to satisfy constraint (2) for large ranges of these parameters will necessarily
require extensive physical distancing measures.
In practical policy-making, graphs such as Figs. 10 and 11 should not be understood to represent the actual physical

distancing policy, but rather to provide a provisional policy plan. A policy plan gives a recommendation for action for
the immediate future, given the current knowledge of the disease. In Fig. 10, the policy plan is advising not to declare
physical distancing measures in the �rst weeks. That is the measure that the government should adopt then. After a
�rst time period, say four weeks, more data will have been gathered: this will allow us to obtain a better estimate of
the parameters ν, and then re-run the models for another two years ahead. The measure to enforce should then be
whatever the new policy plan recommends for the following four-week time period. The process is then repeated.
To test how this idea would perform in practice, we consider a scenario where the parameters de�ning the disease

model are unknown, but the region in parameter space in which they live shrinks every month (to be precise, we used
a 28-day period, corresponding to four weeks). That is, at month k, the government is informed that the parameters
ν satisfy ν ∈ N0.25/

√
k. Every four weeks, the policy is recalculated to minimize the physical distancing measures for

the rest of the two years ahead, using the range ν ∈ N0.25/
√
k. The �nal curves for the critical care occupation and

2 Rigorously speaking, stochastic gradient descent just minimizes the average value of the objective function A. By adding to A su�ciently
strong penalties to the violation of each optimization constraint, we make sure that such constraints will hold with high probability
when x0 and ν are sampled from the training distribution.
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FIG. 10: Occupation of critical care beds (red) and (optimized) physical distancing measures (blue) for a period
of two years under random parameters in N0.05. The disease control policy was optimized to respect condition (2) over
the whole range of parameters N0.05. As in Fig. 9, the region in red depicts again the range of critical care occupations observed
in a sample of 1000 model parameters in N0.05, and the red line the average critical care occupation.
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FIG. 11: Occupation of critical care beds (red) and (optimized) physical distancing measures (blue) for a period
of two years under random parameters in N0.25. The disease control policy was optimized to respect condition (2) over
the whole range of parameters N0.05. As in Fig. 9, the region in red depicts again the range of critical care occupations observed
in a sample of 1000 model parameters in N0.25, and the red line the average critical care occupation.

the physical distancing measures are shown in Fig. 12 for ν, in a sequence of shrinking regions N0.25/
√
k, for each

month k (red region) and in the case of a �xed uncertainty region corresponding to the last month, i.e., N0.049 (inner
dark blue region). The total cost of the physical distancing measures is equivalent to 358 lockdown days. This has to
be compared with the cost of 414 days predicted by the initial policy plan under the assumption ν ∈ N0.25.
In principle, one could further decrease the total planned cost by devising adaptive policy plans, where the measure

to be taken at each moment depends not only on the current time t, but also on the past history of physical distancing
measures and their observed e�ects. In fact, we tried optimizing over adaptive policies described by a continuous
version of a neural network architecture known as Long Short-Term Memory (LSTM) [29]. In all our numerical
experiments, such simple LSTM architectures could not improve the performance of non-adaptive strategies, but this
could be due to ine�ective training on our side.
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FIG. 12: Occupation of critical care beds (red) and physical distancing measures (blue) for a period of two
years under random parameters and monthly noise decrease. The disease control policy was optimized to respect the
condition in Eq. (2), i.e., critical care capacity not exceeded, starting with the parameter region N0.25 and with a monthly

noise decrease of 1√
k
, i.e., in the k-th month the noise is equal to 0.25/

√
k. The region in red depicts the range of critical care

occupations observed in a sample of 1000 model parameters in a sequence of shrinking regions N0.25/
√
k; more precisely, for

each month k the red region is obtained by evolving, from the initial time to month k (included), 1000 di�erent models with
parameters sampled from the region N0.25/

√
k. The �nal plot is obtained by joining the plots for each month k. The inner region

in dark blue depicts the range of critical care occupations corresponding to the uncertainty in the �nal month, i.e., obtained
with 1000 models with parameters sampled in N0.049. The red line represents the average critical care occupation, obtained
by joining the average of the simulations with decreased uncertainty for each month k. Despite the initial uncertainty on the
parameters ν of the disease model, the �nal lockdown time is much lower, due to monthly revisions of the original policy plan.

V. CONCLUSION

In this paper, we have applied standard tools from optimization theory and machine learning to identify optimal
disease control policies, given an epidemiological model. This is in stark contrast to standard practice in mathematical
epidemiology, where human intuition is used to narrow down the considered set of policies to a uni-parametric family.
We saw that the optimal solutions found by our algorithms are highly counter-intuitive, and thus unlikely to be
identi�ed by a human. This supports the idea that policies for disease control should be based on a combination of
both human expertise and machine learning.
Compared to previous approaches that tried to identify suitable disease control policies through optimal control

theory, our framework allows one to devise policies that satisfy arbitrary constraints under arbitrary uncertainties in
the initial conditions and model parameters that determine the disease's dynamics. Our methods, in addition, allow
one to optimize over discrete policies, as well as policies that can just vary at certain �xed times.
To illustrate our ideas, we studied a scenario in which a computer is tasked with outputting the minimal amount

of physical distancing measures for an epidemic in a hypothetical country, in such a way as to never exceed the
critical care bed capacity. We looked at situations in which these measures were continuous (recommendations on the
interval [0, 1]) as well as discrete (either 0 or 1) � a lockdown that is o� or on, respectively for periods of 2 years. We
experimented with measures which are just allowed to change weekly, as well as those in which there is a maximum
number of lockdowns that is allowed to be declared. When considering unethical interventions, in which parts of
the population are deliberately infected, we found that there is little di�erence in the time for the disease to become
extinct, compared with the natural evolution of the disease.
We examined the problems that one may encounter when applying these techniques to scenarios where the model

parameters are not known with high accuracy, which led us to propose practical policy plans which must be continually
revisited, to account for our ever-changing and ever-growing knowledge in an epidemic. We tested the viability of
this approach by simulating a scenario where the uncertainty on the disease model parameters decreases with time.
As expected, the �nal policy implemented was safe for the �nal range of parameters and required considerably less
physical distancing measures than the initial policy plan hinted.
In this last regard, an interesting problem for future research is how to devise adaptive policy plans for disease
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control, where the actual measure at each time depends on the whole history of disease indicators accessible to the
government. In theory, such plans should predict lower values of the average objective function in scenarios where
the model parameters are unknown. In our experience, though, gradient descent alone seems to be unable to beat the
non-adaptive score.
Finally, we would like to remark once more that, since the optimization problems we dealt with in this paper are

non-convex, the gradient method is not guaranteed to converge to the minimum of the (average) objective function.
While conducting this research, in order to convince ourselves that the solutions found by our numerical methods
were close to optimal, we had to repeat our optimizations several times, with di�erent initial policies µ(0) and
learning rates ε. Such a redundant use of computational resources would have been entirely avoidable if we had had
some rough approximation to the exact solution of the problem. Hence we conclude this paper with a challenge
for the operations research community: develop mathematical tools which allow one to lower bound the solution of
minimization problems involving ordinary di�erential equations.
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APPENDIX A: MODELS FOR THE SPREAD OF COVID-19

In all our numerical simulations, we will assume that the dynamics of the COVID-19 are well approximated by
a compartmental model of the SEIR type. When the government policy reduces to enforcing physical distance
measures, we will adopt a simpli�ed version of the model used in [14]. This model divides those infected with COVID-
19 into three di�erent compartments: IR or those who recover by themselves from the disease; IH , those who require
hospitalization but do not enter a critical care unit; and IC , those who are both hospitalized and visit a critical care
unit before recovery. The dynamics of the model are governed by the system of ordinary di�erential equations below,
see the diagram in Figure 13:

dS

dt
= −r(t)β(t)S(IR + IH + IC),

dE

dt
= r(t)β(t)S(IR + IH + IC)− νE,

dIR
dt

= pRνE − γIR,
dIH
dt

= pHνE − γIH ,
dIC
dt

= pCνE − γIC ,
dHH

dt
= γIH − δHHH ,

dHC

dt
= γIC − δCHC ,

dC

dt
= δCHC − ξC,

dR

dt
= γIC + δHHH + ξC. (A1)

Here
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FIG. 13: COVID-19 model for disease policies based on physical distance measures.

parameter value units

r̄ [0, 0.6] none

∆ [0.7, 1.0] none

γ 1/5 days−1

ν 1/4.6 days−1

pR 0.9596 none

pH 0.0308 none

pC 0.0132 none

δH 1/8 days−1

δC 1/6 days−1

ξ 1/10 days−1

φ −7× 3.8 days

R0 [2, 2.5] None

TABLE I: Parameter ranges for the compartmental model for COVID-19 proposed in [14].

β(t) = γR0

(
1 + ∆

2
+

1−∆

2
cos

(
2π(t+ φ)

7× 52

))
(A2)

denotes the virus' transmitivity, that is subject to seasonal variability. r(t) = (r̄ − 1)s(t) + 1 models the e�ect of a
government-mandated lockdown s(t) ∈ {0, 1} on the virus' transmission rate. The values of the remaining parameters
are taken from [14], and appear in Table A.
If the government has the option of deliberately infecting random samples of the population with COVID-19, then

the model gets slightly more complicated. If those infected are quarantined until they overcome the disease, the new
model, depicted in Figure 14, is described by the system of equations:
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FIG. 14: COVID-19 model for disease policies based on physical distance measures and deliberate inoculation.

dS

dt
= −rβ(t)S(IR + IH + IC)− λ(t)S,

dE

dt
= rβ(t)S(IR + IH + IC)− νE,

dIR
dt

= pRνE − γIR,
dIH
dt

= pHνE − γIH ,
dIC
dt

= pCνE − γIC ,
dE′

dt
= λ(t)S − νE′,

dI ′R
dt

= pRνE
′ − γI ′R,

dI ′H
dt

= pHνE
′ − γI ′H ,

dI ′C
dt

= pCνE
′ − γI ′C ,

dHH

dt
= γ(IH + I ′H)− δHHH ,

dHC

dt
= γ(IC + I ′C)− δCHC ,

dC

dt
= δCHC − ξC,

dR

dt
= γIC + δHHH + ξC. (A3)

If, on the contrary, the government allows those deliberately infected to mingle with the general population, the
equations above simplify considerably: it su�ces to replace all instances of the term rβ(t)S(IR + IH + IC) in eqs.
(A1) by rβ(t)S(IR + IH + IC) + λ(t)S.
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In all our numerical simulations, we take the total population to be 47 million; the critical care bed capacity per
inhabitant Cc is also taken to be 9.5× 10−5. We assume that the government starts its intervention on day t0 = 60,
30 days after the outbreak of the disease. We model the disease outbreak by assuming that, at time tout = 30, there
are 10 individuals in compartment E. By default, the values of the disease parameters are taken to be the arithmetic
means of the intervals shown in Table A. We assume that the government can deliberately infect 104 individuals per

day. This sets a value for Λ of 10−2

47 .

APPENDIX B: THE GRADIENT METHOD

Given functions f, gi : Rn → R, for i = 1, ...,K, consider the following optimization problem:

min
µ
f(µ)

such that gi(µ) ≤ hi, for i = 1, . . . ,K. (B1)

Each of the conditions gi(µ) ≤ hi is called a constraint.
De�ne M = {µ : gi(µ) ≤ hi, i = 1, ...,K}. If f is sub-di�erentiable, a simple heuristic to solve this problem is the

projected gradient method [22]. Call µ? the solution of the problem. Starting from an initial guess µ(0), the gradient
method generates a sequence of values (µ(k))k with the property that limk→∞ µ

(k) = µ?, provided that M,f are,
respectively, a convex set and a convex function [22]. The sequence (µ(k))k is generated recursively via the relation

µ(k) = πM

(
µ(k−1) − ε∇µf(µ(k−1))

)
, (B2)

where, for any set A ∈ Rn, πA(z) denotes the point y ∈ A that minimizes the Euclidean distance, i.e., miny∈A ‖y−x‖2.
Unfortunately, in the problems we encounter in the main text, f is not convex and, sometimes, neither is M . This

implies that the sequence output by the projected gradient method is not guaranteed to converge to the solution of
the problem, but to a local minimum thereof.
In machine learning, optimization problems with non-convex objective function f and M = Rn are legion. To solve

them, deep learning practitioners typically use variants of the gradient method sketched above. One of these variants,
Adam [30], is extensively used to train neural networks.
Adam works as follows. Starting with the null vectors m(0),v(0) ∈ Rn, vector sequences are generated according

to the following iteration rule:

G(k) = ∇µf(µ(k−1))

m(k) = b1m
(k−1) + (1− b1)G(k)

v(k) = b2v
(k−1) + (1− b2)G(k) �G(k)

m̂(k) =
m(k)

1− bk1

v̂(k) =
v(k)

1− bk2

µ(k) = µ(k−1) − ε m̂(k)

√
v̂(k) + δ

, (B3)

where G(k) � G(k) denotes the vector of the element-wise product; similarly, the fraction and square root in the
de�nition of µ(k) are de�ned element-wise. Recommended values for the free parameters ε, b1, b2, δ are ε = 0.001,
b1 = 0.9, b2 = 0.999 and δ = 10−8 [30].
Like the projected gradient method, Adam is not guaranteed to converge to the optimal solution of the problem.

However, provided that the initial conditions and the learning rate ε are chosen with care, Adam has been observed
to typically output a local minimum that is �good enough�.
Note that, by taking M = Rn, it is not clear how to enforce that the solution satis�es constraints of the form

gi(µ) ≤ hi. The answer is to include those constraints as penalties in the objective function. That is, rather than
minimizing f , we apply Adam to minimize the function

f(µ) +
K∑
i=1

νi(hi − gi(µ))+, (B4)
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where νi � 1 and z+ denotes the positive part of z, i.e., z+ = z for z > 0; otherwise, z+ = 0. For high enough values
of {νi}i, the solution of the problem will just violate the constraints slightly, i.e., hi − g(µ?) ∈ [−δ,∞), for δ � 1. If
no violation whatsoever is desired then one can instead optimize over a function of the form

f(µ) +
K∑
i=1

νi(hi − δ′ − gi(µ))+, (B5)

with δ′ > 0.
In some situations, the objective function f will be complicated to the point that computing its exact gradient is

an intractable problem. It might be possible, though, to generate a random vector ∇̃µf ∈ Rn with the property〈
∇̃µf

〉
= ∇µf. (B6)

In such a predicament, we can solve the original optimization problem (B1) through stochastic gradient descent
methods [23]. Stochastic gradient descent consists in applying the considered gradient method, with the di�erence

that, every time that the method requires the gradient of f , we input the random variable ∇̃µf ∈ Rn instead. Namely,

it su�ces to replace ∇µf(µ(k−1)) by ∇̃µf(µ(k−1)) in the iterative equations (B2), (B3). As before, if both M and f
are convex, stochastic gradient descent methods are guaranteed to converge to the optimal solution of problem (B1)
[23].

APPENDIX C: OPTIMIZATION OVER CONTINUOUS POLICIES FOR DISEASE CONTROL

Our starting point is an ordinary di�erential equation of the form

dxi

dt
= Gi(t,x;µ); i = 1, ...,m. (C1)

The entries of vector x represent the occupations of the di�erent compartments of a disease model3. µ ∈ Rn represents
a parametrization of the e�ects of a given policy. In the examples of the main text, µ = {s̃k}k or µ = {s̃k}k ∪ {λk}k.
Call x(t; µ̄,x0) the solution of Eq. (C1) with initial conditions x(0) = x0 and µ = µ̄.
Given the setM ⊂ Rn, we consider the problem of �nding the parameters µ? ∈M such that x(t;µ?,x0) minimizes

a given functional A. This functional de�nes how we wish to control the disease and what for: it might represent the
number and duration of lockdown, etc. For the time being, let us assume this functional to be of the form

A(µ,x0) =

∫ tf

t0

dtL(t,µ,x(t;µ,x0)). (C2)

Note that we are assuming to know the initial conditions x0 with precision. We will relax this requirement by the
end of the section.
From the discussion in section B, functional (C2) might also contain constraints which we wish the solution

x(t;µ?,x0) to satisfy. For instance, if we want Eq. (2) to hold, then one of the terms in L(t,µ,x(t;µ,x0)) could be

ρ(t) (C(t;µ,x0)−Bc)+
, (C3)

with ρ(t)� 1. In the optimizations presented in the paper, we did just this, with ρ(t) = 500
Bc

(�gures 12, 11), ρ(t) = 100
Bc

(�gure 10) or ρ(t) = 10
Bc

(rest of the �gures).
As we saw in section B, optimizations over a large number of parameters µ ∈ Rn are usually conducted via gradient

descent methods, such as Adam [30]. Such methods require us to compute ∇µA. For functionals of the form (C2),
we have that

∂A

∂µj
=

∫ tf

t0

dt

(
∂L(t,µ,x(t;µ,x0))

∂µj
+
∑
i

∂L(t,µ,x(t;µ,x0))

∂xi
∂xi

∂µj

)
. (C4)

3 In the case of adaptive policies, some of such entries might also represent the components of the cell state θ [29], i.e., the internal
variables used by the government to keep track of the evolution of the disease and guide future government interventions.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2020.09.15.20194811doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.15.20194811
http://creativecommons.org/licenses/by/4.0/


19

The next question is thus how to compute the derivatives ∂xi

∂µj
. To this aim, de�ne the variables yij(t;µ,x0) ≡

∂xi(t;µ,x0)
∂µj

. Di�erentiating equation (C1) by µj , we have that

∂yij
∂t

=
∂Gi(t,x;µ)

∂µj
+
∑
l

∂Gi(t,x;µ)

∂xl
ylj ; i = 1, ...,m, j = 1, ..., n. (C5)

In order to obtain {yij(t)} for each time t, it hence su�ces to solve the system of coupled di�erential equations

given by (C1), (C5) with initial conditions x(t0) = x0, y
i
j(t0) = 0. This can be achieved numerically through several

di�erent methods, depending on the desired accuracy. In all our numerical simulations, we used the Euler explicit
method [31]. Namely, for δ > 0, we regarded time as a discrete variable of the form tk = t0 + δk, for k = 0, ..., d tf−t0δ e.
We obtain the quantities {xi(tk), yij(tk) : k} by recursively applying the relations

xi(tk+1) = xi(tk) + δGi(tk,x(tk);µ),

yij(tk+1) = yij(tk) + δ

(
∂Gi(tk,x(tk);µ)

∂µj
+
∑
l

∂Gi(tk,x(tk);µ)

∂xl
ylj(tk)

)
. (C6)

We chose δ = 1.0 to generate all our plots, with the exception of Figure 5, where δ = 0.1.
In some situations in the main text, our functional A is more complicated than (C2). Some parameters ζ (not policy

parameters) regulating the evolution (C1), such as the disease's basic reproduction number, might be unknown, or
perhaps the initial conditions x0 are just known within some bounds. In such cases, the problem's objective function
A might adopt the form

A(µ) =

∫
p(ζ,x0)dζdx0

∫
dtL(t,µ,x(t;µ, ζ,x0)). (C7)

Again, we wish to minimize A over λ ∈ M . As explained in section B, this can be achieved via stochastic gradient
descent methods [22]: all we need is an unbiased estimator ∇̃µA of ∇µA. We obtain this estimator by taking N

independent samples (ζ(j),x
(j)
0 )Nj=1 from the measure p(ζ,x0)dζdx0 and using them to compute the quantity

∇̃µA =
1

N

N∑
j=1

∇µ
∫
dtL(t,µ,x(t;µ, ζ(j),x

(j)
0 )). (C8)

The optimal value of N depends on the variance of the speci�c estimator, and we used di�erent values for di�erent
levels of noise, de�ning the set N in the main text.

APPENDIX D: OPTIMIZATION OVER DISCRETE POLICIES OF DISEASE CONTROL

The above section explains how to conduct optimizations over disease control policies, as long as the parameters
µ de�ning the policy are allowed to vary all over Rn. Some policies, though, are by their very nature, discrete. For
instance, on day t we can either declare a lockdown (s = 1) or not declare a lockdown (s = 0). The e�ect of the policy
measure over the disease's transmission rate will be to multiply the latter by the amounts r̄ and 1, respectively.
In principle, we could model this situation via a continuous variable λ ∈ R and write the e�ect r on the transmitivity

by means of a piece-wise continuous function of λ, e.g.: r = Θ(−λ)r̄+(1−Θ(−λ))1, where Θ(z) denotes the Heaviside
function 4.
In that case, however, the gradient method would not work. Note that the Heaviside function has zero derivative

everywhere except at 0. In every iteration of Adam, ∇λA would be null, and so λ(k) = λ(0) for all k.
Optimizing over discrete variables is, in general, a very di�cult endeavor: apparently simple problems can be

argued not to have an e�cient solution [32]. In this paper, we propose a simple heuristic to attack this problem in
this particular situation.

4 Θ(z) equals 1 for z ≥ 0, or 0, otherwise.
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Suppose, for the time being, that our lockdown policy were probabilistic, i.e., at each week k, we declare a lockdown
with probability pk(1) = σ(s̃k); otherwise, with probability pk(0) = 1− σ(s̃k), we let the population roam freely. We
wish to minimize our average objective function, that is, the expression

Ā(s̃,µ) =
∑

c1,...,cq=0,1

q∏
k=1

pk(ck)

∫
dtL (t,µ,x(t; c,µ,x0)) , (D1)

where c is the whole vector of weekly lockdowns, and µ corresponds to the continuous parameters of the policy, e.g.:
vaccination rates.
In principle, we could apply gradient descent to minimize (D1). Estimating the exact gradient of the above

expression is, however, unrealistic, as it involves summing a number of terms exponential in the number of weeks q.
Instead, we will produce a random unbiased estimate of the gradient and invoke stochastic gradient descent methods,
see Appendix B.
Let us �rst di�erentiate Eq. (D1) with respect to the continuous variables µ. The result is

∂Ā(s̃,µ)

∂µj
=

∑
c1,...,cq=0,1

q∏
k=1

pk(ck)vj(s̃,µ|c) = 〈vj(s̃,µ|c)〉c, (D2)

where

vj(s̃,µ|c) =

∫
dt
∂L (t,µ,x(t; c,µ,x0))

∂µj
(D3)

and the components of the random variable c ∈ {0, 1}q are generated by sequentially sampling from the Bernouilli
distributions (1 − σ(s̃k), σ(s̃k))k. Note that the expression in the integrand of (D3) can be computed using the
techniques discussed in Appendix C.
Di�erentiating Eq. (D1) with respect to s̃k we �nd that

∂Ā(s̃,µ)

∂s̃k
=
∑
a=0,1

〈
wk(s̃,µ|c(k,a))

〉
c(k,a)

, (D4)

with

wk(s̃,µ|c(k,a)) =
∂pk(a)

∂s̃k

∫
dtL

(
t,µ,x(t; c(k,a),µ,x0)

)
, for a = 0, 1 (D5)

and the average
〈
wk(s̃,µ|c(k,a))

〉
c(k,a) is obtained via sampling over the product of Bernoulli distributions for

c
(k,a)
1 , . . . , c

(k,a)
k−1 , c

(k,a)
k+1 , . . . , c

(k,a)
q and �xing c

(k,a)
k = a.

Putting this all together, we have that the random vectors v, w satisfy

〈v〉 = ∇µĀ(s̃,µ)

〈w〉 = ∇sĀ(s̃,µ). (D6)

Since both vectors can be sampled e�ciently, we can use them (and their averages) to optimize over Ā(s̃,µ) via
stochastic gradient descent.
At this point, the reader might object that our original goal was to minimize (C2) over policies with deterministic

lockdown. Very conveniently, independently of the initial values of s,µ the stochastic gradient method will converge
to a policy p?,µ? such that the deterministic policy with the same continuous parameters µ? and lockdown given by

c?k =

{
0 for p?k(0) > 1/2

1 otherwise
(D7)

has the same objective value.
Indeed, for k ∈ {1, ..., n}, �x {s?j : j 6= k}. Then,
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FIG. 15: Parametrization of continuous lockdown times.

Ā(s̃?,µ?) =
∑
a=0,1

p?k(a)A(s̃?,µ?|ak = a), (D8)

with

A(s̃?,µ?|ak = a) ≡
∑

c1,...ck−1,ck+1,...,cq=0,1

q∏
j 6=k

p?j (cj)

∫
dtL (t,µ?, c,x(t; c1, ..., ck−1, a, ck+1, ..., cq,µ

?,x0)) . (D9)

Since p?,µ? is a local minimum of Ā(s̃?,µ?), it follows that, either p?k(0)p?k(1) = 0 or

A(s̃?,µ?|ak = 0) = A(s̃?,µ?|ak = 1) = Ā(s̃?,µ?). (D10)

In either case, �xing ck through the procedure (D7) cannot increase the average value of the objective function.
Iterating over k = 1, ..., q, we prove the claim.
Note that this method easily extends to optimizations over discrete adaptive policies. In that case, one can

model the probability pk of lockdown on week k as a function of both the current input x̃ and the cell state θ,
i.e., pk(a) = pk(a|x̃,θ). Let us assume that the family of functions pk(a|x̃,θ) available is rich enough to regard
pk(a|x̃,θ), pk(a|x̃′,θ′) as independent. Then one can argue as before and conclude that a deterministic policy can be
inferred from the limiting probabilistic policy generated by stochastic gradient descent.

1. Optimization over discrete policies with continuous lockdown times

In this section, we explain how to optimize over lockdown policies of the following form:

s(t) =

{
0 if t− t0 ≤ τ1 or

∑2i
k=1 τk ≤ t− t0 ≤

∑2i+1
k=1 τk, for some i,

1 otherwise.
(D11)

Here t0 is �xed and the variables {τk}nk=1 are assumed to be non-negative and add up to tf − t0; this policy can hence
be parametrized by a vector µ ∈ Rn, with τ = (tf − t0)softmax(µ) 5. Intuitively, {τk}ni=1 divide the interval [t0, tf ]
into n di�erent parts. In each part, lockdown is alternatively declared (s = 1) or suspended (s = 0), see Figure 15.
At time t, the disease's basic reproduction number is given by (3), with s(t) de�ned as above. To �nd out

yij ≡ ∂xi(t;µ)
∂µj

, we invoke Eq. (C5). In computing the term

∂Gi

∂µj
=
∑
k

∂Gi

∂τk

∂τk
∂µj

, (D12)

5 The function softmax(µ) of a vector µ is a vector ν of the same dimension with components νi =
exp(µi)∑
j exp(µj)

.
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FIG. 16: Modi�ed continuous function s̃(t).

we have the problem that, due to (D11), G is not continuous or derivable. To work our way out, we approximate s(t)
by a piece-wise continuous function with bounded derivative that transitions from 0 to 1 (or viceversa) linearly and
in time δ � 1, see Figure 16; later we will take the limit δ → 0.
The new function s̃(t) has zero derivative with respect to µi, except for t satisfying

t− := t0 +
u∑
k=1

τk ≤ t ≤ t0 +
u∑
k=1

τk + δ =: t+. (D13)

In that case, the derivative of ŝ with respect to τj , with j ≤ u, will (approximately) be

∂

∂τj
ŝ(t) =

(−1)u

δ
. (D14)

The derivative with respect to any of the variables {τj : j > u} is zero.
The dominant term on the right-hand side of (C5) for t ∈ [t−, t+] is therefore

∂Gi

∂µj
=
∂Gi(t−,x(t−))

∂s̃

u∑
k=1

∂s̃

∂τk

∂τk
∂µj

= (tf − t0)
(−1)u

δ

∂Gi(t−,x(t−))

∂s̃

u∑
k=1

∂softmax(µ)k
∂µj

=:
Ki
j(t
−,x(t−),µ, u)

δ
. (D15)

Since the evolution takes place for time δ = t+ − t−, we have that yij(t+) ≈ yij(t−) +Ki
j(t
−,x(t−),µ,m). Taking the

limit δ → 0, we have that the evolution of yij is determined by the following prescription:

1. yij(t0) = 0.

2. Let t = t0 +
∑u

1=0 τk, for some u. Then yij is updated by the rule

yij(t)→ yij(t) +Ki
j(t,x,µ, u). (D16)

3. For all other values of t, yij continuously evolves via the equation

dyij
dt

=
∑
l

∂Gi(t,x;µ)

∂xl
ylj ; i = 1, ...,m, j = 1, ..., n. (D17)
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APPENDIX E: CONTINUOUS-SPACE POPULATION MODELS

Even though the focus of this article is that of compartmental models of the form (C1), one can also apply the
principles of gradient descent for policy optimizations on dynamical systems governed by partial di�erential equations.
Consider, e.g., the scenario studied in [25], where the authors model the spread of rabies in raccoons across a realistic
landscape Ω ⊂ R2 through a system of reaction-di�usion equations of the form

∂

∂t
u− div(ν∇u) = A(u)u. (E1)

In this equation, the three entries of the vector �eld u(t,X, Y ) ∈ R3 respectively denote the number of susceptible,
exposed and infected individuals at time t in position X,Y . ν,A are 3× 3 matrices that, in principle, might depend
on some controllable parameters µ. This equation is to be solved under the initial conditions u(0, X, Y ) = u0(X,Y )
and the homogeneous von Neumann boundary conditions

∇u(t,X, Y ) · n(X,Y ) = 0, for (X,Y ) ∈ ∂Ω, (E2)

where n(X,Y ) ∈ R2 denotes the vector normal to the contour ∂Ω at location (X,Y ). The authors of [25] solve this
equation numerically via the Finite Element Method (FEM) [33].
Suppose that we wished to optimize the policy parameters µ ∈ Rn over some functional A depending on

u(t,X, Y ;µ, u0) (instead of x(t;µ,x0)) via the gradient method. Then at some point we would need to compute

the quantities vij(t,X, Y ;µ, u0) ≡ ∂ui(t,X,Y ;µ,u0)
∂µj

. Call vj ∈ R3 the vector with components vij and di�erentiate both

(E1) and (E2) with respect to µi. This results in the equation

∂

∂t
vj − div(

∂ν

∂µj
∇u+ ν∇vj) = (

∂A

∂µj
+
∂A

∂ui
vij)u+A(u)vj

∇vj(t,X, Y ) · n = 0, for (X,Y ) ∈ ∂Ω. (E3)

Since u(0, X, Y ;µ,u0) does not depend on µ, this new di�usion equation must be solved for the initial conditions
vj(X,Y, 0) = 0. This can be achieved numerically in the same way that the authors of [25] solved Eq. (E1), that is,
via the FEM.
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