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Abstract 

Background: There is limited understanding of heterogeneity in outcomes across hospitalized patients 

with coronavirus disease 2019 (COVID-19). Identification of distinct clinical phenotypes may facilitate 

tailored therapy and improve outcomes. 

Objective: Identify specific clinical phenotypes across COVID-19 patients and compare admission 

characteristics and outcomes.  

Design, Settings, and Participants: Retrospective analysis of 1,022 COVID-19 patient admissions from 14 

Midwest U.S. hospitals between March 7, 2020 and August 25, 2020.  

Methods: Ensemble clustering was performed on a set of 33 vitals and labs variables collected within 72 

hours of admission. K-means based consensus clustering was used to identify three clinical phenotypes. 

Principal component analysis was performed on the average covariance matrix of all imputed datasets to 

visualize clustering and variable relationships. Multinomial regression models were fit to further compare 

patient comorbidities across phenotype classification. Multivariable models were fit to estimate the 

association between phenotype and in-hospital complications and clinical outcomes.  

Main outcomes and measures: Phenotype classification (I, II, III), patient characteristics associated with 

phenotype assignment, in-hospital complications, and clinical outcomes including ICU admission, need 

for mechanical ventilation, hospital length of stay, and mortality.  

Results: The database included 1,022 patients requiring hospital admission with COVID-19 (median age, 

62.1 [IQR: 45.9-75.8] years; 481 [48.6%] male, 412 [40.3%] required ICU admission, 437 [46.7%] were 

white). Three clinical phenotypes were identified (I, II, III); 236 [23.1%] patients had phenotype I, 613 

[60%] patients had phenotype II, and 173 [16.9%] patients had phenotype III.  

When grouping comorbidities by organ system, patients with respiratory comorbidities were most 

commonly characterized by phenotype III (p=0.002), while patients with hematologic (p<0.001), renal 

(p<0.001), and cardiac (p<0.001) comorbidities were most commonly characterized by phenotype I.  
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The adjusted odds of respiratory (p<0.001), renal (p<0.001), and metabolic (p<0.001) complications were 

highest for patients with phenotype I, followed by phenotype II. Patients with phenotype I had a far 

greater odds of hepatic (p<0.001) and hematological (p=0.02) complications than the other two 

phenotypes. Phenotypes I and II were associated with 7.30-fold (HR: 7.30, 95% CI: (3.11-17.17), 

p<0.001) and 2.57-fold (HR: 2.57, 95% CI: (1.10-6.00), p=0.03) increases in the hazard of death, 

respectively, when compared to phenotype III. 

Conclusion:  In this retrospective analysis of patients with COVID-19, three clinical phenotypes were 

identified. Future research is urgently needed to determine the utility of these phenotypes in clinical 

practice and trial design. 

 

 

 

 

 

 

 

 

Introduction 

The coronavirus disease 2019 (COVID-19), a disease caused by the severe acute respiratory 

syndrome coronavirus-2 (SARS-CoV-2), has infected over 18 million and led to over 700,000 deaths 

since first appearing in late 2019.1 Researchers are rapidly attempting to understand the natural history of 

and immune response to COVID-19.2 Despite intense research since the arrival of this novel coronavirus3, 

only one pharmaco-therapeutic agent, dexamethasone, has been associated with reduced mortality in at-

risk individuals.4 COVID-19 results in a constellation of symptoms, laboratory derangement, immune 

dysregulation, and clinical complications.5  
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Emergency department presentation varies widely, suggesting various clinical phenotypes exist 

and, importantly, it is likely these various phenotypes respond differently to treatment. To illustrate, two 

early phenotypes of respiratory failure likely exist in COVID-19. A classic ARDS phenotype exists with 

poorly compliant lungs and poor gas exchange; however, a phenotype with normal lung compliance also 

exists in COVID-19 and is hypothesized to be driven by shunting secondary to pulmonary 

microthrombi.6,7  An intricate, multidimensional view is required to adequately understand the disease and 

account for the variation in clinical outcomes. Furthermore, patients could benefit from phenotype-

specific medical care, which may differ from established standards of care 

Despite this need, few studies have characterized COVID-19 clinical phenotypes and evaluated 

their association with complications and clinical outcomes. The aim of this study was to characterize 

clinical phenotypes in COVID-19 according to disease-system factors using electronic health record 

(EHR) data pooled from 14 U.S. Midwest hospitals between March 7, 2020 and August 25, 2020.   

Methods 

Data Collection 

 The data source for this study included EHR reports from 14 U.S. Midwest hospitals and 60 

primary care clinics. Patient and hospital-level data were available for 7,538 patients with PCR-confirmed 

COVID-19. Of these, 1,022 required hospital admission and were included in this analysis. The database 

included all comorbidities reported since March 29, 1997 for each patient and prior to their COVID-19 

diagnosis. The database also included home medications, laboratory values, clinic visits, social history, 

and patient demographics (age, gender, race/ethnicity, language spoken, zip code, socioeconomic status 

indicators). For each COVID-19 hospitalization the database included all laboratory values, vitals, orders, 

medications, complications, length of stay, and hospital disposition. State death certificate data was linked 

with the database to enable capture of out-of-hospital death. Additionally, the database allowed linkage 

across the 14 hospitals, facilitating the tracking of transfers. 
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This study was approved by the University of Minnesota institutional review board 

(STUDY00001489). 

Participants 

Patient-level data were obtained from the COVID-19 database from March 7, 2020 to August 25, 

2020.  The inclusion criterion was as follows: PCR-positive COVID-19 test requiring inpatient hospital 

admission to one of the 14 hospitals providing data. No hospitalized patients were excluded in this 

analysis to maximize generalizability. Follow-up data were available for a minimum of two weeks 

following admission for all patients.  

Clinical Variables for Phenotyping 

 We selected 33 variables for clustering based on their association with COVID-19 mortality, 

known COVID-19 pathophysiology, and presence in the database (no more than 50% missingness).8-11 

The following variables were included: age, body mass index (BMI), heart rate, respiratory rate, oxygen 

saturation, pulse pressure, systolic blood pressure, total protein, red cell distribution width, mean 

corpuscular volume, alkaline phosphatase, calcium, anion gap, bicarbonate, hematocrit, aspartate 

aminotransferase, glucose, absolute monocyte count, absolute neutrophil count, absolute lymphocyte 

count, white blood cell count, platelet, albumin, bilirubin, international normalized ratio (INR), lactate 

dehydrogenase, potassium, sodium, D-dimer, hemoglobin, C-reactive protein (CRP), creatinine, and 

gamma gap. For each variable we selected the first recorded value within the first 72 hours of the 

emergency department (ED) presentation that ultimately resulted in their hospitalization.  

Comorbidities 

 We selected 68 comorbidities documented for each patient from March 29, 1997 preceding their 

COVID-19 hospital admission in their electronic health record (Supplemental Table 3). All comorbidities 

were identified based on ICD-9, ICD-10, or problem list documentation within the electronic health 

record. An indicator variable was created for each comorbidity to denote the presence of the selected 

ICD-9, ICD-10, or problem list documentation at any time in the medical record. To facilitate analysis, 
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comorbidities were grouped by organ system into the following categories: cardiac, respiratory, 

hematologic, metabolic, renal, hepatic, autoimmune, cancer, and cerebrovascular disease.    

Complications and Clinical Outcomes 

 We selected 30 in-hospital complications measured during each patient¶s hospital stay for 

COVID-19 categorized into the following systems: cardiovascular, respiratory, hematologic, renal, 

hepatic, metabolic, and infectious (Supplemental Table 4). If applicable, complications could span 

multiple organ system variables. For example, ventilator associated pneumonia was included in both 

infectious and respiratory complications. Additional clinical outcomes included hospital length of stay 

(LOS), need for intensive care unit (ICU) admission, need for mechanical ventilation, and mortality. 

Mortality was defined as any in-hospital or out-of-hospital death based on death certificate data. All 

complications and outcomes were followed for a minimum of 2 weeks following hospital admission.  

Statistical Analysis 

The overall rate of missingness of the 33 variables used for phenotyping, which included 

the first vitals and labs recorded for each inpatient within 72 hours of admission, was 19% (range 

0% - 50%). We imputed missing values using multivariate imputations by chained equations 

implemented with the mice package (v.3.10.0).12,13 Data were log-transformed before imputing 

missing values with predictive mean matching. A total of 40 imputed datasets were generated. 

The diceR package (v.1.0.0)14  was used to perform k-means-based consensus clustering on each 

imputed dataset using 80% subsamples and 1,000 iterations. We considered grouping patients 

into 2-7 phenotypes and determined the optimal number was 3 by evaluating the consensus 

cumulative distribution function (CDF) plot, the delta area plot, and the consensus matrix 

heatmap. These figures were generated using the consensus clustering results for each imputed 

dataset, and all figures were qualitatively similar across datasets. For visualization purposes, these 

images are provided for a randomly selected dataset in Supplemental Figures 1-4. The final 

assignment of each patient into one of the three phenotypes was determined by majority voting 

across the 40 consensus clustering results. Principal component analysis (PCA) was performed on 
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the average covariance matrix to visualize the relationships among the three phenotypes and assess 

variable contributions.15  

Continuous variables were summarized using the median and interquartile range (IQR) and 

compared across phenotypes using a Kruskal-Wallis test. Categorical characteristics and outcomes were 

summari]ed using counts and proportions and compared across phenot\pes using a Pearson¶s chi-squared 

test or Fisher¶s e[act test. Multinomial regression models were fit to further compare patient 

comorbidities across phenotype classification.  

We next evaluated the relationship between phenotype and subsequent outcomes using both 

unadjusted and adjusted models. The adjusted models included sex,16,17 race and ethnicity (white, Black, 

Asian, Hispanic, other, not reported),18 and Elixhauser Comorbidity Index,19 since these are known risk 

factors for the outcomes of interest and were not included in the clustering analysis. The associations 

between phenotype and complications, ICU admission and need for mechanical ventilation, were 

estimated using logistic regression models. Mortality was compared across phenotypes using Cox 

proportional hazard models and patients were censored at the last date of data collection, August 25, 

2020. Hospital length of stay was compared across phenotypes using negative binomial regression 

models. The primary negative binomial model included individuals who died during hospitalization for 

whom length of stay was defined as the number of days until death. We performed a sensitivity analysis 

to assess the impact of mortality as a competing risk by refitting the length of stay model after removing 

the 127 patients who died. Two-sided p-values < 0.05 were considered statistically significant. P-values 

were not adjusted for multiple comparisons. Visualizations of comorbidities, complications, and 

outcomes by clinical phenotype were performed using the circlize package for R.20 Comorbidities and 

complications were grouped into separate organ systems and the prevalence of each 

complication/comorbidity type was calculated as a percentage for each phenotype. All analyses were 

conducted using R version 3.6.321 and Stata version 16.1 (StataCorp). 

 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.12.20193391doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.12.20193391


Results 

The database included 1,022 patients requiring hospital admission with COVID-19. Among these 

patients, the median age was 62.1 [IQR: 45.9, 75.8] years; 481 [48.6%] male, 412 [40.3%] 

required ICU admission). Additionally, 437 [46.7%] were white, 188 [20.1%] were Black, 159 

[17.0%] were Asian, 103 [11.0%] were Hispanic, 20 [2.1%] reported other race, and 28 [2.9%] 

did not report. Three clinical phenotypes were identified (I, II, III); 236 [23.1%] patients had 

phenotype I, 613 [60%] patients had phenotype II, and 173 [16.9%] patients had phenotype III.  

Variable Contributions to Clustering 

The first two principal components (PCs) from PCA were used to visualize the 

relationship between phenotypes. PC1 and PC2 captured approximately 11% and 9% of the 

variance in the clustering variables, respectively. Thirteen components were needed to explain 

70% of the variance (Supplemental Figure 5). While phenotypes II and III overlay substantially, 

phenotype I is more clearly defined in the right-hand side of the score plot of the first two 

principal components (Figure 1). Notably, this figure shows that distinctions between phenotypes 

are primarily driven by variation in PC1 as opposed to PC2. The variable contributions to PC1 

(Figure 2) demonstrate that the largest contributors to the variation in PC1 are from LDH, 

absolute neutrophil count, and D-dimer. These variables therefore prominently contribute to 

separating the three phenotypes as shown in the biplot (Figure 3). Univariate tests showed that D-

dimer and neutrophil count are highest in phenotype I and albumin is highest in phenotype III. 

Other variables influential to phenotype clustering are lactate dehydrogenase (highest in I), C-

reactive protein (highest in I), white cell count (highest in I), red cell distribution width (highest 

in I), bilirubin (highest in I), AST (highest in I), hematocrit (highest in III), and  hemoglobin 

(highest in III).   

Phenotype Characteristics 

Differences across phenotypes with respect to patient demographics, admission vitals and 

labs, complications, comorbidities, and clinical outcomes are presented in Table 1. Patients with 
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phenotype I were older than patients in phenotypes II and III (67.2 [52.9, 79.0] years vs. 60.9 [45.9, 75.4] 

and 58.6 [34.8, 71.3] years respectively, p < 0.001). Patients with phenotype III were more often female 

than patients with phenotype I or II (57.6% vs. 41.6% and 53.4%, respectively, p = 0.004). Patients with 

phenotype I were more less likely white (38.8% vs. 45.6% vs. 60.7%, respectively, p = 0.002) and more 

likely to be non-English speaking (47.9% vs. 39.2% vs. 23.7%, respectively, p <0.001). There were no 

statistically significant differences in BMI or socioeconomic status, as measured using the area 

deprivation index, between phenotypes (Table 1). Patients that presented with phenotype III had a more 

frequent history of smoking, alcohol abuse, neutropenia. Patients that presented with phenotype II had a 

less frequent history of hepatic disease than phenotypes I or III (Table 1).  

When grouping comorbidities by organ system, cardiac (p <0.001), respiratory (p =0.002), 

hematologic (p <0.001), and renal (p <0.001) comorbidities were found to be significantly associated with 

phenotype. Cancer, hepatic, autoimmune, cerebrovascular, and metabolic comorbidities were not 

significantly associated with phenotype (Table 1, Supplemental Figure 6). Based on the estimated 

relative risk ratios, patients with renal (RRR 2.35; 95% CI 1.5-3.67; p <0.001), hematologic (RRR 2.64; 

95% CI 1.75-3.98; p <0.001), and cardiac comorbidities (RRR 2.65; 95% CI: 1.68-4.17; p <0.001) were 

more likely to have phenotype I vs. III (Figure 4).  Patients with respiratory comorbidities were 0.47 

(95% CI: 0.31-0.72; p <0.001) times as likely to have phenotype I vs. III and 0.74 (95% CI: 0.52-1.04 p 

=0.09) times as likely to have phenotype II vs. III (Figure 4).  

Association between Phenotype and Clinical Outcomes 

 Clinical phenotypes I and II were associated with increased odds of respiratory (I: OR: 2.98, 95% 

CI 1.58 - 5.59; II: OR: 2.32, 95% CI: 1.29-4.17; p<0.001), renal (I: OR: 7.04, 95% CI 3.11-15.9; II: OR: 

2.57, 95% CI: 1.15-5.74; p <0.001), and metabolic (I: OR: 4.85, 95% CI: 2.78-8.45; II: OR: 2.57, 95% 

CI: 1.52-4.34; p <0.001) complications, compared to phenotype III after adjusting for sex, race, and 

Elixhauser Comorbidity Index (Supplemental Table 2). There was a trend towards increased odds of 

hematologic complications among patients with phenotype I (I: OR: 2.11, 95% CI: 0.99-4.48, p =0.05) 

compared to III. Phenotype was associated with hepatic complications (p <0.001); however, while 
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phenotype I was associated with a 8.35-fold (OR: 8.35, 95% CI: 1.93-36.11, p < 0.001) increase in the 

odds of hepatic complication, phenotype II did not differ significantly from phenotype III (OR: 0.56, 95% 

CI: 0.10-3.09, p = 0.51). This is not surprising since only 4 individuals in phenotype II and 2 in phenotype 

III experienced hepatic complications during hospitalization (Table 1). Phenotype was also significantly 

associated with the rate of infectious complications (p <0.001) for phenotype 1 (OR 2.57, 95% CI 1.57 - 

4.21; <0.001) but not did not reach statistical significance for phenotype 2 (OR 1.51, 95% CI 0.96 - 2.38; 

p = 0.07)  (Supplemental Table 2 and Supplemental Figure 7). 

 Clinical phenotypes differed in odds of ICU admission (p <0.001) and mechanical ventilation (p 

<0.001), hospital LOS (p <0.001), and risk of mortality (<0.001) on adjusted analysis which accounted 

for sex, race, and Elixhauser Comorbidity Index (Table 2, Supplemental Figure 8). Controlling for these 

risk factors and compared to phenotype III, phenotypes I and II were associated with 7.88-fold (OR: 7.88, 

95% CI: 4.65-13.37) and 2.32-fold (OR: 2.32, 95% CI: 1.46-3.68) increases in the odds of ICU 

admission, respectively. Phenotypes I and II were associated with 25.59-fold (OR: 25.59, 95% CI: 7.69,-

85.17) and 7.45-fold (OR: 7.45, 95% CI: 2.27-24.43) increases in the odds of requiring mechanical 

ventilation. Phenotypes I and II were associated with 1.74-fold (IRR: 1.74, 95% CI: 1.45-2.10, p<0.001) 

and 1.22-fold (IRR: 1.22, 95% CI: 1.05-1.43, p = 0.01) increases in hospital LOS. Phenotype I was 

associated with a 7.30-fold (HR: 7.30, 95% CI: 3.11-17.17, p <0.001) increase in risk of mortality, and 

Phenotype II had a  2.57-fold (HR: 2.57, 95% CI: 1.10-6.00, p=0.03) increase in the hazard of death 

compared to Phenotype 3. We performed a sensitivity analysis to assess the impact of mortality as a 

competing risk by fitting the LOS model before and after removing the 127 patients who died. The 

estimated effect sizes were similar between these two models (data not shown). Table 2 includes the LOS 

model with only survivors.   

Discussion 

 This is one of the first studies to report on clinical phenotypes associated with COVID-19. We 

identified three clinical phenotypes for patients with COVID-19 on hospital presentation. Most patients 
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presented with phenotype II, which is associated with a moderate course and an approximately 10% 

mortality. A subset of patients presented with the more severe phenotype I, which is associated with a 

staggering 27% mortality. Patients with cardiac, hematologic, and renal comorbidities were most likely to 

be characterized by phenotype I. Surprisingly, respiratory comorbidities appeared less related to 

phenotypes I or II and were most associated with phenotype III, which had the most indolent course. 

Despite this indolent course, patients with phenotype III had the highest rate of readmission which is 

likely in part due to the high survival rate. This also suggests patients with pre-existing respiratory 

comorbidities, while not at highest risk for mortality, may be at highest risk for long term sequalae 

following COVID-19. Patients that presented with phenotype I were most associated with the 

development of respiratory, hematologic, renal, metabolic, hepatic, and infectious complications. 

Surprisingly, cardiovascular complications did not significantly differ between phenotypes.  

Elucidating patient risk factors and severe COVID-19 disease markers may allow early treatment 

implementation that may improYe the patient¶s outcome. Multiple studies have documented COVID-19 

risk factors; however, most have done so from a homogenous lens. For example, a prospective cohort 

study from New York City identified that the most considerable risks for hospital admission were age, 

male sex, heart failure, chronic kidney disease, and high BMI.22 A large observational study conducted in 

the UK reported that increasing age, male gender, comorbidities such as cardiac disease, chronic lung 

disease, chronic kidney disease, and obesity were associated with higher mortality in COVID-19 positive 

patients admitted to the hospital.14 A study from China found that increased odds of in-hospital death due 

to COVID-19 were associated with older age, higher SOFA score and D-dimers > 1.0 µg/mL on 

admission.23 Another retrospective study reported that patients with severe COVID-19 disease and 

diabetes had increased leucocytes, neutrophils count, and increased C-reactive protein (CRP ), D-dimers, 

fibrinogen levels.24 A systematic review and meta-analysis found that the biomarkers associated with 

increased mortality include higher CRP, higher D-dimers, increased creatinine, and lower albumin 

levels.25 However it is well known that patients do not have a singular natural history of disease. Multiple 

studies including this study found that only half of patients suffer a primarily respiratory disease.26,27 
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Patients suffer a constellation of cardiovascular, hematologic, renal, or hepatic progression of 

disease following COVID-19. It is likely patient baseline risk factors related to the virus,28 home 

medications,16,29 genetic predisposition30, race/ethnicity,18 and other factors predispose patients to 

one of the various clinical manifestations and natural history of COVID-19.  

Treatment of hospitalized patients should be tailored based on the clinical courses most 

likely for a patient given their a priori risk. For example, phenotypes with a higher risk of 

thrombotic events, may benefit from more aggressive anticoagulation. Phenotypes more prone to 

infectious complications, may benefit from more targeted immunomodulation instead of broad 

and systemic steroid therapy. A key first step to evaluate these treatment decisions is to 

characterize and describe clinical phenotypes requiring hospitalization. In this analysis we 

identified three clinical phenotypes for patients that required hospitalization for COVID-19. Few 

studies to date have attempted to elucidate clinical phenotypes. One study attempted to 

characterize clinical phenotypes at ICU admission using a dataset of 85 critically ill patients.31 

Similar to our analysis, they identified three distinct clinical phenotypes. Their low mortality 

cluster which they called cluster 1 was very similar to our phenotype III with a predominance of 

females, lower mortality rate, lower D-dimer and CRP levels.  Similarly, their high mortality 

cluster was predominantly male, with elevated inflammation markers on ICU presentation. In this 

study, we not only characterized three clinical phenotypes, but extended findings outside of the 

ICU by characterizing the association of comorbidities with clinical phenotype and the 

association of clinical phenotypes with in-hospital complication and clinical outcomes.  

Phenotype I can be termed the ³AdYerse phenot\pe´ and Zas associated Zith the worst 

clinical outcomes. LDH, Absolute Neutrophil Count, D-dimer, AST, and CRP were most 

influential in phenotype I determination. The strong association of RDW with phenotype I was 

interesting. RDW was strongly associated with genetic age which is hypothesized to be a risk 

factor in Covid-19.30 As people age, variability in red blood cell volumes increases. Similarly, 

Gamma Gap, a marker of immunoglobulin levels, was elevated in all three phenotypes (median > 
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3.5).32 However, patients with clinical phenotype I were noted to have the largest increase in Gamma 

Gap. In this scenario elevated Gamma Gap was likely an indicator of systemic inflammation and has been 

associated in other inflammatory disease processes with prognosis. Other groups have previously reported 

on the importance of the Absolute Neutrophil to Absolute Lymphocyte count, here we noted that 

ANC/ALC was lowest for phenotype III and highest for phenotype I, in line with previous reports. 

Patients with cardiac, hematologic and renal comorbidities were most prone to develop phenotype I. 

Phenotype I was associated with numerous complications ( hematologic, hepatic, metabolic, renal, 

respiratory, and infectious) when compared to other phenotypes. It is interesting to note despite a higher 

rate of baseline cardiac comorbidities phenotype I was not associated with increased cardiac 

complications.  

Phenotype III Zas associated Zith the best clinical outcomes and can be termed the ³FaYorable 

Phenot\pe´. Surprisingly, patients with phenotype III had a very high rate of respiratory comorbidities 

and the best clinical outcomes. What is most surprising is despite the lowest complication rate and 

mortality, this phenotype was associated with a greater than 10% rate of hospital readmission. It is 

possible that patients pre-existing respiratory comorbidities predisposed them to longer term sequelae 

which may have resulted in this readmission rate, although additional studies are needed to better 

elucidate these findings, specifically controlling for differences in survival. Patients with respiratory 

comorbidities such as asthma and COPD routinely use medications which may be protective in SARS-

CoV-2 pathogenesis which may explain this protective effect. For example, our group has previously 

identified reduced mortality in COVID-19 for patients with asthma treated with beta2-agonists.16 Patients 

with phenotype III were more likely to use inhaled steroids, nasal fluticasone, albuterol, and 

antihistamines.  

Ultimately, a deeper investigation into clinical phenotypes and associated genomic, 

transcriptomic, and proteomic is needed. The ability to classify patients into clinical phenotypes can 

facilitate the linkage of exome data to better understand SARS-CoV-2 pathogenesis and natural history. 
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Understanding the COVID-19 severity, the biomarkers, and the risk factors is paramount during 

the COVID-19 pandemic.  

 

Limitations 

Our study has several limitations, including that this is a retrospective study and therefore 

results may be biased or subject to residual confounding. Second, patients were followed for 

variable lengths of time. Patients that were admitted in March 2020 thus had approximately 5 

months of follow-up whereas patients admitted in late August had limited time. We accounted for 

this by conducting a Cox proportional hazard analysis when analyzing in- and out- of hospital 

mortality. Additionally, when the data were pulled, only 54 patients (5%) remained hospitalized. 

While most patients developed complications within their first 2 weeks of hospital admission, it is 

possible that they may still develop clinical complications which is not reflected in this analysis.  

 

Conclusion 

In this retrospective analysis of patients with COVID-19, three clinical phenotypes were 

identified. Future research is urgently needed to determine the utility of these phenotypes in 

clinical practice and trial design. 
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Figure Titles and Legends: 

Figure 1: Score Plot: PC2 vs. PC1 

The principal component scores for PC1 and PC2 are plotted. Each point represents a patient in 

the dataset. Colors represent the cluster (phenotype) that the patient was assigned to by 

consensus clustering. Ellipses around each cluster/phenotype specify 95% confidence intervals, 

assuming a bivariate normal distribution. 

Abbreviations: PC1 (principal component 1); PC2 (principal component 2) 

 

 

Figure 2: Contribution of Variables to PC1 

The contributions of each of the 33 variables used in the clustering to principal component 1 are 

shown. The red line marks the expected average contribution of each variable if the contributions 

of the variables were uniform across the dataset. Variables contributing most to the observed 

pattern in PC1 are D-dimer and albumin.  

Abbreviations: PC1 (principal component 1); Abs_Nphil_Ct (absolute neutrophil count); LDH 

(lactate dehydrogenase); CRP (C-reactive protein); WBC (white blood cell count); HCT 

(hematocrit); HGB (hemoglobin); Tbili (total bilirubin); RDW (red cell distribution width); AST 

(aspartate aminotransferase); Alk_phos (alkaline phosphatase); RR (respiratory rate); CA 

(calcium); TP (total protein); INR (internal normalized ratio of prothrombin time); CO2 (carbon 

dioxide); K (potassium); O2SAT (oxygen saturation); BMI (body mass index); PLT (platelet); 

PP (pulse pressure); Na (sodium); SBP (systolic blood pressure); Abs_mono_ct (absolute 

monocyte count); MCV (mean corpuscular volume) 

 

Figure 3: PCA Biplot: PC2 vs. PC1 
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The scores (points) and loadings (arrows) of PC1 and PC2 are plotted for each patient and variable in the 

model. 95% confidence ellipses for the scores are shown. The biplot facilitates interpretation of the scores 

and loadings, assigning context to the variables which prominently contribute to the phenotypes. 

 

Abbreviations: PC1 (principal component 1); PC2 (principal component 2); PCA (principal component 

analysis); Abs_Nphil_Ct (absolute neutrophil count); LDH (lactate dehydrogenase); CRP (C-reactive 

protein); WBC (white blood cell count); HCT (hematocrit); HGB (hemoglobin); Tbili (total bilirubin); 

RDW (red cell distribution width); AST (aspartate aminotransferase); Alk_phos (alkaline phosphatase); 

RR (respiratory rate); CA (calcium); TP (total protein); INR (internal normalized ratio of prothrombin 

time); CO2 (carbon dioxide); K (potassium); O2SAT (oxygen saturation); BMI (body mass index); PLT 

(platelet); PP (pulse pressure); Na (sodium); SBP (systolic blood pressure); Abs_mono_ct (absolute 

monocyte count); MCV (mean corpuscular volume) 

 

Figure 4: Relative Risk Ratio of Comorbidities to Clinical Phenotypes 

Relative Risk ratios of comorbidities of phenotypes I and II compared to the reference group 

phenotype III. 

 

Supplemental Figure 1: Consensus Cumulative Distribution Functions 

Cumulative distribution functions (CDF) for a randomly selected imputed dataset are shown. A 

range of phenotypes (2-7) were considered, and the optimal choice of phenotypes is 3.  

 

Supplemental Figure 2: Delta Area 
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The relative change in delta area under the cumulative distribution function is shown for the 

range of phenotypes (k=2-7) for a randomly selected imputed dataset. The optimal choice of 

phenotypes is 3.  

Abbreviations: CDF (cumulative distribution function) 

 

Supplemental Figure 3: Consensus matrix with 3 clusters 

A consensus matrix heatmap is shown for a randomly selected imputed dataset clustered into 3 

phenotypes. The heatmap allows visualization of consensus cluster assignments to evaluate 

cluster stability. Darker shades of green indicate higher stability. 

 

Supplemental Figure 4: Consensus matrix with 4 clusters 

A consensus matrix heatmap is shown for a randomly selected imputed dataset clustered into 4 

phenotypes. The heatmap allows visualization of consensus cluster assignments to evaluate 

cluster stability.  Darker shades of green indicate higher stability. The choice of 4 clusters shows 

less stability than 3 clusters (see Supplemental Figure 3).  

 

 

Supplemental Figure 5: Cumulative Proportion of Variance Explained 

The proportion of variance explained by each principal component is summed over all principal 

components. For example, PC1 and PC2 cumulatively explain 20% of the variation in the 

dataset. 

Abbreviations: PC1 (principal component 1); PC2 (principal component 2) 
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Supplemental Figure 6: Comorbidities by Phenotype 

Chord diagram illustrates the prevalence of comorbidities (% observed) for the three clinical 

phenotypes. 

 

Supplemental Figure 7: Complications by Phenotype 

Chord diagram illustrates the prevalence of complications (% observed) for the three clinical 

phenotypes. 

 

Supplemental Figure 8: Clinical Outcomes by Phenotype 

Chord diagram illustrates the prevalence of clinical outcomes (% observed) for the three clinical 

phenotypes. 

Abbreviations: ICU (intensive care unit); Vent (mechanical ventilation); Readmit (readmission to 

hospital or ICU); ECMO (extracorporeal membrane oxygenation).  

 

 

Tables: 

Table 1: Baseline demographics, comorbidities, and clinical outcomes of hospitalized 

COVID-19 patients with clinical phenotypes I, II, and III. 

* Categorical variables presented as count (%), continuous variables presented as median 

(interquartile range) unless otherwise specified. Continuous variables were evaluated with 

Kruskal-Wallis tests. Categorical variables were evaluated with chi-square tests or Fisher¶s e[act 

tests (counts < 5).  
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Abbreviations: ADI, area deprivation index; BMI, body mass index; ECMO, Extracorporeal 

membrane oxygenation; ICU, Intensive Care Unit 

 

Table 2: Association of Clinical Phenotype with Clinical Outcomes 

Abbreviations: PH, proportional hazards; HR, hazard ratio; CI, confidence interval; OR, odds 

ratio; ICU, intensive care unit; IRR, incidence rate ratio; LOS, length of stay; LR, likelihood ratio 

Legend: Reference group for all models is Phenotype III. All models adjusted for sex, 

race/ethnicity, and Elixhauser Comorbidity Index.   

* LOS model only included patients that survived. 

 

Supplemental Table 1: Home medications and hospital day 5 laboratory values of 

hospitalized COVID-19 patients with clinical phenotypes I, II, and III.  

* Categorical variables presented as count (%), continuous variables presented as median 

(interquartile range).  

� Loop Diuretics include furosemide, torsemide, budesonide.  

Abbreviations: ALC, Absolute Lymphocyte Count; ANC, Absolute Neutrophil Count; ARB, 

Angiotensin receptor blocker; AST, Aspartate transaminase; CRP, C-Reactive Protein; ESR, 

Erythrocyte Sedimentation Rate; EKG, Electrocardiogram; IL, Interleukin; LDH, Lactate 

Dehydrogenase; Pro-BNP, proB-type Natriuretic Peptide; PLT, Platelets; PTT, Partial 

Thromboplastin Time; TNF-alpha, Tumor Necrosis Factor-alpha; WBC, White Blood Cell;  

 

 

Supplemental Table 2: Association of Clinical Phenotype with In-Hospital Complications 
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Abbreviations: OR, odds ratio; CI, confidence interval; LR, likelihood ratio 

Legend: Reference group for all models is Phenotype III. All models adjusted for sex, 

race/ethnicity, and Elixhauser Comorbidity Index.   

 

Supplemental Table 3: Comorbidities based on ICD-10 codes 

Supplementary Table 3: List of ICD 10 codes that were used to classify diagnosis. 

Abbreviations: T1DM: Type 1 diabetes mellitus, T2DM Type 2 diabetes mellitus, HFpEF: heart failure 

with preserved ejection fraction, HF: heart failure, CAD: coronary artery disease, NAFLD: non-alcoholic 

fatty liver disease, NASH: non-alcoholic steatohepatitis, VTE: venous thromboembolism, HIT: heparin 

induced thrombocytopenia, DIC: disseminated intravascular coagulation, ITP: idiopathic 

thrombocytopenia, HLH: hemophagocytic lymphohistiocytosis, MI: myocardial infarction, COPD: 

chronic obstructive lung disease, ILD: interstitial lung disease, AICD: Automatic Implantable 

Cardioverter Defibrillator, VAD: ventricular assist device, CKD: chronic kidney disease, ESRD: end 

stage renal disease, Afib: atrial fibrillation, HIV: human immunodeficiency virus, Flu: influenza, IBD: 

inflammatory bowel disease. 

 

Supplemental Table 4: Classification of complications by Group 

Supplementary Table 4: Complications were grouped into different organ/system-based classifications. 
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Table 1: Baseline demographics, comorbidities, and clinical outcomes of hospitalized COVID-19 
patients with clinical phenotypes I, II, and III.  

 

 
Phenotype I Phenotype II Phenotype III P-value  

N=236 N=613 N=173 
 

Demographics*     
Age (years) 67.2 (52.9-79.0) 60.9 (45.9-75.4) 58.6 (34.8-71.3) <0.001 
Male  132 (58.4%) 277 (46.6%) 72 (42.4%)    0.002 
Race / Ethnicity       0.002 
   White 81 (38.8%) 257 (45.6%) 99 (60.7%) 

 

   Black 53 (25.4%) 105 (18.7%) 30 (18.4%) 
 

   Asian 39 (18.7%) 101 (17.9%) 19 (11.7%) 
 

   Hispanic 26 (12.4%) 66 (11.7%) 11 (6.7%) 
 

   Declined 3 (1.4%) 22 (3.9%) 3 (1.8%) 
 

   Other 7 (3.3%) 12 (2.1%) 1 (0.6%) 
 

Non-English Speaking 113 (47.9%) 240 (39.2%) 41 (23.7%) <0.001 
National ADI 44.5 (25.0-56.0) 43.0 (25.0-56.0) 37.0 (26.0-62.0)    0.76 
BMI (kg/m2), mean (SD) 29.5 (8.9) 30.8 (8.2) 30.4 (13.4)    0.21 
Smoker 9 (3.8) 44 (7.2) 18 (10.4)    0.03 
Alcohol abuse 14 (5.9) 47 (7.7) 28 (16.2)  <0.001 
Comorbidities*     
Elixhauser Comorbidity 
Index 7.0 (4.0-10.0) 5.0 (3.0-9.0) 5.0 (2.0-8.0) <0.001 
Cardiac  194 (82.2%) 428 (69.8%) 110 (63.6%) <0.001 
Respiratory  55 (23.3%) 198 (32.3%) 68 (39.3%)    0.002 
Hematologic  127 (53.8%) 220 (35.9%) 53 (30.6%) <0.001 
Metabolic  175 (74.2%) 477 (77.8%) 121 (69.9%)    0.08 
Renal  92 (39.0%) 170 (27.7%) 37 (21.4%) <0.001 
Hepatic  46 (19.5%) 82 (13.4%) 25 (14.5%)    0.08 
Autoimmune  40 (16.9%) 126 (20.6%) 23 (13.3%)    0.07 
Cancer  29 (12.3%) 73 (11.9%) 16 ( 9.2%)    0.58 
Cerebrovascular disease  52 (22.0%) 106 (17.3%) 33 (19.1%)    0.28 
Blood Type O 72 (42.4%) 158 (39.0%) 39 (37.5%)    0.67 
In-hospital Complications*     
Cardiovascular  16 ( 6.8%) 46 ( 7.5%) 13 ( 7.5%)    0.93 
Respiratory  49 (20.8%) 104 (17.0%) 14 ( 8.1%)    0.002 
Hematologic  27 (11.4%) 35 ( 5.7%) 10 ( 5.8%)    0.01 
Renal  54 (22.9%) 60 ( 9.8%) 7 ( 4.0%) <0.001 
Metabolic 85 (36.0%) 141 (23.0%) 18 (10.4%) <0.001 
Hepatic 21 ( 8.9%) 4 ( 0.7%) 2 ( 1.2%) <0.001 
Infectious 76 (32.2%) 134 (21.9%) 27 (15.6%) <0.001 
Clinical Outcomes*     
ICU Admission 158 (66.9%) 220 (35.9%) 34 (19.7%) <0.001 
Mechanical Ventilation 98 (41.5%) 88 (14.4%) 4 ( 2.3%) <0.001 
Hospital Readmission 6 ( 2.5%) 29 ( 4.7%) 14 ( 8.1%)    0.03 
ECMO 7 ( 3.0%) 1 ( 0.2%) 0 ( 0.0%) <0.001 
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* Categorical variables presented as count (%), continuous variables presented as median (interquartile range) unless 
otherwise specified.  
Abbreviations: ADI, area deprivation index; BMI, body mass index; INR, internal normalized ratio of prothrombin 
time; ECMO, Extracorporeal membrane oxygenation; ICU, Intensive Care Unit 
 
 

 

In- or Out of hospital 
mortality 63 (26.7%) 57 ( 9.3%) 7 ( 4.0%) <0.001 
Admission Vitals and Labs* Phenotype I Phenotype II Phenotype III P value 
Heart rate (mean (SD)) 96.17 (20.82) 93.93 (19.35) 90.16 (22.3)    0.01 
Respiratory rate 22.0 (18.0-28.0) 20.0 (18.0-23.0) 18.0 (16.0-20.0) <0.001 
Oxygen saturation  94.0 (89.0-97.0) 95.0 (92.0-97.0) 97.0 (95.0-99.0) <0.001 
Pulse pressure  55.0 (43.5-70.5) 53.0 (43.0-68.0) 51.0 (40.0-62.0)    0.02 
SBP (mean (SD)) 133.29 (27.14) 132.46 (23.54) 134.10 (26.26)    0.72 
Total protein 6.5 (5.9-7.0) 6.7 (6.20-7.2) 6.6 (6.2-7.1)    0.01 
Red cell distribution width 14.1 (13.2-15.4) 13.5 (12.9-14.7) 13.5 (12.8-14.6) <0.001 
Mean corpuscular volume 90.0 (86.0-94.0) 89.0 (85.0-93.0) 92.0 (88.0-95.3) <0.001 
Alkaline phosphatase 88.0 (67.5-129.0) 71.0 (55.5-92.0) 72.0 (58.-88.0) <0.001 
Calcium 8.10 (7.6-8.5) 8.30 (8.0-8.7) 8.40 (8.1-8.9) <0.001 
Anion gap 9.0 (7.0-12.0) 8.0 (6.0-10.0) 7.0 (6.0-9.0) <0.001 
CO2  23.25 (21.0-26.0) 24.0 (22.0-27.0) 25.0 (23.0-27.8) <0.001 
Hematocrit 36.40 (32.3-40.2) 37.60 (33.6-41.1) 38.45 (35.7-41.5) <0.001 
Aspartate aminotransferase 55.0 (38.0-95.0) 35.0 (24.0-53.0) 29.0 (20.0-44.0) <0.001 
Glucose  122.0 (101.0-165.0) 112.0 (96.0-149.5) 104.0 (91.0-126.5) <0.001 
Absolute monocyte count 0.40 (0.3-0.8) 0.40 (0.3-0.6) 0.50 (0.3-0.7) <0.001 
Platelets  206.0 (160.0-290.0) 190.0 (149.0-243.0) 196.0 (142.5-247.5)    0.01 
Albumin  2.40 (2.0-2.7) 2.80 (2.5-3.1) 3.10 (2.8-3.4) <0.001 
Bilirubin 0.70 (0.4-1.1) 0.40 (0.3-0.6) 0.40 (0.3-0.6) <0.001 
INR 1.11 (1.03-1.28) 1.06 (0.99-1.17) 1.08 (0.98-1.21)    0.001 
Lactate dehydrogenase 460.5 (380.0-562.8) 308.0 (249.0-394.0) 231.0 (180.0-293.5) <0.001 
Potassium 4.0 (3.6-4.3) 3.80 (3.6-4.2) 3.80 (3.6-4.2)    0.101 
Sodium 137.5 (134.0-141.0) 137.0 (135.0-139.0) 138.0 (136.0-140.0)    0.003 
D-dimer  3.08 (1.71-5.57) 0.87 (0.59-1.27) 0.60 (0.36-1.05) <0.001 
Hemoglobin  11.90 (10.5-13.1) 12.20 (10.7-13.5) 12.40 (11.3-13.7)    0.01 
C-reactive protein  157.0 (102.0-244.0) 89.0 (55.0-134.8) 12.0 (5.0-20.0) <0.001 
Creatinine  1.06 (0.77-1.62) 0.84 (0.69-1.13) 0.80 (0.68-1.03) <0.001 
Absolute neutrophil count  8.05 (5.75-11.42) 4.20 (3.0-6.0) 2.90 (1.8-4.3) <0.001 
Absolute lymphocyte count  0.90 (0.6-1.3) 0.90 (0.7-1.3) 1.30 (0.9-1.7) <0.001 
WBC  8.74 (5.68-15.42) 4.50 (3.0-6.71) 2.36 (1.31-3.77) <0.001 
Gamma Gap  9.80 (7.2-13.2) 5.90 (4.3-7.6) 4.90 (3.9-7.3) <0.001 
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Table 2: Association of Clinical Phenotype with Clinical Outcomes 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: PH, proportional hazards; HR, hazard ratio; CI, confidence interval; OR, odds ratio; ICU, 
intensive care unit; IRR, incidence rate ratio; LOS, length of stay; LR, likelihood ratio 

Legend: Reference group for all models is Phenotype III. All models adjusted for sex, race/ethnicity, and 
Elixhauser Comorbidity Index.   
* LOS model only included patients that survived. 

In- and Out- of Hospital Mortality 
(Cox PH) 

HR 95% CI P value 

Mortality 
     Phenotype I 
     Phenotype II 

 
7.30 
2.57 

 
3.11 – 17.17 
1.10 – 6.00 

<0.001 (LR test) 
<0.001 
0.03 

Binary Outcomes (Logistic Regression) OR 95% CI P value 
ICU Admission 
     Phenotype I 
     Phenotype II 

 
7.88 
2.32 

 
4.65 – 13.37 
1.46 – 3.68 

<0.001 (LR test) 
<0.001 
<0.001 

Mechanical Ventilation 
     Phenotype I 
     Phenotype II 

 
25.59 
7.45 

 
7.69 – 85.17 
2.27 – 24.43 

<0.001 (LR test) 
<0.001 
<0.001 

Count Outcome (Binomial Regression) IRR 95% CI P value 
Hospital LOS* 
     Phenotype I 
     Phenotype II 

 
1.74 
1.22 

 
1.45 – 2.10 
1.05 – 1.43 

<0.001 (LR test) 
<0.001 
0.01 
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