
1 
 

Performance and Robustness of Machine Learning-based Radiomic COVID-19 Severity Prediction  

 
Stephen S.F. Yip*1,2, Zan Klanecek*3, Shotaro Naganawa4, John Kim4, Andrej Studen3,5, Luciano Rivetti6, 
Robert Jeraj1,3 

*S.S.F.Y. and Z.K. contributed equally to this work  

 

1Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, U.S.A. 

2AIQ Solutions Inc., Madison, WI, U.S.A. 

3Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia. 

4Department of Radiology, University of Michigan, Ann Arbor, MI, U.S.A. 

5Jožef Stefan Institute, Ljubljana, Slovenia 

6FUESMEN-FADESA, Mendoza, Argentina 

 

Corresponding author:  

Stephen S. F. Yip, PhD.  

Honorary fellow | University of Wisconsin at Madison 
Chief Innovation Officer, Head of Research | AIQ Solutions, Inc 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.20189977doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.09.07.20189977
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

ABSTRACT 
 
Objectives: This study investigated the performance and robustness of radiomics in predicting COVID-
19 severity in a large public cohort.  
 

Methods: A public dataset of 1110 COVID-19 patients (1 CT/patient) was used. Using CTs and clinical 

data, each patient was classified into mild, moderate, and severe by two observers: (1) dataset provider 

and (2) a board-certified radiologist. For each CT, 107 radiomic features were extracted. The dataset 

was randomly divided into a training (60%) and holdout validation (40%) set. During training, features 

were selected and combined into a logistic regression model for predicting severe cases from mild and 

moderate cases. The models were trained and validated on the classifications by both observers. AUC 

quantified the predictive power of models. To determine model robustness, the trained models was 

cross-validated on the inter-observer’s classifications.    

 

Results: A single feature alone was sufficient to predict mild from severe COVID-19 with 

𝐴𝑈𝐶𝑣𝑎𝑙𝑖𝑑
𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟

=0.85 and 𝐴𝑈𝐶𝑣𝑎𝑙𝑖𝑑
𝑟𝑎𝑑𝑖𝑜𝑙𝑜𝑔𝑖𝑠𝑡

=0.74 (p<<0.01). The most predictive features were the distribution 

of small size-zones (GLSZM-SmallAreaEmphasis) for provider’s classification and linear dependency of 

neighboring voxels (GLCM-Correlation) for radiologist’s classification. Cross-validation showed that both 

𝐴𝑈𝐶𝑣𝑎𝑙𝑖𝑑 ≈0.80 (p<<0.01). In predicting moderate from severe COVID-19, first-order-Median alone had 

sufficient predictive power of 𝐴𝑈𝐶𝑣𝑎𝑙𝑖𝑑
𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟

=0.65 (p=0.01). For radiologist’s classification, the predictive 

power of the model increased to 𝐴𝑈𝐶𝑣𝑎𝑙𝑖𝑑
𝑟𝑎𝑑𝑖𝑜𝑙𝑜𝑔𝑖𝑠𝑡

=0.66 (p<<0.01) as the number of features grew from 1 to 

5.  Cross-validation yielded 𝐴𝑈𝐶𝑣𝑎𝑙𝑖𝑑
𝑟𝑎𝑑𝑖𝑜𝑙𝑜𝑔𝑖𝑠𝑡

=0.63 (p=0.002) and 𝐴𝑈𝐶𝑣𝑎𝑙𝑖𝑑
𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟

=0.60 (p=0.09). 

 

Conclusions: Radiomics significantly predicted different levels of COVID-19 severity. The prediction 

was moderately sensitive to inter-observer classifications, and thus need to be used with caution.  

 

Keywords: Coronavirus, COVID-19, Radiomics, Chest Computed Tomography, Machine Learning 

 

Key points: 

• Interpretable radiomic features can predict different levels of COVID-19 severity 

• Machine Learning-based radiomic models were moderately sensitive to inter-observer 

classifications, and thus need to be used with caution 
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Abbreviations 

COVID-19  Coronavirus disease 2019 

GLCM  Gray level co-occurrence matrix 

GLDM  Gray level dependence matrix 

GLSZM  Gray level size zone matrix 

IMC2  Informational measure of correlation 2  

ML   Machine learning 

MRMR  Maximum relevance and minimum redundancy  

RFE   Recursive feature elimination  

 

INTRODUCTION  

Coronavirus disease 2019 (COVID-19) pandemic has not only posed great threat to global health, but 

also put tremendous burden on the healthcare system [1, 2]. Accurate prediction of COVID-19 severity 

could provide actionable insights in guiding crucial hospitalization and treatment decisions, thereby 

alleviating the healthcare system strain [3].  

 

Chest computed tomography (CT) is an invaluable tool for evaluating pulmonary involvement of COVID-

19 [4–7]. Common qualitative CT imaging features of COVID-19 pneumonia include bilateral and 

peripheral ground glass opacities (GGO) distribution with/without consolidation [4]. As the disease 

progresses, total lung involvement increases along with the presence of crazy-paving and reverse halo 

sign [4, 6]. Thus, the radiologist’s manual assessment of these CT-based features has demonstrated 

great promise in COVID-19 diagnosis [5, 8, 9], prognosis prediction [10], and determining disease 

severity and therapeutic response [6, 11, 12]. However, manual assessment is laborious and subtle CT 

imaging findings can be overlooked by radiologists, especially due to the increased workload amid the 

outbreak. Accurate quantification of distinct COVID-19 imaging phenotypes may help automate the 

detection of sophisticated imaging features for disease severity prediction, reducing radiologists’ 

workload. Furthermore, quantification would allow for more accurate assessment of COVID-19 treatment 

response for treatment development support. One way to quantify such phenotypes is to employ 

radiomics [13]. 

 

Radiomics automatically computes an atlas of complex features for medical image phenotypic 

characterization by utilizing mathematical algorithms that quantify relationships among image voxels 

[13]. Radiomic features have been used to quantify disease or organ phenotypes for predicting clinical 

outcome [14, 15], treatment response [16, 17], genetic alteration [18, 19], and severity of pulmonary 

injury [20–23]. Recent studies by Wei et al (2020) [23] and Homayounieh et al [24] have demonstrated 
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great promise in using radiomic features to predict COVID-19 severity based on classifications manually 

assessed by radiologists. However, the effect of inter-radiologist classification on the severity prediction 

was not investigated by the studies [5, 24, 25]. Further, they used both >1000 unfiltered and filtered (e.g. 

wavelet) -based radiomic features [26, 27]. Filtered features are difficult to intuitively interpret [27]. As 

our understanding of COVID-19 is constantly evolving, use of filtered features may lack flexibility for 

incorporating new knowledge and troubleshooting when outliers occur.  

 

In this study, we employed interpretable lung radiomic features to predict different levels of COVID-19 

severity in a large public cohort of 1110 patients and investigated the robustness of the prediction with 

respect to inter-observer classifications. To our knowledge, this is the largest COVID-19 radiomic study.       

 

METHODS AND MATERIALS 

Patient population 

This study used a publicly available MosMedData dataset (https://mosmed.ai) provided by municipal 

hospitals in Moscow, Russia from March—April, 2020 [25]. This dataset consists of chest CT images of 

1110 COVID-19 patients (1 CT/patient) and were classified into different levels of lung tissue damage 

severity (Table 1). The population is 42% male and has a median age of 47 years (18—97 years). Our 

research workflow is shown in Fig 1.  

 

COVID-19 Severity Classification 

Using CT findings and clinical data (Table 1), each patient was assigned a severity score range 0 (very 

mild) to 4 (critical) by two inter-observers: (1) the dataset provider and (2) our board-certified radiologist 

with 7 years of chest CT interpretation experience The scoring criteria and distribution among patients 

are shown in Table 1, respectively. Further, CTs of twelve patients with substantial motion artifacts were 

excluded from further analysis.  

 

Lung segmentation and radiomic feature extraction 

Lung masks were segmented using watershed segmentation algorithm [28] implemented in lung 

contouring function of AIQ Solutions’ Pulmonary Solutions technology. The watershed algorithm was 

initialized based on CT images with the threshold of -200HU. All segmented lung masks were then 

reviewed and manually adjusted by either an independent radiologist or an experienced imaging 

scientist.  
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A total of 107 non-filtered radiomic features were extracted within the segmented lung from the CT 

images using Python’s PyRadiomics v.3.0 package [26, 29]. The extracted features included 18 first-

order, 14 shape, 24 gray level co-occurrence matrix (GLCM), 16 gray level run length matrix, 16 gray 

level size zone matrix (GLSZM), 5 neighboring gray tone difference matrix (NGTDM), and 14 gray level 

dependence matrix (GLDM) features. The extracted features are listed in the Supplementary Table 1. 

Equation for each feature is described in [26, 29]. Prior to radiomic feature extraction, the voxel size of 

all CT images and their lung segmentations were resampled to uniform size of 3x3x3mm3 [13, 30]. The 

density of CT images was also discretized using a fixed width of 25HU to increase computation 

efficiency [13, 26]. Only non-filtered features were used due to their interpretability (Table 2). Analysis of 

1116 LoG and wavelet filtered features are shown in the Supplementary Fig 1.   

 

Statistical analysis  

Two statistical analyses (classification problems) were conducted to investigate the ability of radiomic 

features in predicting different levels of COVID-19 severity:  

(1) mild vs severe (score 0 and 1 vs score 3 and 4) 

(2) moderate vs severe (score 2 vs score 3 and 4) 

 

The patients with very mild (score 0) and mild (score 1) were grouped into mild severity category. 

Additionally, patients with severe (score 3) and critical (score 4) suspicion were grouped into severe 

category.  

 

The predictive power was quantified by the area under the receiver operating characteristics curve 

(AUC). We used a permutation test to investigate if AUC was significantly different from random 

guessing (AUC=0.50). In the permutation test, classifications were randomized 100,000 times and AUC 

was computed for each randomization. AUC was considered significant when fewer than 5000 AUCs 

computed from randomization (p<0.05 = 5000/100,000) ≥ AUC of interest [31].  

 

Radiomic-based machine learning model training and validation 

The dataset was randomly divided into training (60%) and holdout validation (40%) dataset (Table 1). 

During training, maximum relevance minimum redundancy (MRMR) algorithm and recursive feature 

elimination (RFE) method were used for radiomic feature selection implemented in MATLAB fscmrmr 

function and Python’s Scikit-learn, respectively [32]. Specifically, features were ranked according to their 

relationship with the prediction class (relevance) and among themselves (redundancy). Both 
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relationships were quantified using mutual information [32]. With RFE, the best 30 MRMR filtered 

features were added to a machine learning (ML) logistic regression model. 

 

The model was applied to the training set for training and to conduct the statistical analyses. The set of 

30 best MRMR features was pruned recursively based on five-fold cross validation. Average training 

AUC (AUCtrain) and its standard deviation of the model were computed for each pruning. The set of 

features with the highest average AUCtrain was selected. The ML model with the selected features was 

trained on the entire training set and locked (i.e. no further training) and then applied to the holdout 

validation set. Validation AUC (AUCvalid) was computed to evaluate the predictive power of the trained 

radiomic-based ML model.  

 

All aforementioned analyses were conducted using both provider- (𝐴𝑈𝐶𝑡𝑟𝑎𝑖𝑛
𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟

, 𝐴𝑈𝐶𝑣𝑎𝑙𝑖𝑑
𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟

) and 

radiologist- (𝐴𝑈𝐶𝑡𝑟𝑎𝑖𝑛
𝑟𝑎𝑑 , 𝐴𝑈𝐶𝑣𝑎𝑙𝑖𝑑

𝑟𝑎𝑑 ) determined classification.  

 

Robustness Study  

Radiomic-based ML models that were trained based on the training dataset of provider-determined 

classifications was validated on the hold out validation dataset of the radiologist-determined 

classifications (𝐴𝑈𝐶𝑟𝑎𝑑 𝑣𝑎𝑙𝑖𝑑
𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑡𝑟𝑎𝑖𝑛

), and vice versa. The models were considered robust if AUCvalid is 

significantly different from 0.50 (random guessing). Robustness study’s AUCs were indicated by 

𝐴𝑈𝐶𝑟𝑎𝑑 𝑣𝑎𝑙𝑖𝑑
𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑡𝑟𝑎𝑖𝑛

 and 𝐴𝑈𝐶𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑣𝑎𝑙𝑖𝑑
𝑟𝑎𝑑 𝑡𝑟𝑎𝑖𝑛 . 

 

Classification Agreement  

Cohen’s Kappa statistics (K) was used to quantify the agreement between provider- and radiologist-

determined classification. Cohen’s K ranges from -1 to 1 with |K|≤0.10=poor, 0.10<|K|≤0.20=slight, 

0.20<|K|≤0.40=fair, 0.40<|K|≤0.60=moderate, 0.60<|K|≤0.80=substantial, |K|>0.80=excellent agreement.  

 

RESULTS 

This study investigated the ability of radiomic features in predicting different levels of COVID-19 severity 

in a large patient cohort. Visual examples of patients with different severity are shown in Fig 2.  

 

Mild vs Severe COVID-19  

In training, as the number of features in our ML model was pruned from 5 to 1, average AUCtrain changed 

by <2% (𝐴𝑈𝐶𝑡𝑟𝑎𝑖𝑛
𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟

range: 0.85±0.06 and 0.87±0.05 and 𝐴𝑈𝐶𝑡𝑟𝑎𝑖𝑛
𝑟𝑎𝑑 range: 0.80±0.03 and 0.80±0.03)  
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(Fig 2a-b). As observed in Fig 2, more than one feature did not improve ML model performance. 

Therefore, only a single GLSZM-SmallAreaEmphasis and GLCM-Correlation feature was selected for 

provider’s and radiologist’s classification model validation, respectively (Fig 2c-d). In validation, 

univariate analysis also showed that GLSZM-SmallAreaEmphasis significantly predict mild from severe 

COVID-19 cases with 𝐴𝑈𝐶𝑣𝑎𝑙𝑖𝑑
𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟

= 0.85 (p<<0.01). GLCM-Correlation separated mild from severe 

cases with 𝐴𝑈𝐶𝑣𝑎𝑙𝑖𝑑
𝑟𝑎𝑑 = 0.74 (p<<0.01) (Fig 2d).  

 

The ML model trained on the provider-determined classifications resulted in 𝐴𝑈𝐶𝑟𝑎𝑑 𝑣𝑎𝑙𝑖𝑑
𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑡𝑟𝑎𝑖𝑛

 = 0.78 

(p<<0.01) (Fig 3a) in separating mild from severe COVID-19 cases, while the radiologist-determined 

classifications trained model had 𝐴𝑈𝐶𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑣𝑎𝑙𝑖𝑑
𝑟𝑎𝑑 𝑡𝑟𝑎𝑖𝑛  = 0.84 (p<<0.01) (Fig 3b). 

 

Moderate vs Severe COVID-19 

In training, adding more than one feature in the ML model did not improve average 𝐴𝑈𝐶𝑡𝑟𝑎𝑖𝑛
𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟

 (Fig 2a). 

For example, combining top 5 MRMR ranked features (i.e. (1) first-order-Median, (2) GLCM-Correlation, 

(3) first-order-90percentile, (4) first-order-RootMeanSquared, and (5) first-order-Mean changed for 

average 𝐴𝑈𝐶𝑡𝑟𝑎𝑖𝑛
𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟

 from 0.79±0.15 to 0.78±0.15. In validation, univariate analysis showed that first-

order-Median significantly differentiated moderate from severe class with 𝐴𝑈𝐶𝑣𝑎𝑙𝑖𝑑
𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟

=0.65 (p=0.01) (Fig 

2c).  

 

On the other hand, the average 𝐴𝑈𝐶𝑡𝑟𝑎𝑖𝑛
𝑟𝑎𝑑  of the ML model increased from 0.65±0.04 to 0.70±0.03 as the 

number of features grew from 1 to 5 (Fig 2b). The top 5 MRMR ranked features for 𝐴𝑈𝐶𝑡𝑟𝑎𝑖𝑛
𝑟𝑎𝑑  were: (1) 

GLCM-Correlation, (2) first-order-10percentile (3) GLCM-IMC2 (4) first-order-MeanAbsoluteDeviation 

and (5) first-order-Median (Table 2). More than 5 features did not further improve 𝐴𝑈𝐶𝑡𝑟𝑎𝑖𝑛
𝑟𝑎𝑑  as observed 

in Fig 2b. All 5 features were selected for validation. In validation, ML logistic regression model based on 

these top 5 features yielded 𝐴𝑈𝐶𝑣𝑎𝑙𝑖𝑑
𝑟𝑎𝑑  =0.66 (p<<0.01) (Fig 2d). 

 

The ML model trained on the provider-determined classifications had 𝐴𝑈𝐶𝑟𝑎𝑑 𝑣𝑎𝑙𝑖𝑑
𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑡𝑟𝑎𝑖𝑛

 = 0.60 (p=0.002) 

(Fig 3a) in moderate and severe cases prediction, while ML model trained the radiologist-determined 

classifications had 𝐴𝑈𝐶𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑣𝑎𝑙𝑖𝑑
𝑟𝑎𝑑 𝑡𝑟𝑎𝑖𝑛  = 0.63 (p=0.09) (Fig 3b).  

 

Classification Agreement  
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The Cohen’s |K| for mild, moderate, and severe class was 0.13, 0.06, and 0.06, respectively. |K| for all 

three classes was 0.10.  

 

DISCUSSION  

Chest CT plays an important role in COVID-19 management [6]. COVID-19 induced pulmonary injury 

can exhibit a number of observable CT imaging phenotypes [4]. Our study investigated the performance 

and robustness of automatically computed radiomic features in quantifying distinct COVID-19 imaging 

phenotypes for disease severity prediction in a large patient cohort.  

 

Our study has demonstrated that a single or few radiomic features can predict different levels of COVID-

19 severity. In mild and severe COVID-19 separation, the predictive power of the ML models remained 

high (AUCvalid>0.70) and significant (p<<0.01) regardless of being trained on the provider- or radiologist-

determined classifications (Fig 2). On the other hand, ML models had a modest performance of 

AUCvalidation~0.65 in moderate from severe cases prediction (Fig 2). Although the radiologist’s 

classification trained ML model had 𝐴𝑈𝐶𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑣𝑎𝑙𝑖𝑑
𝑟𝑎𝑑 𝑡𝑟𝑎𝑖𝑛  = 0.63 on the provider’s hold out validation dataset, 

the prediction was not significant, suggesting moderate sensitivity of radiomic-based ML models to the 

inter-observer classification (Fig 3b). Radiomic-based ML models thus should be used with caution and 

as an ML-assisted severity assessment tools. Although radiomics has great potential to improve 

radiologists’ workflow amid the COVID-19 outbreak, the model outputs should be reviewed and signed 

off by an experienced radiologist.  

 

Our Cohen’s Kappa analysis suggested that there was only a small agreement between the provider- 

and radiologist-determined classifications. Manual scoring systems, such as BI-RADS and Lung-RADS 

scores for cancer screening, often suffered from substantial inter-observer discordance [33]. To reduce 

disagreement, some studies [19, 27] included more than two radiologists and used the majority vote to 

determine the final score. If all radiologists scored differently, they would review both clinical and 

imaging data together and discuss any discrepancies until the consensus was achieved [19, 27]. To 

improve the robustness of radiomic-based ML models in the COVID-19 severity prediction, the models 

should be trained on classifications based on the unanimous decision arrived from three or more inter-

observers. 

 

Interestingly, the radiomic model trained by Wei et al (2020) [23] achieved an excellent performance with 

an AUC of 0.93 while the performance of our models were lower (Fig 3 and 4). Additionally, including 

additional 1116 wavelet and LoG radiomic features did not improve our model performance 
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(Supplementary Fig 1). The difference in model performance between our and the study by Wei et al 

[23] may be due to the patient size (1110 patients in our study vs only 81 patients in the study by Wei et 

al. [23]) and race (Russian vs Chinese cohort). It would be interesting to also investigate if COVID-19 

could drive distinct pulmonary injury patterns among different races. Further, Homayounieh et al (2020) 

[24] also employed CT radiomics to predict COVID-19 severity in 315 patients from Iran. However, their 

study used hospital admission and survival data as surrogate for COVID-19 severity while our study 

predicted severity classifications subjectively determined by experts. Future studies with external 

dataset of CT images, hospitalization, and outcome data should be used to validate the radiomics-based 

imaging biomarkers identified in our study.     

 

Lungs with high degree of HU histogram spread and nonuniform texture are likely to be COVID-19 

infected. In severity classification, we observed substantial GGO distribution and consolidation giving 

rise to image contrast between normal lung and infected tissues, and heterogeneous lung appearance 

(Fig 2). While normal lung tissue has HU unit of <-700, COVID-19 induced GGO and consolidation have 

much higher CT density [37, 38]. Thus, increased pulmonary involvement in severe cases can lead to 

high CT density values. This explains why radiomic features (e.g. first-order Median and 10Percentile) 

that quantify overall CT density values played an important role in detecting patients with more severe 

COVID-19 (Table 2). Furthermore, in the radiomic filtered images shown in Fig 2, GLCM-correlation was 

observed to be high around pulmonary vessels (Fig 2d-e) and in the infected areas (Figure 2f), but low 

in the normal pulmonary tissues (Fig 2d-f). This observation suggests that although the voxels of normal 

lung are similar, they tend to be less linearly dependent. In addition, large pulmonary involvement of 

COVID-19 patients could also lead to greater overall GLCM-correlation values. This may explain why 

GLCM-correlation alone could significantly separate mild from severe COVID-19 patients. Moreover, 

similar GLCM-correlation patterns were observed in both the moderate and severe COVID-19 patient, 

implying that, as expected, moderate and COVID-19 infected patients could share similar imaging 

characteristics (Fig 2e-f). Further, since GLSZM-SmallAreaEmphasis captures both the heterogeneity of 

histogram distribution and variations in zone sizes (i.e. extensions of infection) (Table 2), it also helped 

significantly differentiate mild from severe cases.  

 

Our use of descriptive radiomic features provide transparency into what drove the prediction of ML 

model (e.g. heterogeneous texture and spread of density distribution). Using only handful of features, 

radiomics demonstrated significant ability to separate patients into different severity levels of COVID-19 

infection on a validation set (Fig 3 and 4). Although deep learning models may identify latent imaging 

patterns for accurate COVID-19 detection [39, 40], they are difficult to intuitively interpret and thus often 
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regarded as a “black-box” [27, 41]. Deep learning algorithms usually have >1 million parameters [42]. As 

our understanding of COVID-19 is constantly evolving, such black box approach lacks flexibility for 

incorporating new knowledge and troubleshooting when outliers occur. However, with careful integration 

of an ensemble model of radiologist-defined, radiomic, and deep learning features one could further 

improve COVID-19 diagnosis while also efficiently incorporating new knowledge.  

 

CONCLUSION 

Radiomic-based ML models predicted patients with different levels of COVID-19 severity, particularly in 

the mild and severe case separation. However, inter-observer classifications modestly affected 

moderate and severe cases prediction. Our study suggests that radiomics may be useful for early 

identifying severe COVID-19 cases for hospital admission or treatment management but need to be 

used with cautions.       
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TABLE LEGENDS 

Table 1. Severity score determined by data provider and a radiologist. T= temperature. RR=respiratory 

rate. SpO2= peripheral capillary oxygen saturation. PaO2=partial pressure of oxygen. FiO2=Fraction of 

inspired oxygen. GGO = ground glass opacities.  

Table 2. List of top ranked features for both classification problems (i.e. Mild vs Severe COVID-19 and 

Moderate vs Severe COVID-19) that were considered for machine learning models. Provider=Dataset 

Provider’s classification. Rad=Radiologist’s classification. GLCM=Gray level co-occurrence matrix, 

GLDM=Gray level dependence matrix, GLSZM=Gray level size zone matrix, and NGTDM=Neighboring 

gray tone difference matrix 

 

FIGURE LEGENDS 

Figure 1. Research workflow: 1) Each patient was assigned with a CO-RADS score. 2) Lung mask was 

segmented by the watershed algorithm and radiomic features were extracted within the mask. 3) 

Dataset was then randomly divided into training and holdout validation dataset. 4) Feature selection and 

model training were performed. 5) Trained model was then locked and applied to validation data for 6) 

model evaluation.  

Figure 2. Radiomic filtered images. The mild, moderate, and severe COVID-19 patients were both 

identified by the data provider and theradiologist. Figure 3a) – c) are an axial slice of original CT display 

in lung window with W=1400HU and L=-500HU. Red arrows indicate location of infections.  Figure 3d) – 

f) are GLCM-correlation filtered images overlaid on CTs. Figure 3g) – i) are the GLSZM-
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SmallAreaEmphasis filtered images overlaid on CTs. GLCM=Gray level co-occurrence matrix, 

GLDM=Gray level dependence matrix, GLSZM=Gray level size zone matrix 

Figure 3. Results of radiomic model selection and training for (a) the provider’s and (b) the radiologist’ 

classifications, where shaded areas are the standard deviation of 5-cross validation. Model evaluation 

on holdout validation dataset for (c) the provider’s and (d) the radiologist’s classification.   

Figure 4. Cross Validation. (a) Models trained on the provider’s classifications was validated on the hold 

out dataset of the radiologist’s classifications. (b) Models trained on the radiologist’s classifications was 

validated on the hold out dataset of the provider’s classifications. 

 

 

 

Figure 1. Research workflow: 1) Each patient was assigned with a CO-RADS score. 2) Lung mask 
was segmented by the watershed algorithm and radiomic features were extracted within the mask. 
3) Dataset was then randomly divided into training and holdout validation dataset. 4) Feature 
selection and model training were performed. 5) Trained model was then locked and applied to 
validation data for 6) model evaluation. 
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Figure 2. Radiomic filtered images. The mild, moderate, and severe COVID-19 patients were 
both identified by the data provider and theradiologist. Figure 3a) – c) are an axial slice of original 
CT display in lung window with W=1400HU and L=-500HU. Red arrows indicate location of 
infections.  Figure 3d) – f) are GLCM-correlation filtered images overlaid on CTs. Figure 3g) – i) 
are the GLSZM-SmallAreaEmphasis filtered images overlaid on CTs. GLCM=Gray level co-
occurrence matrix, GLDM=Gray level dependence matrix, GLSZM=Gray level size zone matrix 
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Figure 3. Results of radiomic model selection and training for (a) the provider’s and (b) the 
radiologist’ classifications, where shaded areas are the standard deviation of 5-cross validation. 
Model evaluation on holdout validation dataset for (c) the provider’s and (d) the radiologist’s 
classification.   
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Figure 4. Cross Validation. (a) Models trained on the provider’s classifications was validated on the 
hold out dataset of the radiologist’s classifications. (b) Models trained on the radiologist’s 
classifications was validated on the hold out dataset of the provider’s classifications. 

 

 

Table 1. Severity score determined by data provider and a radiologist. T= temperature. 

RR=respiratory rate. SpO2= peripheral capillary oxygen saturation. PaO2=partial pressure of 

oxygen. FiO2=Fraction of inspired oxygen. GGO = ground glass opacities.  

 Dataset Provider Radiologist 

 Training  Holdout 
Validation 

Total Training  Holdout 
Validation 

Total  

Number of 
Patients  

657  441 1098 660 438 1098 

Severity Score       

Score 0 
 
CT findings: 
Non-infectious 

152 (23%) 102 (23%) 254 (23%) 165 (25%) 110 (25%) 275 (25%) 

Score 1 
 
CT findings: 
GGO 
Absent or 
<25% lung 
involvement  
 
Clinical data: 
T < 380C 
RR < 20/min 
SpO2 > 95%  

403 (61%) 270 (61%) 673 (61%) 34 (5%) 24 (5%) 58 (5%) 

Score 2 75 (11%) 50 (11%) 125 (11%) 144 (22%) 97 (22%) 241 (22%) 
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CT findings: 
GGO 
50-75% lung 
involvement  
 
Clinical data: 
T > 38.50C 
RR = 20-30/min 
SpO2 ≤ 95%  

Score 3 
 
CT findings: 
Diffuse GGO 
with 
consolidation 
50-75% lung 
involvement  
 
Clinical data: 
T > 38.50C 
RR ≥30/min 
SpO2 ≤ 95% 

PaO2/FiO2 ≤ 

300mmHg 

26 (4%) 18 (4%) 44 (4%) 105 (16%) 71 (16%) 176 (16%) 

Score 4 
 
CT findings: 
Diffuse GGP 
with 
consolidations  
 
Bilateral and 
≥75% lung 
involvement  
 
Clinical data: 
Signs of shock 
and multiple 
organ failure 

1 (1%) 1 (1%) 2 (1%) 209 (32%) 139 (32%) 348 (32%) 

 

Table 2. List of top ranked features for both classification problems (i.e. Mild vs Severe COVID-19 and 

Moderate vs Severe COVID-19) that were considered for machine learning models. Provider=Dataset 

Provider’s classification. Rad=Radiologist’s classification. GLCM=Gray level co-occurrence matrix, 

GLDM=Gray level dependence matrix, GLSZM=Gray level size zone matrix, and NGTDM=Neighboring 

gray tone difference matrix 

     

Radiomic 
Type  

Radiomic feature  Mild vs 
Severe 

Moderate 
vs Severe 

Description   
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First-
order 

    

 Median  Provider Median value of the 
density distribution 

 90percentile  Rad 10th percentile of 
the density 
distribution 

 MeanAbsoluteDeviation  Rad Mean distance of 
all density values 
from the average 
distance value 

 Mean  Rad Average value of 
the density 
distribution 

GLCM       

 Correlation Rad Rad Measure the linear 
dependency of 
neighboring voxel 
density 

 InformationalMeasureofCorrelation2  Rad Measure 
correlation of the 
density 
distributions of 
neighboring voxels 
based on mutual 
information 

GLSZM    A zone defined as 
3D volume with 
similar density 
value 

 SmallAreaEmphasis Provider  Quantify 
distribution of small 
size zones. High 
value indicates fine 
and heterogeneous 
textures  
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