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Abstract 
 

Mathematical models are powerful tools in HIV epidemiology, producing quantitative projections of key 

indicators such as HIV incidence and prevalence. In order to improve the accuracy of predictions, such 

models need to incorporate a number of behavioural and biological heterogeneities, especially those 

related to the sexual network within which HIV transmission occurs. An individual-based model, which 

explicitly models sexual partnerships, is thus often the most natural type of model to choose. In this 

paper we present PopART-IBM, a computationally efficient individual-based model capable of simulating 

50 years of an HIV epidemic in a large, high-prevalence community in under a minute. We show how the 

model calibrates within a Bayesian inference framework to detailed age- and sex-stratified data from 

multiple sources on HIV prevalence, awareness of HIV status, ART status, and viral suppression for an 

HPTN 071 (PopART) study community in Zambia, and present future projections of HIV prevalence and 

incidence for this community in the absence of trial intervention.  
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Background 
 
Mathematical models and simulations are key tools for evidence synthesis across scales of observation, 

for interpretation, extrapolation, policy planning, cost-effectiveness evaluation and long-term 

predictions. In HIV epidemiology, models have provided quantitative insights into how acute infection 

(1), heterogeneous patterns of sexual behaviour (2-4), heterogeneous uptake of interventions and other 

factors affect the spread of HIV in populations, both in general populations and amongst key 

populations (5). Models are used to predict the potential impact of different prevention interventions 

(6, 7), and in the design and evaluation of trials and interventions (8-10). 

 

Increasing amounts of data are available through routine monitoring surveys (11, 12), trials (e.g. (13)), 

and cohort studies (14-16), and they often span multiple time-points. These datasets contain 

information on risk and prevention behaviours, including detailed questions on sexual partnerships, as 

well as HIV prevalence. Phylogenetic studies are starting to provide new quantitative insights into 

transmission dynamics. To synthesise these diverse data, there is a need for a new generation of 

mathematical models that are sufficiently granular, and that integrate up-to-date understanding of HIV 

epidemiology, to produce credible and accurate predictions. Such models also need to represent the 

multi-faceted activities currently used in HIV combination prevention packages, where a diverse set of 

interventions are delivered in an integrated manner. 

 

Given the task of developing a model of sufficient complexity to integrate diverse data sources, and that 

accurately represents the overlapping heterogeneities inherent in HIV population dynamics, an 

individual-based model (IBM) may be the most parsimonious representation of the epidemic and 

interventions, compared to analytic models that are specified in terms of differential equations. 

Specifically, there are at least three processes that occur on very similar time-scales to the HIV epidemic, 

and that affect its trajectory: firstly, the population turns over and its demographics change due to 

births, migration and ageing; secondly, individuals form and dissolve sexual partnerships, sometimes 

concurrent; and thirdly, infected individuals progress through stages of disease and treatment. These 

overlapping processes are difficult to fully represent in a parsimonious model consisting of differential 

equations, and the resulting models may be as or more unwieldy as a typical IBM.  

 

However, it remains challenging to code a complex IBM of HIV transmission that can be run in a 

computationally efficient manner. Unless each realisation of the simulated epidemic can be obtained 

quickly, it becomes difficult (and in many cases impossible) to explore a wide range of possible 

combinations of parameter values, and so obtain confidence in the generality and robustness of findings 

from the model. There is also a need to demonstrate how a complex IBM can be parameterised using 

setting-specific data and calibrated using an established statistical inference framework.  

 

In this article we present the PopART-IBM, a fast and flexible IBM of HIV transmission. The IBM was 

designed to model the HPTN 071 (PopART) trial conducted in communities in Zambia and South Africa 

with an HIV prevalence of >10% of the general population (17); however the model is intended as a 

flexible model of generalized HIV epidemics in populations where the primary mode of spread is sexual 

transmission in heterosexual partnerships.   

 

We describe here the design of the model, and demonstrate its computational efficiency. We illustrate 

the use of the model by showing in detail a parameterization to a community from the HPTN 071 

(PopART) trial. We show how the model is calibrated, via a Bayesian statistical framework, to a mixture 
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of Demographic Health Survey (DHS) and trial data, including measures of knowledge of HIV serostatus, 

being on antiretroviral therapy (ART) and viral suppression, as well as HIV prevalence stratified by age 

and sex. Limitations and future work are described in the discussion.   

 

Methods 
 

The PopART-IBM is an open-source discrete-time stochastic individual-based model coded in the C 

programming language. We have structured the code of the model in a modular fashion so that 

components specific to the HPTN 071 trial, such as the trial intervention or the Population Cohort 

sample, are coded using separate data structures and in separate files.  This allows components to be 

removed or modified in a straight-forward manner,  allowing others to contribute to the model and add 

components (including other interventions) that are not there at present. 

The model is also simple to modify for use with other calibration methods. We first describe the model 

structure, followed by outlining the data sources used to parameterise and calibrate the model in this 

study. Finally, we outline how the model is calibrated. Full details of the model structure, including 

parameters and algorithms, as well as key validation steps, are described in the Supplementary Material. 

The simulation code is available at https://github.com/BDI-pathogens/POPART-IBM under the GNU 

General Public License 3.0, and version 1.0.0 described in this paper is available at 

https://doi.org/10.5281/zenodo.3522848.   

 

Figure 1 shows the key components of the model. 

 

Design principles. The design principles were: first, parsimony, namely only including processes for 

which we had data, had evidence from earlier work that they were important determinants of 

population dynamics, or needed to be included to evaluate the PopART intervention; second, use a 

compiled language (the C programming language), to reduce simulation time, and third, extensive use of 

analytically derived waiting times instead of next-step event simulation. Parsimony was evaluated 

subjectively in consultation with the whole trial study team. Compared to next-step simulations, the 

waiting time approach produces faster simulations, but makes for more complex code and increases 

memory use.       

 

Spatial structure. We chose a meta-population structure, whereby the population can be divided into 

one or more spatial patches. Individuals form sexual partnerships within and between patches, but do 

not migrate between patches. In this study we present results based on two spatial patches, designed to 

represent the study community (patch 0) and its proximate surrounding area (patch 1) (see Figure 1 

left). Individuals may interact by having sexual partnerships with individuals in any patch. The aim of this 

particular structure is to study the extent to which the impact of an intervention offered to a defined 

population is modified by partnerships with individuals not benefiting from the intervention. It was 

parameterised using survey data on where individuals’ partners lived and how long this partnership 

lasted. It could easily be modified to represent more generic spatial structure.   
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Figure 1: Overview of PopART-IBM model structure 

 

 

Demographics. Births and deaths from non-HIV related causes are modelled based on country-specific 

age- and time-varying projections from the UN Population Division, as described in Supplementary 

Material section 2.1. Mother-to-child transmission of HIV is not modelled: all individuals are HIV-

negative at birth.  Individuals become available to form sexual partnerships when they turn 14, assumed 

as a lower age limit for sexual activity. (The actual age of forming the first sexual partnership is an 

outcome of the partnership formation and dissolution algorithm, and will vary across individuals and 

over time.)  

 

Partnerships. Individuals are divided into three levels of sexual activity (‘low’/’medium’/’high’). This is 

assigned when an individual enters the model, and it does not change during an individual’s lifetime. 

The sexual activity level determines the maximum number of concurrent partners they have, which is 

similarly fixed over their lifetime, and the rate at which they form new partnerships. (The actual number 

of partnerships is an outcome of the partnership formation and dissolution algorithm, and will vary 

across individuals and over time.)  The rate of partnership formation varies by age, so that even 

individuals with a ‘high’ level of sexual activity will eventually have fewer partners as they get older.  

 

After turning 14, individuals may form new heterosexual partnerships throughout the remainder of their

lives, at age- and sexual activity level-specific rates, up to their maximum number of concurrent partners

at any given time. Partnerships are formed according to an age-mixing matrix, while mixing between 

sexual activity levels is governed by an assortativity parameter, χ, allowing mixing to vary from 

proportionate (χ=0) to fully assortative (χ=1). When the model is run with multiple spatial patches, 

individuals have a lower probability of choosing a partner outside their own patch. Partnerships last a 

finite random time, dissolving at a rate that depends on the sexual activity levels of the partners, and 

whether they reside in the same patch or not. (Distant relationships last less long.) The sexual 

partnership process is parameterized based on answers to sexual behaviour surveys asked of 

participants in the community, including the age, residency and duration of recent partnerships, and 

life-time number of partners at different ages. This determines all parameters except χ.   

 

 

 

r 

s 
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HIV transmission. At each timestep in the model, HIV transmission occurs within serodiscordant 

couples, with a probability dependent on the sex of the seronegative partner, and the CD4 count, set-

point viral load (SPVL) and antiretroviral therapy (ART) status of the seropositive partner, as well as the 

circumcision status of the seronegative partner if male. Heterogeneity across the natural history of 

infection for an individual is thus incorporated via changes by CD4 stage, while heterogeneity between 

individuals is captured by differences in SPVL and ART status. The relative transmission rates are 

determined from published literature on HIV transmission in serodiscordant couples in sub Saharan 

Africa. HIV transmission rates are reduced when the partners reside in different patches, to reflect the 

fact that longer-distance partnerships may have lower average coital frequency. 

 

Disease progression and AIDS. Upon HIV infection, an individual enters acute and early HIV infection 

(AEHI), and is assigned a SPVL, which affects both their infectivity and disease progression. After AEHI 

they enter a CD4 category drawn at random to be one of >500, 350-500, 200-350, ≤200 cells/mm
3
 with 

the probability dependent on their SPVL (18). In the absence of ART and natural death, they then 

progress sequentially through lower CD4 categories at a rate depending on SPVL which is estimated 

from long-term patient cohorts (18), until AIDS-related death (Figure S4.1 in Supplementary Material).  

 

Healthcare and prevention. The processes related to HIV testing, linkage to care and voluntary male 

medical circumcision (VMMC) can occur through multiple channels in the model. For example, in the 

context of the HPTN 071 (PopART) trial there are ‘background’ and ‘intervention’ HIV testing services 

representing respectively existing testing services through clinics, and PopART-related services added 

through the Community HIV-care Providers (CHiPs) teams and other routes (19). Individuals may test 

multiple times, through a mixture of background and intervention channels.  

 

Upon receiving a positive test result, individuals can proceed to different stages of the treatment 

cascade (engaged in care, on antiretroviral therapy (ART), on ART and virally suppressed) or they may 

drop out at different stages of the cascade. Individuals can start ART if eligible according to local 

treatment guidelines at that time. Individuals who are not initially eligible may stay in care, until they 

become eligible either through declines in their CD4+ cell counts or changes in guidelines. Once an 

individual reaches a CD4+ cell count below 200 cells/mm
3
, even if unaware of their status, they are 

assumed to have a chance of seeking medical care because of AIDS-related symptoms, and hence 

initiating ART. Individuals who start ART may or may not become virally suppressed after an initial 

period, and can also stop treatment. A full representation of the HIV testing and treatment cascade is 

presented in the Supplementary Material Figure S4.7. 

 

A fraction of men are traditionally circumcised during childhood. When undergoing HIV testing in the 

model, men who test HIV-negative who are not already circumcised may accept referral for voluntary 

male medical circumcision (VMMC) with a given probability. Only medically circumcised men have a 

reduced susceptibility to HIV reflecting data from HPTN 071 (20). All intervention parameters were 

determined from PopART process data where possible (see calibration below).  

 

Notable structural omissions. In line with our parsimony approach, PopART-IBM does not include many 

factors included in other models. The model does not include transmission outside of heterosexual 

partnerships, or in any other way allow for key populations within the populations. The model does not 

consider migration, as this would require a different approach to parameterizing cross-patch 

partnerships. The model does not include viral strain structure, such as required to model the spread of 

antiviral resistance or changing virulence. Due to lack of historical data on the communities of interest, 
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we do not model condom use, though we do allow the net transmission rate to be a free parameter 

(only relative rates are determined from the literature.) We do not model coinfections, including those 

such as HSV-2 that modify HIV transmission rates. The current model is well suited for generalised 

heterosexual epidemics with HIV prevalence >10%, as found in the study communities. It is less well 

suited for epidemics characterised by low overall prevalence and high prevalence among key 

populations.  We plan to address these omissions in future work, where data are available, and where 

the structural changes are likely to affect predicted interventions. The modular approach in which the 

model is coded also allows for these components to be added by other researchers using the model. 

 

Running the model. The model uses a timestep of 1/48 of a year (a metric week) and ignores leap years. 

Random seeds are completely specified and recorded; any model output is thus completely 

reproducible. 

 

Baseline population and initial conditions. Simulations start in 1900 to allow extensive time for 

population demographics and the sexual partnership network to stabilize prior to the introduction of 

HIV (see Supplementary Material Sections 6.2 and 6.7 for further details).  

 

The introduction of HIV is simulated in the population through seeding a small proportion of the 

population. This seeding process is repeated annually over multiple years so that epidemics with R0 just 

above 1, which may potentially reproduce the epidemic trend if they do not die out due to stochastic 

variation in the model, are not excessively disfavoured, and to allow for the possibility that in reality HIV 

may have entered a population multiple times before becoming endemic.  

 

Model parameterization and calibration 

A full list of the data sources used to parameterize the model in this study is given in the Supplementary 

Material, including detailed descriptions of the analyses and checks used for parameters related to 

sexual behaviour such as partnership duration (Supplementary Material Section 3). While the IBM 

contains over 350 parameters, only 17 parameters are estimated through the calibration process used in 

this article. These parameters were those where there was limited data in the literature to estimate 

them.  

 

PopART-IBM is calibrated in a Bayesian framework, using an adaptive population Monte Carlo 

Approximate Bayesian Computation algorithm (APMC-ABC) (21), implemented via the R library package 

EasyABC version 1.5 (22). The APMC-ABC inference is carried out iteratively, using a Euclidean distance 

measure. In each inference step 2,000 simulations of the model are carried out, and the 50% of the 

simulations with the lowest distance are retained for the next step. 1,000 additional new parameter sets 

are then drawn based on an algorithm described in (21), prior to the next step. The APMC-ABC algorithm 

stops when the proportion of simulations with decreased distance measure is below 9%. The resulting 

distribution of accepted model projections is proportional to the posterior distribution given the data 

and the IBM (21). 

 

The data sources used in calibration here include the HPTN 071 (PopART) population cohort (PC) survey 

collected from 2013-2018; three rounds of Zambian Demographic Health Surveys (DHS) in 2002, 2007, 

and 2013; and data collected by CHiPs teams from 2013-2017 as part of the HPTN 071 (PopART) trial 

intervention in one trial community. We use as summary statistics HIV prevalence (4 rounds of PC 

surveys, 3 rounds of DHS, and one round of CHiPs data), as well as the proportion of individuals who are 

aware of their status (3 rounds of CHiPs data), and the proportion of those aware who are currently on 

ART (3 rounds of CHiPs data), and the proportion of people living with HIV (PLHIV) who are virally 
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suppressed (which was measured in the third round of the PC survey). Each of these statistics is 

stratified by age group and sex. Thus there are a total of 248 data points to which the model is 

calibrated. 

 

During the calibration stage we run the model including the ‘intervention’ services, since we are 

calibrating to data including timepoints during the trial when the trial intervention was taking place, 

generating calibrated parameter sets. In the results we also present model projections from a 

counterfactual scenario, using these calibrated parameter sets but with the ‘intervention’ services 

switched off. This represents a status quo scenario, without PopART-related CHiPs and associated 

intervention activities, but with HIV testing and antiretroviral therapy available following national 

guidelines. 

 

 

Measuring computational efficiency. We show two measures of computational efficiency: runtime of 

the model and the memory used during a run. In an IBM, runtime and memory usage will both depend 

on population size, and potentially the number of PLHIV. We compiled the model using the Intel icc 

compiler with ‘-03’ optimization. A single parameter set was chosen at random from the posterior 

following calibration via APMC-ABC, and it was used to generate new parameter sets by keeping all 

parameters fixed apart from the number of initially seeded HIV infections and the size of the adult 

population at the beginning of the simulation, which were varied across a grid. The model was run with 

two patches from 1900 until 2020, and we use the number of adults aged 14 and above in patch 0 in 

2020 as the measure of population size. Since runs with very low HIV prevalence run more quickly, due 

to the reduced number of serodiscordant partnerships, we only include runs where HIV prevalence was 

at least 10% in 2020. 

 

Simulations were run on the Oxford BMRC cluster, comprised of a mixture of Intel IvyBridge E5-2650v2 

@2.6GHz and Intel Xeon Gold 6126 @2.6GHz processors, with 16GB memory per core and threading 

disabled. Runtime was measured using the ‘real’ output from the Linux time command, which measures 

wall-clock time. Memory usage was measured via the Linux ps command to record the actual memory 

usage (resident set size) of the model every five seconds, and we computed the maximum memory used 

over the run. 

Results 
 

Numerical efficiency. PopART-IBM is computationally fast, modelling a 130 year demographic and 

epidemic history in two linked communities containing around 50,000 adults each in under 30 seconds, 

and requiring under 2 gigabytes of memory to do so. Figure 2 shows how model computational 

efficiency varies with the size of the community. Both runtime and memory usage increase linearly as 

the size of the community increases. 
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Figure 2: Runtime (left) and memory usage (right) of PopART-IBM for a single randomly chosen calibrated parameter set run for 

120 years. Population size was measured in one patch at the beginning of 2020. 

 

Calibration. The APMC-ABC algorithm successfully completed calibrating to the 248 data points after 

130 steps, requiring 131,000 simulations. Model fits for 1,000 accepted runs are shown in Figures 3. The 

model calibrates well to the majority of the data, and importantly captures overall trends by age and sex

for these indicators. Though most fits are good, the model tends to predict a lower proportion of people

on ART than self-reported being on ART, however the model predict viral suppression well. These 

indicators are not self-consistent, reflecting the reality of collecting data from different sources and with

different methods: ART coverage here is as reported by the PopART intervention teams working in the 

general population (CHiPs teams), whereas viral load suppression is based on samples collected amongst

research participants in a population cohort (PC). We did not weight the data; in this instance the model 

provided a better fit to PC viral load suppression data than to CHiPs data on self-reported ART use.  

To inform the history of the epidemic, we used regional survey data collected by the DHS predating the 

PopART trial. Model outputs after calibration match more closely to HIV prevalence from PC and CHiPs 

datasets than from DHS data. Supplementary Figure S7.3 shows that the calibration process is more 

informed by the CHiPs data than DHS data, which may be due to the larger number of data points 

coming from the CHiPs data, as well as the higher stochastic variability in the regional Zambian DHS data

due to the smaller sample size of the DHS dataset compared to the CHiPs data. 

 

x 

 

 

t 
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Figure 3: Calibration of PopART-IBM to PC, DHS and CHiPs datasets for women (columns 1 and 3) and men (columns 2 and 4). 

For all graphs, the x-axis shows 5 year age groups, starting at 15-19 years. Panel A shows calibration to HIV prevalence in PC0-

PC36 (columns 1-2); HIV prevalence from 2002, 2007 and 2013 Zambia DHS surveys (top 3 rows, columns 3-4); HIV prevalence 

from CHiPs round 3 (bottom row, columns 3-4). Panel B shows percentage of PLHIV who are aware of status from CHiPs rounds 

1-3 (columns 1-2), percentage of PLHIV aware of status who are on ART (top 3 rows, columns 3-4); viral suppression amongst all 

PLHIV from PC24 (bottom row, columns 3-4); and a Gantt chart showing the times that different data sources were collected 

(bottom left). In each graph the coloured bars represent the data used for calibration (observed proportions in each subgroup, 

with 95% confidence intervals), with corresponding colour in the Gantt chart; the grey lines represent the outputs from the 1,000

calibrated model runs; and the crosses represent the best model fit output.. 

 

 

0 
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Figure 4: Projected outputs over time from 1,000 calibrated runs from PopART-IBM for a counterfactual scenario with PopART-

related intervention HIV testing, linkage to care and VMMC switched off. Left column shows normalized or percentage outputs, 

such as HIV incidence and prevalence, while right column shows absolute outputs, such as total number of PLHIV. Black line 

shows median and grey lines show 2.5% and 97.5% quantiles from model output. Clockwise from top left: HIV prevalence over 

time; total number of people living with HIV/AIDS over time (thousands); total people living with HIV/AIDS who are on ART over 

time (thousands); incident cases per year; HIV incidence rate; percentage of PLHIV who are on ART. py=person years. 

 

Epidemic projections under the status quo. Figure 4 shows projections over time of key model outputs 

for a scenario without PopART-related CHiPs and associated intervention activities, but with HIV testing 

and antiretroviral therapy available following national guidelines. The model predicts that per-capita HIV

incidence is declining at present, and will continue to decline more slowly until 2030, when it plateaus 

around 1.02 per 100 person years (2.5% and 97.5% model output quantiles, MOQ 0.665-1.40). The 

proportion of PLHIV on ART has increased over time, in part driven by changes in ART eligibility over 

time, and is projected to continue increasing beyond 2030, but only to 59.2% of PLHIV. HIV prevalence 

has remained roughly stable since 2010, and is 15.1% (MOQ: 11.6-18.4%) in 2030, suggesting that the 

declines in HIV incidence are offset by PLHIV surviving longer due to ART. 

 

V 
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On the right of Figure 4 we see that, as the population in this community is growing, the number of 

PLHIV is increasing even though HIV prevalence has stabilised, and will grow by 58.5% (MOQ 48.5-

67.0%) between 2020 and 2030. The number of people on ART is also increasing almost linearly. Finally, 

while the number of new cases has declined slightly during the period 2010-2020, it will start to increase

again as the proportion of PLHIV on ART plateaus, and by 2030 there will be 18.9% (MOQ 0.0-36.8%) 

more incident cases than in 2020. While there is substantial uncertainty in the calibrated model fits, 

these trends remain present across all runs. Simulations are closely determined by the uptake of ART 

over time; here we use a simple continuous logistic function for the rates of testing and linkage over 

time, and these scenarios miss UN targets for ending AIDS in 2020 and 2030. Other scenarios 

representing more substantial ramp up of ART coverage will be explored in further work.  

 

 

 

 

 

 

Figure 5: Transmission tree from a single calibrated run of the PopART-IBM over the period 1970-1980. Nodes (circles) represent 

HIV infected individuals, and are coloured by sex. Edges (straight lines) represent transmission events, with infectors on the left 

e 
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and infectees on the right. Thicker lines represent where infections occurred when the infector was in the early stages of HIV 

infection. 

 

 

Epidemic dynamics. Figure 5 shows a simulated transmission tree, created from a single model run. 

Time is displayed along the x-axis, and nodes (circles) represent individuals, located at the time of 

infection, with colour denoting sex. Transmission pairs are joined by an edge (line), with thicker lines 

representing when transmission occurred during early HIV infection, which can particularly be seen in 

the clusters where several transmission events occurred during a short timescale. This pattern shows 

that the dynamics of this model, in well calibrated runs, displays dynamics not easily described by a 

deterministic model. Namely, the model predicts two tempi of transmission, with slow low-branching 

transmission chains, interspersed with rapid outbreaks amongst high risk individuals connected by 

multiple concurrent partnerships.  

Discussion 
The PopART-IBM is a fast, computationally efficient model of HIV transmission, simulating 50 years of an 

HIV epidemic in a typical, high-prevalence community of approximately 100,000 people in under a 

minute on a standard laptop. It is capable of exploring hundreds of thousands of parameter 

combinations on a standard computer cluster. In this article we have demonstrated calibration to a 

single representative community in the HPTN 071 (PopART) trial, and presented some of the detailed 

outputs that can be generated easily with such an individual-based model. The computational efficiency 

of the model scales linearly, meaning that the model can simulate an epidemic across a country of 50 

million people in about a day on existing, specialist, high-performance nodes.  

The model projections we show here highlight that while per-capita outputs such as HIV incidence and 

prevalence may stabilise, under the status quo, the growing population leads to increases in the number 

of new infections per year and the number of PLHIV on ART, and the latter will have consequences for 

healthcare resources. The UN targets for 2030 aim to ‘end AIDS’ and send the epidemic into sustained 

decline; continuation of the status quo will not just fail to achieve these ambitions, but may in fact result 

in an epidemic that is continuing to grow in some high prevalence settings. In future work, we will 

explore further scenarios in the light of the findings of the HPTN 071 (PopART) trial, including cost-

effectiveness.  

We have also shown a transmission tree generated by the model, providing a different perspective on 

HIV transmission in the model that explicitly demonstrates the clustering of transmission in a way that is 

not possible through deterministic models, and provides outputs for comparison with phylogenetic 

methods (23). 

The model generally calibrates very well to data from three different sources (DHS, CHiPs and 

population cohort), coming from eight time points. Using these data we calibrate to three different 

outcomes (HIV prevalence, proportion of PLHIV on ART, and viral suppression) stratified by age and sex. 

While the quality of the fit to early rounds of DHS data is somewhat lower, the DHS data itself has high 

variability both within and between rounds that make it challenging to fit to. By fitting to multiple data 
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sources and time points we expect to reduce the impact of inconsistencies in the data used for 

calibration. In addition, model predictions for the proportion of PLHIV on ART are somewhat lower than 

the data, though this may be expected due to social desirability biases when individuals self-report ART 

status. The fact that we also calibrate to viral load gives us more confidence that the model’s lower 

projected ART status is not unduly affecting our findings more generally. 

While a number of individual-based models of HIV transmission exist (e.g. MicroCOSM(24, 25), EMOD 

(26, 27), STDSIM (28, 29), HIV Synthesis Transmission model (30, 31)), in a systematic review of 

individual-based models Abuelezam et al. (32) noted that “the rigor in reporting of assumptions, 

methods, and calibration of individual-based models focused on HIV transmission and prevention varies 

greatly.” Porgo et al. (33) similarly state “While individual-based models can provide more realistic 

representations of a system, they can be difficult to parameterize because they require much more 

detailed knowledge, or assumptions, of how variables interact. The stochastic nature of these models 

makes them computationally intensive and challenging to calibrate”. In this study we have shown that 

the PopART-IBM can be parameterized using local survey data, including age-mixing and other 

partnership-related parameters, and successfully calibrated in a Bayesian framework to large quantities 

of age and sex-specific data on HIV prevalence, uptake of HIV testing and antiretroviral therapy, and 

viral suppression, coming from different sources.  

Limitations of the model include structural choices of what to include and what not to include. We took 

a parsimonious approach based on data availability and prior experience of determinants of population 

dynamics, but we cannot rule out that including factors such as migration and spread in key populations 

would result in different projections. With declining incidence, key populations are likely to play a bigger 

role in the future and modelling these dynamics will require additions to the model, a topic of current 

research. 

Another limitation is that our code was developed with numerical efficiency in mind; as a result it may 

be more difficult to adapt to different settings and different assumptions than other IBMs. We reasoned 

that numerical efficiency was essential for calibration and validation.    

Work is ongoing to use PopART-IBM in the context of the HPTN 071 (PopART) trial, to provide additional 

insight into the trial results (17), including to better understand the effects of age and sexual risk on 

transmission in the trial (34), and to generate cost-effectiveness estimates.  

To test the validity of the model, predictions of the model were publicly logged prior to the unblinding of 

the trial, and work is underway to examine what did or did not work in the modelling, allowing greater 

model validation (35), and providing recommendations for how models can better be used to inform 

and predict HIV trials. Outputs from the model are being combined with results from phylogenetic 

analyses in the same HPTN 071 (PopART) trial communities in Zambia to cross-validate the findings of 

each method into patterns of HIV transmission. Finally, the model is being adapted with the addition of 

pre-exposure prophylaxis for use in Manicaland, Zimbabwe. 

PopART-IBM is a computationally efficient stochastic individual-based model of HIV transmission, 

calibrated within a Bayesian framework, that can be flexibly customized to different settings and 

interventions, and provide a range of key outputs. By making the model open source we hope that this 

can become a tool that is of use to HIV epidemiologists and public health experts more widely. Robust 
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calibration to ever richer data sources may provide new granular insights into epidemic dynamics, and 

help design, support and evaluate new HIV prevention efforts.  

 

 

 

Acknowledgements 
We are grateful to all members of the HPTN 071 (PopART) Study Team and to the study participants and 

their communities for their contributions to this research. We also thank Lucie Abeler-Dorner and 

Robert Hinch for helpful discussions and comments on the manuscript.  

This work was supported by funding from the National Institute of Allergy and Infectious Diseases 

(NIAID) under Cooperative Agreements UM1-AI068619, UM1-AI068617, and UM1-AI068613, with 

funding from the U.S. President's Emergency Plan for AIDS Relief (PEPFAR). Additional funding was 

provided by the International Initiative for Impact Evaluation (3ie) with support from the Bill & Melinda 

Gates Foundation, as well as by NIAID, the National Institute on Drug Abuse (NIDA) and the National 

Institute of Mental Health (NIMH), all part of the U.S. National Institutes of Health (NIH). The content is 

solely the responsibility of the authors and does not necessarily represent the official views of the NIAID, 

NIMH, NIDA, PEPFAR, 3ie, or the Bill & Melinda Gates Foundation. 

 

 

 

References 
 

1. Bellan SE, Dushoff J, Galvani AP, Meyers LA. Reassessment of HIV-1 acute phase infectivity: 

accounting for heterogeneity and study design with simulated cohorts. PLoS Med. 2015;12(3):e1001801. 

2. Watts CH, May RM. The influence of concurrent partnerships on the dynamics of HIV/AIDS. 

Math Biosci. 1992;108(1):89-104. 

3. Morris M, Kretzschmar M. Concurrent partnerships and the spread of HIV. AIDS. 1997;11(5):641-

8. 

4. Hallett TB, Gregson S, Lewis JJ, Lopman BA, Garnett GP. Behaviour change in generalised HIV 

epidemics: impact of reducing cross-generational sex and delaying age at sexual debut. Sex Transm 

Infect. 2007;83 Suppl 1:i50-4. 

5. Steen R, Hontelez JA, Veraart A, White RG, de Vlas SJ. Looking upstream to prevent HIV 

transmission: can interventions with sex workers alter the course of HIV epidemics in Africa as they did 

in Asia? AIDS. 2014;28(6):891-9. 

6. Granich RM, Gilks CF, Dye C, De Cock KM, Williams BG. Universal voluntary HIV testing with 

immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical 

model. Lancet. 2009;373(9657):48-57. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 29, 2020. ; https://doi.org/10.1101/2020.08.24.20181180doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.24.20181180


7. Njeuhmeli E, Forsythe S, Reed J, Opuni M, Bollinger L, Heard N, et al. Voluntary medical male 

circumcision: modeling the impact and cost of expanding male circumcision for HIV prevention in 

eastern and southern Africa. PLoS Med. 2011;8(11):e1001132. 

8. Cori A, Ayles H, Beyers N, Schaap A, Floyd S, Sabapathy K, et al. HPTN 071 (PopART): a cluster-

randomized trial of the population impact of an HIV combination prevention intervention including 

universal testing and treatment: mathematical model. PLoS One. 2014;9(1):e84511. 

9. Pickles M, Boily MC, Vickerman P, Lowndes CM, Moses S, Blanchard JF, et al. Assessment of the 

population-level effectiveness of the Avahan HIV-prevention programme in South India: a preplanned, 

causal-pathway-based modelling analysis. Lancet Glob Health. 2013;1(5):e289-99. 

10. Boily MC, Masse B, Alsallaq R, Padian NS, Eaton JW, Vesga JF, et al. HIV treatment as prevention: 

considerations in the design, conduct, and analysis of cluster randomized controlled trials of 

combination HIV prevention. PLoS Med. 2012;9(7):e1001250. 

11. Justman JE, Mugurungi O, El-Sadr WM. HIV Population Surveys - Bringing Precision to the Global 

Response. N Engl J Med. 2018;378(20):1859-61. 

12. Boerma JT, Sommerfelt AE. Demographic and health surveys (DHS): contributions and 

limitations. World Health Stat Q. 1993;46(4):222-6. 

13. Perriat D, Balzer L, Hayes R, Lockman S, Walsh F, Ayles H, et al. Comparative assessment of five 

trials of universal HIV testing and treatment in sub-Saharan Africa. J Int AIDS Soc. 2018;21(1). 

14. Chang LW, Grabowski MK, Ssekubugu R, Nalugoda F, Kigozi G, Nantume B, et al. Heterogeneity 

of the HIV epidemic in agrarian, trading, and fishing communities in Rakai, Uganda: an observational 

epidemiological study. Lancet HIV. 2016;3(8):e388-e96. 

15. Gregson S, Mugurungi O, Eaton J, Takaruza A, Rhead R, Maswera R, et al. Documenting and 

explaining the HIV decline in east Zimbabwe: the Manicaland General Population Cohort. BMJ Open. 

2017;7(10):e015898. 

16. Tanser F, Hosegood V, Barnighausen T, Herbst K, Nyirenda M, Muhwava W, et al. Cohort Profile: 

Africa Centre Demographic Information System (ACDIS) and population-based HIV survey. Int J 

Epidemiol. 2008;37(5):956-62. 

17. Hayes RJ, Donnell D, Floyd S, Mandla N, Bwalya J, Sabapathy K, et al. Effect of Universal Testing 

and Treatment on HIV Incidence - HPTN 071 (PopART). N Engl J Med. 2019;381(3):207-18. 

18. Cori A, Pickles M, van Sighem A, Gras L, Bezemer D, Reiss P, et al. CD4+ cell dynamics in 

untreated HIV-1 infection: overall rates, and effects of age, viral load, sex and calendar time. AIDS. 

2015;29(18):2435-46. 

19. Hayes R, Ayles H, Beyers N, Sabapathy K, Floyd S, Shanaube K, et al. HPTN 071 (PopART): 

rationale and design of a cluster-randomised trial of the population impact of an HIV combination 

prevention intervention including universal testing and treatment - a study protocol for a cluster 

randomised trial. Trials. 2014;15:57. 

20. Pickles M, Cori A, Floyd S, Ayles H, Beyers N, Bock P, et al. Exploring the Effectiveness of 

Traditional Circumcision Practices in Preventing HIV.  CROI; Boston, USA2016. 

21. Lenormand M, Jabot F, Deffuant G. Adaptive approximate Bayesian computation for complex 

models. Computational Statistics. 2013;28:2777-96. 

22. Jabot F, Faure T, Dumoulin N. EasyABC: performing efficient approximate Bayesian computation 

sampling schemes using R. Methods in Ecology and Evolution. 2013;4:684–7. 

23. Ratmann O, Hodcroft EB, Pickles M, Cori A, Hall M, Lycett S, et al. Phylogenetic Tools for 

Generalized HIV-1 Epidemics: Findings from the PANGEA-HIV Methods Comparison. Mol Biol Evol. 

2017;34(1):185-203. 

24. Johnson LF, Kubjane M, Moolla H. MicroCOSM: a model of social and structural drivers of HIV 

and interventions to reduce HIV incidence in high-risk populations in South Africa. 2018. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 29, 2020. ; https://doi.org/10.1101/2020.08.24.20181180doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.24.20181180


25. Johnson LF, van Rensburg C, Govathson C, Meyer-Rath G. Optimal HIV testing strategies for 

South Africa: a model-based evaluation of population-level impact and cost-effectiveness. Sci Rep. 

2019;9(1):12621. 

26. Bershteyn A, Klein DJ, Wenger E, Eckhoff PA. Description of the EMOD-HIV Modelv0.7. 2012. 

27. Klein DJ, Bershteyn A, Eckhoff PA. Dropout and re-enrollment: implications for epidemiological 

projections of treatment programs. AIDS. 2014;28 Suppl 1:S47-59. 

28. Hontelez JA, Chang AY, Ogbuoji O, de Vlas SJ, Barnighausen T, Atun R. Changing HIV treatment 

eligibility under health system constraints in sub-Saharan Africa: investment needs, population health 

gains, and cost-effectiveness. AIDS. 2016;30(15):2341-50. 

29. Orroth KK, Freeman EE, Bakker R, Buve A, Glynn JR, Boily MC, et al. Understanding the 

differences between contrasting HIV epidemics in east and west Africa: results from a simulation model 

of the Four Cities Study. Sex Transm Infect. 2007;83 Suppl 1:i5-16. 

30. Phillips AN, Pillay D, Garnett G, Bennett D, Vitoria M, Cambiano V, et al. Effect on transmission 

of HIV-1 resistance of timing of implementation of viral load monitoring to determine switches from first 

to second-line antiretroviral regimens in resource-limited settings. AIDS. 2011;25(6):843-50. 

31. Phillips AN, Venter F, Havlir D, Pozniak A, Kuritzkes D, Wensing A, et al. Risks and benefits of 

dolutegravir-based antiretroviral drug regimens in sub-Saharan Africa: a modelling study. Lancet HIV. 

2019;6(2):e116-e27. 

32. Abuelezam NN, Rough K, Seage GR, 3rd. Individual-based simulation models of HIV transmission: 

reporting quality and recommendations. PLoS One. 2013;8(9):e75624. 

33. Porgo TV, Norris SL, Salanti G, Johnson LF, Simpson JA, Low N, et al. The use of mathematical 

modeling studies for evidence synthesis and guideline development: A glossary. Res Synth Methods. 

2019;10(1):125-33. 

34. Probert W, Hall M, Xi X, Sauter R, Golubchik T, Bonsall D, et al. Quantifying the contribution of 

different aged men and women to onwards transmission of HIV-1 in generalised epidemics in sub-

Saharan Africa: A modelling and phylogenetics approach from the HPTN071 (PopART) trial.  IAS 2019; 

Mexico City2019. 

35. HIV Modelling Consortium. Strengthening The Use of Mathematical Models in Community Trials. 

2012. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 29, 2020. ; https://doi.org/10.1101/2020.08.24.20181180doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.24.20181180

