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Abstract: 

INTRODUCTION: 

Introduction: 

December 2019 saw the origins of a new Pandemic which would soon spread to the farthest 

places of the planet. Several efforts of modelling of the geo-temporal transmissibility of the 

virus have been undertaken, but none describes the incorporation of effect of seasonality, 

contact density, primary care and ICU bed capacity and behavioral risk reduction measures such 

as lockdowns into the simulation modeling for Pakistan. We use above variables to create a 

close to real data curve function for the active cases of covid-19 in Pakistan. 

Objective: 

The objective of this study was to create a new computational epidemiological model for 

Pakistan by implementing symptomatology, healthcare capacity and behavioral risk reduction 

mathematically to predict of Covid-19 case trends and effects of changes in community 

characteristics and policy measures. 

Methods: 

We used a modified version of SEIR model called SEIDRD (Susceptible - Exposed Latent - 

Diagnosed as Mild or severe - Recovered - Deaths). This was developed using Vensim PLE software 

version 8.0. This model also incorporated the seasonal and capacity variables for Pakistan and was adjusted 

for behavioral  risk reduction measures such as lockdowns.  

Results: 
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The SEIDRD model was able to closely replicate the active covid-19 cases curve function for 

Pakistan until now. It was able to show that given current trends, though the number of active 

cases are dropping, if the smart lockdown measures were to end, the cases are expected to 

show a rise from 28th August 2020 onwards reaching a second peak around 28th September 

2020. It was also seen that increasing the ICU bed capacity in Pakistan from 4000 to 40000 will 

not make a significant difference in active case number. Another simulation for a vaccination 

schedule of 100000 vaccines per day was created which showed a decrease in covid cases in a 

slow manner over a period of months rather than days. 

Conclusion: 

This study attempts to successfully model the active covid-19 cases curve function of Pakistan 

and mathematically models the effect of seasonality, contact density, ICU bed availability and 

Lockdown measures. We were able to show the effectiveness of smart lockdowns and were 

also to predict that in case of no smart lockdowns, Pakistan can see a rise in active case number 

starting from 28th of August 2020. 

Keywords: Covid 19; Covid; Computational Epidemiology; CoronaVirus; Pakistan; Smart 

Lockdown 

1. Introduction 

1.1 Background: 
December 2019 saw the origins of a new Pandemic which would soon spread to the farthest 

places of the planet. Several efforts of modelling of the geo-temporal transmissibility of the 

virus have been undertaken, but none describes the incorporation of effect of seasonality, 

contact density, primary care and ICU bed capacity and behavioral risk reduction measures such 

as lockdowns into the simulation modeling for Pakistan. The aim of this study was to create a 

new computational epidemiological model for Pakistan by implementing symptomatology, 

healthcare capacity and behavioral risk reduction mathematically to predict of Covid-19 case 

trends and effects of changes in community characteristics and policy measures. To achieve this 

we propose a novel SIR-type metapopulation transmission model and a set of analytically 

derived model parameters.  

 

1.2 Objective 
The objective of this study was to create a new computational epidemiological model by 

implementing symptomatology, healthcare capacity and behavioral  risk reduction 

mathematically to predict of Covid-19 case trends and effects of changes in community 

characteristics and policy measures.  
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2. Methods 

2.1 Data Resources 
Real world COVID-19 Data utilized for this study can be found on the following repository 

maintained by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins 

University and “Our World in Data” website page “Coronavirus Pandemic (COVID-19)” 

https://github.com/CSSEGISandData/COVID-19  

https://ourworldindata.org/coronavirus 

 

2.2 Model Compartmentalization  
We used a modified SEIR model with slight modifications in the compartmentalization and parameterization 

of an existing example (1). We call this model SEIDRD for the presence of susceptible, exposed-latent, 

infectious, detected-symptomatics (mild or severe), recovery and deaths compartments (Table 2). Following 

is detailed look into these compartments: 

 

Figure 1. Basic Compartmental modeling setup with SEIDRD compartments arranged as above. 
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1. Susceptible (S) 

This represents the population set which is susceptible to COVID-19. Any exposure to Presymptomatic 

Infectious (PI), Mild Symptomatic (MS) or Severe Symptomatic (SS) populations can lead to a conversion of 

susceptible persons to an Exposed-Latent (E) patient with a probability of Beta (β) (Table 1). The transition 

equation for this population’s conversion into Exposed-Latent population is given as: 

∂S/∂t = (fs.br.rcd).(PI(β) + MS(β)(1−ief) + SS(rβ)(1−ief)) 
 
In this equation, fs represents Fraction susceptible, br is behavioral  risk factor while rcd represents relative 
contact density (Table 1). Each of these parameters are additional controlling levers which can either increase 
or decrease the rate of conversion into Exposed-Latent population. A decrease in fs reflects less susceptibility 
to infection, low br reflects better hygienic and social isolation behaviour while a low rcd reflects sparse 
population density when number of susceptibles decreases, thus naturally low contact between the 
remaining susceptibles as they are far apart. Decrease in any or all of these parameters can slow down the 
rate of conversion into the next compartment. The second part of the equation represents the ability of PI, 
MS and SS to infect a susceptible person with the probabilities of β, (β)(1−ief) and (rβ)(1−ief) (Table 1) 
respectively. β reflects the probability of getting infected from a PI population, rβ represents the relative 
change in probability of getting infected if the infection is coming from a severe case to a susceptible, while 
(1−ief) is a measure of  isolation effectiveness (Table 1). Isolation effectiveness (ief) is a measure of 
effectiveness of isolating total symptomatic patients. It is one if every symptomatic patient is completely 
isolated and cannot infect any other susceptible person. It does not cover the PI population as they are 
usually not identified unless symptomatic thus does not have a huge impact. 
 
2. Exposed-Latent (E) 

This population represents the patients who have acquired the disease but are neither showing any 

symptoms nor able to transmit the disease. This population converts into Presymptomatic Infectious 

population. The transition equation is given as: 

∂E/∂t = E.niϵ 
 
Here, niϵ represents non-infective-epsilon which represents the probability of transmission from exposed 
latent to presymptomatic infectious state. 
 

3. Presymptomatic Infectious (PI) 

These are the patient population who have acquired the disease and are infectious to others but have not 

developed any symptoms yet. Thus, they usually remain under the healthcare radar and are usually the most 

common source of disease spread. They transition into either Mild Symptomatic cases of Severe 

Symptomatic ones. The transition equations is as follows: 

∂PI(MC_t)/∂t = PI x iϵ x (1-pS) x pDxM 
 
∂PI(SC_t)/∂t = PI x iϵ x pS x pDxS 
 

Here ∂PI(MC_t)/∂t represents the rate of change of PI into Mild Symptomatic cases while ∂PI(SC_t)/∂t 

represents the transition into Severe symptomatic cases. The probability of conversion from PI into the next 

compartment is represented by iϵ (infective-epsilon) while out of this converted population, the probability 
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of converting into Severe Symptomatic population is given by pS. The probability of detection / diagnosis is 

given by pDxM and pDxS for mild and severe cases respectively (Table 1). 

4a. Mild Symptomatic (MS) 

This compartment represents the patients who have now developed mild symptoms and are most likely to 

either recover or a minority could still die. Being mildly symptomatic, they can also infect the susceptible 

population with a rate of (β)(1−ief) if isolation effectiveness is not one as described above. The transition 

equations for this compartment are as follows: 

∂MS(MR)/∂t = MS x μ x (1-pDM) 
∂MS(MD)/∂t = MS x μ x pDM 
 
Here ∂MS(MR)/∂t represents the rate of change of MS cases into Recovered population with a total 

probability of μ x 1-pDM while ∂MS(MD)/∂t represents the conversion of MS cases into the cases who die 

with a total probability of μ x  pDM (Table 1). Mu (μ) represents the probability of transitioning from any 

symptomatic case into any next compartment. 

4b. Severe Symptomatic (SS) 

This represents the severe cases compartment which are converted from PI compartment. This compartment 

then transitions into either recovered cases or deaths as given by following equations respectively:  

∂SS(SR)/∂t = SS x μ x (1-pDS) 
∂SS(SD)/∂t = SS x μ x pDS 
 
Here, ∂SS(SR)/∂t represents the rate of conversion of SS population into recovered ones with a probability of 
(1-pDS) while ∂SS(SD)/∂t represents the rate of conversion of SS population into deaths with a probability of 
pDS (table 1). The probability of deaths in severe cases (pDS) is in turn calculated as combined mortality rate 
(CMR) (Table 1). This CMR variable is in effect determined by minimal rate of mortality (as in mild cases) plus 
any additional mortality risk imparted by the lack of hospital capacity. Thus, if hospital strain (Severe cases / 
Available Hospital Capacity) is high, there is additional mortality risk imparted and thus the mortality in 
severe cases will be at-least the same as in treated mortality plus an additional risk. Its maximum value can 
get as high as the untreated mortality (Table 1). 
 

5. Recovered (R) 

This compartment represents all those who have recovered after being mildly or severely symptomatic. 

6. Deaths (D) 

This represents total deaths observed as converted from either mild or severely symptomatic compartments. 

Table 1. Parameter values used 

Name Value Description Formula (if any) / Explanation Ref 

β 0.38 Transmission rate   

rβ 0.50 Reduced transmission rate 
from undiagnosed severe 
cases 
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lp (days) 5.6 Average latency period  (2) 

lpni (days) 1.1 Latency period (non 
infectious) 

 (3) 

lpi (days) 4.5 Latency period (infectious) lp-lpni  

niϵ 0.90 Probability of transmission 
from exposed latent to 
presymptomatic infectious 
state 

1/lpni  

iϵ 0.20 Probability of transmission 
from presymptomatic 
infectious state to 
symptomatic state 

1/(lp-lpni)  

pS 0.01 Probability of developing 
severe symptoms 

  

pDM 0.01 Probability of death in mild 
cases 

  

pDS 0.04 Probability of death in 
severe cases 

  

pDxM 0.0001 Probability of being 
diagnosed/detected in mild 
cases 

 (1) 

pDxS 0.06 Probability of being 
diagnosed/detected in 
severe cases 

We chose it to be a lower value than 
0.6 mentioned in an earlier paper (1) 
because of poor testing facilities in 
Pakistan. 

 

μ 0.142 Rate of transition from 
Symptomatics to either 
Recovered or Deaths 

1/7days(Average recovery time since 
symptoms development) 

 

Total 
Population 

100000 Total Population for the 
given model 

  

Fraction 
Susceptible 
(fs) 

calculated Susceptible / Total 
Population 

Susceptible/Total Population  

Relative 
Contact 
Density 
Factor (rcd) 

calculated Reflects the effect of 
decrease in transmission as 
fewer susceptible cases 
remain and disease spreads 
to far isolated regions 

1/(1+Contact Density Decline*(1-
Fraction Susceptible)) 

 

Behavioral  60, 162 Time in days when first and The first detected cases were found on  
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Import Times 
1 & 2 (in 
days) 

second (smart lockdown) 
episode of behavioral  risk 
reduction measures are 
started 

26/2/2020 but the disease must have 
reached Pakistan before it. The time to 
first lockdown was 30 days after the 
first case was reported. We take the 
total time (real start time + time from 
1st detection) to be 60 days as it 
produces the most representative 
curve of active cases. Similarly, the 
second set starts with initiation of 
smart lockdowns at day 162. 

Behavioral  
Reaction 
Times 1 & 2 
(days) 

3 Time in days taken to react 
and put behavioral  risk 
reduction measures to full 
effectiveness since import 
time 

Ideally once announced, the lockdown 
measures are implemented 
immediately but as it requires 
cooperation from every sector, we 
extended the reaction time to 3 days. 
This value is kept the same for 1st and 
2nd set of smart lockdowns. 

 

Max 
Behavioral  
Risk 
Reduction 
(Lockdown 
Measures & 
its 
effectiveness
) 1 & 2 

0.675, 4.3 This value represents the 
maximum effectiveness of 
behavioral  risk reduction of 
disease transmission that 
can be achieved. 

It was obtained after experimentation 
to mimic the real work active cases 
data. It implies that any behavioral  risk 
reduction measures (lockdown) were at 
maximum 67.5% effective. For the 
second set of smart lockdowns, a value 
of 4.3 came out as the right choice 
which meant Pakistan’s risk reduction 
measures were 430% effective. 

 

Behavioral  
Risk 
Reduction 1 
& 2 

calculated These are calculated from 
above variables for both 
lockdowns 

IF THEN ELSE((Lockdown Time 
Control*InverseFunc)=1, "Max Beh.Risk 
Reduction", -1*"Max Beh.Risk 
Reduction" 
 ) 
 
IF THEN ELSE((Lockdown Time 
Control2*InverseFunc2)=1, Max Beh RR 
2, -0.5*Max Beh RR 2 
 ) 
 
Note: Above we imply that during the 
lockdown phase, apply the maximum 
behavioral  reduction but apply a 
negative value of it when lockdown 
lifts. For the second set of lockdowns 
(smart lockdowns) we imply a half of its 
negative value thus second time 
around, people go to their socialization 
half as much probably because of 
learned behaviors. 

 

Behavioral  calculated Reflects the effect of social SMOOTH3(1-STEP(Behavioral  Risk  
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Risk Factor 1 
& 2(br) 

isolation as a 3rd order 
SMOOTH function of 
Behavioral  risk reduction 
(0-1), reaction time in days 
(we took 20 days) and 
starting time (Import time) 
for initiation of behavioral  
changes. 

Reduction,Import Time),Reaction Time) 

Inverse 
Function 

1 Used as a binary lever to 
toggle the lockdown 
measures on or off. 

  

Lockdown 
Start Time 1 
& 2 (days) 

60, 162 Same as Import time above 
but is used for Ventity’s 
Pulse function to control 
the ending time 

  

Limited 
Lockdown 
Impacts 1 & 
2 

1 A toggle control, if 1 
lockdowns have full impact 
else no impact. This is left 
at one. 

  

Duration of 
Lockdowns 
(days) 

52, 38 The time period for which 
the lockdown pulse 
function delivers a unity 
value (1). This is based on 
real durations of lockdown 
in Pakistan. 

 (4) 

Lockdown 
Time 
Controls 1 & 
2 

calculated This function delivers a 
pulse with a value of one 
during the duration of 
lockdown 

MAX(PULSE(Lockdown Start 
Time,Duration of Lockdown),1-Limited 
Lockdown Impact) 

 

Public Health 
Capacity 

124,664 Beds available to isolate 
symptomatic COVID-19 
cases. We take the total 
bed capacity of Pakistan as 
a starting point. 

Assuming 0.6 bed per thousand people 
based on world bank data of 2014 

(5) 
 

Public Health 
Strain 

calculated Total symptomatic cases / 
Available Public Health 
Capacity 

Total symptomatic/Public Health 
Capacity 

 

Isolation 
Reaction 
Time (days) 

20 Time taken to react and put 
isolation measures to full 
effectiveness since import 
time 

  

Isolation 
Import Time 

10 Time when first measures 
of isolation are started 
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(days) 

Public Health 
Capacity 
Sensitivity 

2 The susceptibility of the 
public health system to 
crumble under pressure 

  

Potential 
Isolation 
Effectiveness 

0-1 This lever is used to vary 
the maximum or minimum 
possible isolation 
effectiveness for the model 
(range is zero to one) 

  

Isolation 
Effectiveness 
(ief) 

calculated Reflects the 3rd order 
SMOOTH function of 
Potential Isolation 
Effectiveness (0 to 1), 
Import Time (starting time) 
and Isolation Reaction Time 
(lag time seen until first 
reaction). This equation 
also inversely depends on 
Public Health Capacity 
Strain and Public Health 
Capacity Sensitivity. 

SMOOTH3(STEP(Potential Isolation 
Effectiveness,Import Time),Isolation 
Reaction Time) 
/(1+Public Health Capacity 
Strain^Public Health Capacity 
Sensitivity) 

 

Untreated 
Mortality 
Rate 

0.67 Mortality rate without 
COVID-19 treatment 

 
(6) 

Treated 
Mortality 
Rate 

0.35 Mortality rate after COVID-
19 treatment 

 
(7) 

Hospital 
Capacity 

4000 Total ITU beds available for 
severe cases (ITU Ventilator 
beds) 

We take total number of ventilators 
available as a surrogate for ITU bed 
capacity in Pakistan 

(8) 

Hospital 
Capacity 
Sensitivity 

2 The susceptibility of the 
hospital system to crumble 
under pressure 

  

Hospital 
Strain 

calculated Severe cases / Available 
Hospital Capacity 

Severe Symptomatic/Hospital Capacity  

Combined 
Mortality 
Rate for 
Severe cases 
(CMR) 

calculated It is considered to be the 
same as for untreated 
mortality rate plus the 
change in mortality rate 
after treatment adjusted 
for hospital strain and 
hospital capacity sensitivity 

Untreated Mortality Rate+(Treated 
Mortality Rate-Untreated Mortality 
Rate)/(1+Hospital Strain^Hospital 
Capacity Sensitivity) 
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Seasonal 
Effect 

calculated Used to factor in the effect 
of seasonal variation, 
having the highest 
probability of disease 
spread in winters when 
compared to summers 

1-Seasonal Amplitude+Seasonal 
Amplitude*(1+COS( 
2*3.14159*(Current_Time-Peak 
Season)/Seasonal Period ))/2 

 

Seasonal 
Amplitude 

0-1 One means consider 
seasonal effects fully 

  

Peak Season 0 Zero day (out of 365 days)  
means disease start point is 
considered the peak time 
for disease spread while as 
we go deep in the year, the 
spread becomes less likely. 

  

Seasonal 
Period 

324 days The period chosen to 
represent a full season 
cycle 

We chose 324 after trial and error to 
mimic the true curve as closely as 
possible. This number implies that 41 
days of late December to early January 
can be considered to have a similar 
seasonal effect on disease transmission 
thus subtracting this from 365 leaves us 
with 324 day seasonal cycle when 
transmission does vary. 

 

Note: Time mentioned above in days is based on the simulation time and begins when the simulation starts. 

 

Table 2. Compartments and transition equations used. Note: (_t) is used for all transition equations at the 

end of symbol names 

Name Formula Description Ref 

Total Population 
(tP) 

207,774,520 Starting population chosen to be Pakistan’s 
population. 

 

Susceptible (S) S-E_t Total susceptible population  

Exposing (E_t) ∂S/∂t = (fs.br.rcd).(PI(β) + 
MS(β)(1−ief) + 
SS(rβ)(1−ief)) 

Change in susceptible population which are 
transitioning into exposed population over the 
given time period t 

 

Exposed-Latent (E) E_t - I_t  Patients exposed to Covid-19 but have neither 
yet developed the symptoms nor can they spread 
the disease.  

 

Infecting (I_t) ∂E/∂t = E.niϵ Change in exposed populations which are 
transitioning into the presymptomatic infectious 
population.  

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.20182642doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.01.20182642


 

 

Presymptomatic 
Infectious (PI) 

I_t - MC_t - SC_t Patients who can spread the disease but haven't 
yet developed the symptoms.  

 

Mild Converting 
(MC_t) 

∂PI(MC_t)/∂t = PI x iϵ x (1-
pS) 

Transitioning population from presymptomatic 
infectious to Mild Symptomatics 

 

Severe Converting 
(SC_t) 

∂PI(SC_t)/∂t = PI x iϵ x pS Transitioning population from presymptomatic 
infectious to Severe Symptomatics 

 

Total converting 
(TC_t) 

∂PI/∂t = MC_t + SC_t The total of Mild and Severe symptomatic 
transitioning populations 

 

Mild Symptomatic 
(MS) 

MC_t - MR_t - MD_t Patients with mild symptoms of the disease   

Severe 
Symptomatic (SS) 

SC_t - SR_t - SD_t Patients with the severe symptoms of the disease   

Total Symptomatic 
(TS) 

MS + SS Sum of mild and severe symptomatic populations  

Milds Recovering 
(MR_t) 

∂MS(MR)/∂t = MS x (1-
pDM) 

Transitioning population from Mild Symptomatic 
population to the Mild Recovering population  

 

Milds Dying 
(MD_t) 

∂MS(MD)/∂t = MS x pDM Transitioning population from Mild Symptomatic 
population to the Mild Dying population  

 

Severe Recovering 
(SR_t) 

∂SS(SR)/∂t = SS x (1-pDS) Transitioning population from Severe 
Symptomatic to Severe Recovering population 

 

Severes Dying 
(SD_t) 

∂SS(SD)/∂t = SS x pDS Transitioning population from Severe 
Symptomatic to Severe Dying population 

 

Recovered (R) MR_t + SR_t Recovered cases  

Deaths (D) MD_t + SD_t Total deaths   

 

Table 3: Assumptions Made 

Compartment Assumption   

Total Population Whole population exists in a homogeneous 
area without any provincial or regional 
compartmentalization 

  

Susceptible No existing immunity to infection.   

Mild Symptomatics For model simplicity, we decided to merge 
into one compartment all mild and 
asymptomatic cases. 
Patients with mild symptoms, in contrast to 
those in severe condition, are still 
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172 capable of travelling. 

Behavioral  Risk 
Reductions / Lockdowns 

After experimenting with the values, we 
assumed that during lockdown phases, 
people have a reduction in spread of active 
cases by a factor of Behavioral  risk 
reduction (BRR) value but non lockdown 
periods, people often go back to 
socialization and spread of disease activity 
is increased by the BRR value.  

  

Time to react We assume that it takes around 3 days for 
people to properly respond to any risk 
reduction measures like lockdowns 

  

Hospital Capacity We assume that beds needed for severe 
cases equates to ITU beds available. 

  

 Everyone who gets infected is removed 
from the population either through 
recovery or 
death. 

  

 The population is large, fixed in size and it 
is confined geographically. 

  

Recovered Recovered individuals cannot be reinfected, 
although the only evidence so far is for 
rhesus macaques (Ota, 2020) and WHO is 
still investigating the issue. 

  

 

Table 4. Pakistan Initiatives and disease response timeline 

Date Simulation 
equivalent 
time 

Initiative Actual 
Cases 

Active Infectious (Total 
symptomatic diagnosed) 
cases as per our model 

Ref 

26/2/2020 36 First Reported 
Cases 

2 2 (9) 

20/3/2020 59 First Reported 
Death 

485 346  

24/3/2020 63 First Lockdown 
starts in Capital 

947 775  

26/3/2020 65 Cases Reach 
1000+ 

1171 1146  

26/4/2020 96 Cases Reach 
10000+ 

10111 11201  
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9/5/2020 109 Lockdown Ends 20290 18655  

9/6/2020 140 Cases Reach 
70000+ 

71127 75260  

19/6/2020 150 Cases Reach 
100000+ 

100450 92916  

27/6/2020 158 Starts to plateau 107942 99954  

1/7/2020 162 Highest case 
number & Smart 
Lockdown starts 

108273 101668  

3/7/2020 164 Cases start 
decreasing 

103722 102212  

10/8/2020 202 Smart lockdown 
ends 

17799 22264  

Note: The root mean squared error for above table equals 4157. This is high for the early phase of the disease 

but relatively small when total cases get to a hundred thousand mark. 

 

 

Figure 2. Full SEIDRD Modeling chain. It shows the implementation of Hospital strain, Public health capacity 

strain, Seasonal effect, Isolation effectiveness, Relative contact density, Vaccine effectiveness and Lockdown 

1 & 2 as important variables affecting the final prediction. 
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2.3 Model Parameterization 
Above in Table 1, we present the parameters chosen for the model. These have been derived after literature 

review and represent either the best estimates mentioned in the literature, or most plausible values by the 

authors based on the epidemiological  knowledge on SARS-CoV-2 and other viruses. 

Literature based evident parameters: 

We split the total time between a person gets infected and develops symptoms into non infective latent 

period (ni) and infective (i) latent periods. We then calculate the parameters niϵ and iϵ, using the estimates of 

average latency period (lp) (2) and non infective latency period (lpni) (Wallinga & Teunis, 2004) as given by 

the formulae in Table 1. We chose to use Korean proportion of “severe” to diagnose cases as a base for the 

probability of developing the severe condition (pS), and we set it to 0.01.  

Among other important parameters were β, rβ and μ which represent the effective contact rate, reduction in 

contact rate in severe cases and rate of transitioning from symptomatic cases. β can be calculated from 

previous parameters as: 

R0 = β/(μ+ (1/lpi)) 

β = R0 x (μ+ (1/lpi)) 

There are widely varying estimates for R0 in literature with values ranging from 1.4 to 6.49 (10–14) We 

decided to choose the R0 of 4.4 reflecting a relatively higher rate of spread  which is well within the range of 

2-5, modelled 223 for SARS (3). We derive μ from a safe quarantine period for diagnosed cases equal to 10 

days (15). We assumed 1/μ to last on average for 7 days from symptoms development to recovery. The sum 

of1/ μ and previously estimated lpi (presymptomatic infectious period) results in  11.5 days which represents 

the total duration from becoming infectious  till recovery after a person acquires the disease. Using μ and 

(1/lpi), we can now calculate β which comes equal to 0.383. We also selected rβ to be 0.5 following the 

assumption for this parameter used in the 2009 influenza outbreak (16). This is because patients who have 

severe disease are mostly admitted, thus isolated and have reduced rates of transmission. 

The probability of death or mortality rate varies widely from values around 0.01 to 0.1 based on age and 

other parameters (17), (18), (19). For rate of mortality in mild cases (pDM), We chose a value on the lower 

spectrum of 0.01, based on the results obtained from early Wuhan studies (20). For severe cases admitted in 

ITUs, the mortality rate spectrum ranges from 0.11 to 0.42 depending on the age group with an average of 

0.35 (21). In one study, the mortality rate in ICU patients was reported as high as 0.67 (6). In order to 

calculate the combined rate of mortality in severe cases (CMR) (Table 1), we used two types of mortality 

estimates: 1. Untreated mortality rate, which was chosen to be 0.67 being on the higher end of the spectrum, 

2. Treated mortality rate, which was set at 0.35, assuming it to be on the lower end of the spectrum but still 

representing an average value.  

Local conditions based estimated parameters: 

In order to analyse the model for Pakistani population we choose the parameters based on the most recent 

available literature as given in Table 1 with references. We choose the total population to be 207,774,520. 

Based on a report from the World bank, the total bed capacity for Pakistan was calculated to be 0.6 per 

thousand (5). We chose this value to represent the total public health capacity as in the ideal case scenario, 
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any symptomatic case will be admitted and isolated for the disease duration. For the purpose of hospital 

capacity variable, we selected the total number of ventilators (4000) as a surrogate for the total ICU beds in 

Pakistan (8).  

 

 

Figure 3. Detailed SEIDRD Model with default initialization values. 

 

2.4 Modelling with Vensim PLE (version 8.0) 
We use Vensim PLE software version 8.0 (http://www.vensim.com) for the model development and 

numerical integration. Vensim, the Ventana Simulation Environment, is an integrated framework for 

conceptualizing, building, simulating, analyzing, optimizing and deploying models of complex dynamic 

systems (22) For our purpose, we use first order Euler integration technique to solve the equations 

numerically which is built into the software (23). The simulation period was selected to be 12 months. 

3. Results & Discussion 
In order to simulate the Covid-19 curve of Pakistan, some of the assumptions in Table 3 were made. We then 

used the constants and variables as defined in Table 1 and 2 to come up with the most similar curve of total 

symptomatic (reported) cases in Pakistan. We divide the derivation into following experimental stages: 

Experiment 1 creates a base model with seasonal variation incorporated and shows the expected curve if 

none of the lockdown measures or risk reduction methods were implemented. In experiment 2, we 

implement the first set of lockdown measures and see their effect without the subsequent smart lockdowns. 
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In the third experiment, we fully implement the smart lock downs as well and observe the similarity between 

actual case number and our predicted ones. In the fourth experiment, we test two assumptions; 1. What if 

the smart lockdown measures end? 2. What if some form of smart lockdown measures persist. Finally, In the 

fifth experiment, assuming that covid-19 returns, we observe the effect of varying hospital, public health 

capacity and possible vaccination and its impact. Before reviewing the following experiments, it's important 

to note that the simulation time starts 36 days before the first 2 cases were officially reported in Pakistan 

(Table 4), thus any of the day references mentioned below are from the simulation timescale. 

 

 

Figure 4. Shows the combined prediction curves for total symptomatic cases against simulation time. It 

compares base model, experiment 2, 3 and 4 models side by side. 

 

Experiment 1 (Base Model - No Lockdowns): 
In this experiment, we run the simple base model consisting of SEIDRD compartments as explained in the 

methodology section. This run was under the assumption that none of the lockdown measures have been 

imposed and the cases are spreading at a natural rate. This model also incorporates the seasonality 

adjustment (Table 2). As per this model, the cases start rising around day 70 to 75 simulation time. The cases 

peak at around day 125 with a maximum of around 200000 cases being reported each day. The numbers 

then start to decline but very slowly. 

As this model assumes no behavioral  risk reduction measures, this would have been the worse case scenario 

were it not for the timely lock downs. 
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Figure 5. Shows the base model curve for total symptomatic cases against the simulation time period. 

 

Experiment 2 (Brief Lockdown): 
The second experiment assumes the implementation of the 1st set of lockdown measures. It mimics the 

timings on which the first lockdown was started around day 60 and stopped after 52 days simulation time. 

This model represents the scenario when only a single down is put in place only to lift it later as happened in 

Pakistan from March 24 to May 9, 2020 (Table 4). 

This model mimics the initial rise of cases in Pakistan closely peaking at around 100000 cases on day 150 and 

then plateauing subsequently for some time. This model shows a better case then the base model but it 

predicts a subsequent rise from day 175 if no further lockdown measures are put in place. 

 

Figure 6. Shows the experiment 2 curve for total symptomatic cases against the simulation time period. 
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Experiment 3 (Smart Lockdowns): 
This model represents the implementation of the second set of lockdown measures also known as the “smart 

lockdowns”. Since in our model, we assume the population to exist in a single geographic area 

homogeneously, the concept of smart lockdowns is implemented as the one before. It is evident that the 

cases follow a similar curve until day 175 but then after a brief plateau, they start to decrease as happened in 

Pakistan (Table 4).  

Since this model assumes the second set of lockdown measures to start around day 162 and persist up to 38 

days, the cases start to rise again around day 220 after reaching the lowest case report number of 2829 per 

day. As per this model, if the smart lockdowns are completely lifted, the cases will rise again and eventually 

reach a maximum of 200000 cases per day around day 250 simulation time ( September 27, 2020). 

 

Figure 7. Shows the experiment 3 curve for total symptomatic cases against the simulation time period. 

 

Here we also present the other compartmental graphs as below: 
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Figure 8. Shows the experiment 3 curves for susceptible, presymptomatic infectious, Total symptomatic, 

Recovered and Deaths against the simulation time period respectively. 

 

 

 

 

 

 

Figure 9. Shows the experiment 3 curve for Deaths per day against the simulation time period respectively. 
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Experiment 4 (Sustained Smart Lockdowns): 
Continuing from above, If the smart lockdown measures are kept in place with maximum effect, the total 

number of active cases are shown to drop to less than 1 by day 273 (October 20th, 2020). This model 

assumes that the lockdown measures don't lose their efficacy and are kept in place indefinitely which can be 

difficult in a real world scenario. Any compromise in efficacy of sustained lockdown measures will result in a 

curve which is intermediate between experiment 3 and 4. 

 

Figure 10. Shows the experiment 4 curve for Total symptomatic cases against the simulation time period. 

 

Experiment 5: 
Finally, we take the model from experiment 3, assuming that a sustainable option of smart lockdowns is 

impossible and implement some of the possible solutions into the future. 

1.  We observe the change in mortality per day by increasing the total number of available ITU beds 

from an available 4000 (Table 1) to 40000. As in the graph below, the observed change is not much 

even though there is a definite decrease in mortality because of better respiratory support.  
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Figure 11. Shows the experiment 5 curve for Deaths per day against the simulation time period 

comparing scenarios with 4000 vs 40000 ICU bed availability in Pakistan. It shows no significant 

difference between both scenarios. 

 

2. As part of a second predictive analysis, we increase the number of available public health beds 

(includes all available hospital beds and social care services). We increase it from an available 

number of 124700 to 1 million (Table 1). As shown in the graph below no significant change in total 

symptomatic cases was observed. 

 

Figure 12. Shows the experiment 5 curve for Total symptomatic cases against the simulation time 

period comparing scenarios with 124700 vs 1 Million public health capacity units / beds availability in 

Pakistan. It shows no difference between both scenarios. 
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3. As part of final analysis, we introduce a vaccination schedule of 100000 vaccines per day starting 

from day 220 simulation time (when a rise in cases is expected).  As shown in the graphs below, 

there is an evident decline in the number of active cases per day and in deaths per day though the 

rate of decline is slow. It shows that without any complementary social distancing / behavioral  risk 

reduction measures, mere act of vaccination would take years for the disease to come under control 

if the vaccination starts after the second peak is achieved. 

 

 

Figure 13. Shows the experiment 5 curves for Total symptomatic cases and Deaths per day against 

the simulation time period comparing scenarios with none vs 100000 vaccinations per day starting 

from day 220 simulation time. It shows a visible decline in the incidence of new cases in both curves 

after the start of vaccination schedule. 
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4. Conclusion 
Our study shows the implementation of the SEIDRD model for predicting the incidence of active Covid-19 

cases in Pakistan. It tests several experimental scenarios with or without conventional or smart lockdowns, 

with improvement in bed capacity and with vaccination. It was shown based on the SEIDRD model that after 

the end of smart lockdowns in Pakistan, the Covid-19 active cases in Pakistan are expected show a rise at the 

start of September 2020 and if no risk reduction measures are taken, they are expected to achieve a second 

peak around 27th September 2020. We also observed that increasing the ITU bed capacity to a 10 time 

current value will not have a significant impact on the number of active cases or mortalities per day. Finally, a 

vaccination schedule of 100000 vaccines per day started after the second peak of Covid-19 will cause a drop 

in active cases and mortality per day but the effect will be observed over a period of few years without any 

risk reduction measures. Based on above findings, we recommend to put in place minimum risk reduction 

measures (smart lockdowns in high risk areas) at least until the availability of any form of vaccination. 
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