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Background: The majority of polygenic risk scores (PRS) for breast cancer have been 

developed and validated using cohorts of European ancestry (EA). Less is known about the 

generalizability of these PRS in other ancestral groups. 

Methods: The Electronic Medical Records and Genomics (eMERGE) network cohort dataset 

was used to evaluate the performance of seven previously developed PRS (three EA-based PRSs, 

and four non-EA based PRSs) in three major ancestral groups. Each PRS was separately 

evaluated in EA (cases: 3939; controls: 28840), African ancestry (AA) (cases: 121; controls: 

1173) and self-reported LatinX ancestry (LA) (cases: 92; controls: 1363) women. We assessed 

the association between breast cancer risk and each PRS, adjusting forage, study site, breast 

cancer family history, and first three ancestry informative principal components. 

Results: EA-based PRSs were significantly associated with breast cancer risk in EA women per 

one SD increase (odds ratio [OR]=1.45, 95% confidence interval [CI]=1.40–1.51), and LA 

women (OR=1.41, 95% CI=1.13–1.77), but not AA women (OR=1.13, 95% CI=0.92–1.40). 

There was no statistically significant association for the non-EA PRSs in all ancestry groups, 

including an LA-based PRS and an AA-based PRS.  

Conclusion: We evaluated EA-derived PRS for estimating breast cancer risk using the eMERGE 

dataset and found they generalized well in LA women but not in AA women. For non-EA based 

PRSs, we did not replicate previously reported associations for the respective ancestries in the 

eMERGE cohort. Our results highlight the need to improve representation of diverse population 

groups, particularly AA women, in research cohorts. 
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Introduction 

Polygenic risk scores (PRS), which combine the effect of common genetic variants that 

individually confer minimal risk, have consistently shown the ability to stratify a woman’s risk 

of breast cancer[1]. Using large cohorts of European ancestry (EA) women, a breast cancer PRS 

developed in the Breast Cancer Association Consortium (BCAC), reported approximately 2-fold 

and 4-fold increases in breast cancer risk for women in the highest 10% and 1% of the PRS 

respectively, compared to women in the middle quantiles (40%-60%)[2]. This association has 

been replicated in validation studies using large cohorts of EA women, including the UK 

biobank and a Dutch prospective cohort [3, 4]. However, an important question remains about 

how PRSs perform in non-EA populations. Few studies have examined the performance of EA-

derived PRSs in individuals of non-EA ancestry, and have reported either worse [5] or similar 

performance [6].  Further, the few non-EA based breast cancer PRSs that have been developed 

are constructed using datasets of substantially smaller sample sizes than EA-based PRS, and their 

performance has not been validated. 

In this study, we used the Electronic Medical Records and Genomics (eMERGE) network’s 

diverse data set to evaluate the performance of seven previously developed PRSs (three EA-

based PRSs, and four non-EA based PRSs) for breast cancer in women of EA, African (AA) and 

LatinX (LA) ancestry. eMERGE is a network of academic medical centers in the United States 

that has compiled electronic medical record (EMR) and genotype data. Understanding the 

performance of these PRS in diverse populations is crucial as we move towards clinical 

implementation of the PRS. As these PRS become validated and incorporated into clinical 

practice, they will also need to be integrated with other clinical covariates like family history to 

be able to apply the information for breast cancer risk stratification [7, 8]. With few exceptions 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 21, 2020. ; https://doi.org/10.1101/2020.08.17.20176685doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.17.20176685


[9], studies have not yet evaluated the performance of PRS using clinical data extracted from 

EMR. Our study aims to provide a systematic evaluation of the generalizability of breast cancer 

PRSs using the rich resources of the eMERGE network, including extensive breast cancer 

phenotyping algorithms, and a diverse population assembled across the networks’ federated 

environment.   

Methods 

Study Participants 

The participants were women enrolled through the eMERGE network from eight medical centers 

with EMRs linked to genotype data. We identified breast cancer cases and controls through a 

validated EMR phenotyping algorithm (described below). We established ancestry by requiring 

the observed/self‐reported ancestry to match the genetic ancestry inferred by principal 

component analysis‐based k‐means group, as previously described [10]. Note for LA women, we 

only used self-report due to the diversity of admixture genetic background. We did not include 

Asian, Native American, and other ancestry groups given the small number of cases in the 

network for these ancestries. The institutional review board of each contributing institution 

approved the eMERGE study, and all participants provided written informed consent prior to 

study inclusion. 

PRS Models 

We examined the performance of seven PRS models previously developed and tested in EA, AA, 

or LA women (Table 1).  We reconstructed each PRS based on included variants and 

corresponding effect sizes in the original publications (details in Supplementary Methods). We 
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included three PRS models developed in EA women, (BCAC-S, BCAC-L, UKBB), which 

included 313, 3820, and 5218 variants respectively [2, 11]. We also included two PRS models 

developed in or adapted to LA women (WHI-LA, 71 variants[5] and LATINAS, 179 variants[6]), 

as well as two PRS models developed in AA women (WHI-AA, 75 variants[5] and ROOT, 34 

variants[12]) (Table 1) . For EA women, we also evaluated subtype specific PRSs, specifically 

PRSs developed for estrogen receptor (ER)-positive and ER-negative breast cancers, as 

previously described [2]. We used PLINK 1.9 [13, 14] to calculate each PRS as a weighted sum 

using the --score function (details in Supplementary Methods). 

Phenotypes and Genotypes 

Details of the eMERGE genotyping procedures and quality control procedures have been 

previously described [10] and are in Supplementary Methods. We used EMR data to phenotype 

each participant, including breast cancer case-control status, demographic information, ER status, 

family history, and age (details in the Supplementary Methods). We classified women as breast 

cancer cases or controls using a validated phenotyping algorithm (>95% positive predictive value 

for both cases and controls) that incorporated information from the ICD-9/ICD-10 diagnostic 

codes, breast pathology reports, and medication lists. The breast cancer phenotyping workflow is 

shown in Supplementary Figure S1.  

Statistical Analysis 

To evaluate the performance of each PRS, we standardized the PRSs to have a risk score unit 

expressed as a standard deviation (SD) of the control distribution. The association of the 

standardized PRSs and breast cancer risk was evaluated by logistic regression adjusted for the 

first three ancestry-specific principal components [10], age, family history of breast cancer, and 
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study site. We defined age as the difference between the year the phenotyping algorithm was 

executed (i.e., 2019) and year of birth. In addition, we examined the association of breast cancer 

by percentiles of PRS, compared to the middle quantile (40-60%), or to the remainder of the 

population. We also used a Cox proportional hazards regression model with the same covariates 

to assess the association of breast cancer risk when the outcomes were time to the breast cancer 

events. Women were followed starting from first known date in the EMR to either diagnosis of 

breast cancer (defined as the age of the first breast cancer-related ICD codes in the EMR), or age 

at last observation in the EMR.  

To examine the discrimination of each PRS, we estimated the area under the receiver operator 

characteristic curves (AUC), with only the PRS used as a predictor. To estimate the percentage 

of the total variance in breast cancer risk explained by PRS, we used Nagelkerke’s pseudo R2 

from logistic regression models. We also chose the PRS that was the most strongly associated 

with breast cancer within each ancestry (UKBB in EA and AA women, and BCAC-L model in 

LA) to estimate the cumulative risk of breast cancer for high PRS risk (> average PRS + 2 SD), 

moderate PRS risk (> average PRS + 1 SD) and population risk (within 0.5 SD of average PRS) 

individuals in each ancestry using iCARE [15] (details in Supplementary Methods). 

We assessed statistical power for testing associations of PRSs with breast cancer given sample 

size for each ancestry. Based on ancestry-specific empirical effect sizes of the PRS obtained 

from the literature, we assumed odds ratios (ORs) of 1.61 [2], 1.23 [5] and 1.58 [6] for EA, AA 

and LA women, respectively. Power analysis was then conducted for each ancestry by using R 

function pwr.f2.test(). Our power analysis shows we have 100%, 24% and 94% power to detect 

an association of above assumed ORs for EA, AA, and LA respectively. When we assumed a 

moderate PRS effect size (OR = 1.39) for LA women as reported in Allman et al. [5], we 
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observed 66% power to detect an association in LA women. All analyses were  conducted in R 

v.3.0.2.  All statistical tests were two sided, and P-values <�0.05 were considered significant.  

Results 

After applying the breast cancer phenotyping algorithm, our cohort included 35527 women, 

including 32779 EA, 1293 AA, and 1455 LA women (Table 2).  The total number of variants 

included in the PRS calculation for each model is presented in Table 1. On average, 73% of the 

variants included in the original PRS overlapped with the eMERGE genotype dataset.  

Association of PRS with breast cancer risk in women of European ancestry (EA) 

Our primary analysis examined the association of BCAC-S, BCAC-L, and UKBB in 3939 breast 

cancer cases and 28840 control EA women and is shown in Figure 1A. We found significant 

associations with overall breast cancer risk for all three PRSs examined; (BCAC-L OR: 1.40, 95% 

confidence interval (CI): 1.35-1.45; BCAC-S OR: 1.35, 95% CI: 1.30-1.40; UKBB OR: 1.45, 95% 

CI: 1.40-1.51). The hazard ratios (HRs) for breast cancer per one SD higher PRS are 1.06 (95% 

CI: 1.02-1.09), 1.07 (95% CI: 1.04-1.10) and 1.09 (1.06-1.13) for the BCAC-L, BCAC-S, and 

UKBB, respectively. 

As illustrated in Figure 2, this association with breast cancer risk was largest in the extremes of 

the PRS distribution, with ORs ranging from 2.31-2.97 for the three different PRSs examined for 

those in the highest 1% of the PRS compared to those in the middle quantile.  For example, for 

the UKBB PRS, compared to women in the middle quantile (40-60%), we observed a nearly 3-

fold increase in risk for women in the top 1% (OR: 2.97; 95% CI: 2.23 – 3.94) (Figure 2). We 

observed significant association and similar effect sizes for each of the three PRS with overall 

breast cancer when we compared the extreme ends of the distribution to those in the remainder of 

the PRS distribution. For example, we observed an OR of 2.66 (95% CI: 2.03-3.48) for the top 1% 
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of the UKBB PRS distribution, compared to the women in the remaining 99% of the distribution 

(Supplementary Figure S2). We found similar AUCs for each of the three PRSs examined. The 

AUC for the BCAC-L, BCAC-S, and UKBB PRS in EA women was 0.60 (95% CI:0.59-0.61), 

0.59 (95% CI:0.58-0.60), and 0.61 (95% CI:0.60-0.62), respectively (Table 3). Variance for 

breast cancer risk as quantified by Nagelkerke’s R2 value was 3.0% for the best performing 

model from UKBB. 

When we examined the association of PRS by ER status (ER-positive and ER-negative), we 

found significant associations for both ER–positive and ER-negative breast cancers, although the 

observed effect size was larger for ER-positive breast cancers (Figure 3). The findings were 

nearly identical for both overall PRSs and subtype-optimized PRSs. For example, when we 

examined the BCAC-S PRS developed for overall BC, the OR per SD of the PRS for ER-

negative breast cancer was 1.17 (95% CI:1.03-1.33) and 1.50 (95% CI:1.4-1.59) for ER-positive 

breast cancer, and these findings were identical to subtype optimized PRSs, BCAC-S-H-ERN 

and BCAC-S-H-ERP.  

Association of PRS with breast cancer risk in women of African ancestry (AA) 

In 121 breast cancer cases and 1173 control AA women, we examined the association of five 

previously developed PRSs: three developed and tested in EA women (BCAC-S, BCAC-L, and 

UKBB) and two developed in AA women (ROOT and WHI-AA). We did not observe a 

significant association between any of these PRSs and breast cancer risk (Figure 1B). The 

largest effect size we observed in AA women was for UKBB, with an OR per SD of the PRS of 

1.13, although not statistically significant. Compared to EA women, we observed lower AUCs 

for each of the three PRSs in AA women (BCAC- L: 0.52 (95% CI: 0.47, 0.57); BCAC-S: 0.51 
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(95% CI:0.46-0.56); and UKBB: 0.54 (95% CI:0.49-0.60) (Table 3). The AUC for the PRSs 

developed in AA women was 0.49 for ROOT and 0.48 for WHI-AA.  

Association of PRS with breast cancer risk in LatinX women (LA) 

We examined the association of five PRSs (BCAC-S, BCAC-L, UKBB, WHI-LA, and 

LATINAS), two of which were developed in or adapted to LA (WHI-LA and LATINAS) in 92 

breast cancer cases and 1363 LA controls. For LA women, we observed a significant association 

for overall breast cancer risk for four of the PRSs examined (BCAC-L, UKBB, LATINAS, 

BCAC-S), with ORs per SD of the PRS ranging from 1.26-1.41 (Figure 1C). BCAC-L PRS had 

an OR similar to that in EA women (BCAC-L OR in LA women: 1.41, 95% CI: 1.13-1.77). 

When we examined the association of PRS quantiles, we observed more pronounced associations 

for those at the higher end of the PRS risk (≥ 80%) compared to those in the middle quantiles 

(40-60%) for BCAC-L, LATINAS, and WHI-LA; however, none of these associations were 

significant, likely due to small numbers in these strata. For example, women in the top 20% of 

the BCAC-L PRS distribution had a two-fold increase in breast cancer risk compared to women 

in the middle quantiles (OR: 2.05, 95% CI: 0.97-4.30). Compared to EA women, we found lower 

AUCs in LA women for BCAC-L, BCAC-S and UKBB, and we observed the highest AUCs for 

the BCAC-L and LATINAS PRSs (AUC: 0.57, 95% CI: 0.5-0.63) in LA women (Table 3). 

Estimation of absolute risk of breast cancer 

As shown in Figure 4, there were differences in cumulative absolute breast cancer risk by 

categories of PRS for EA, AA, and LA women. When we compared those in the highest PRS 

risk category to those at population risk, EA women had larger risk gradient than AA and LA 

women. For example, EA, AA, and LA women in the lowest PRS risk category had a cumulative 

breast cancer risk of 12.6%, 11.9% and 9.2% , respectively, by age 80 years, whereas women in 
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the highest PRS risk category had 28.2%, 15.6% and 20.0% cumulative risk, respectively 

(Figure 4).  

Discussion 

For PRSs developed in cohorts of EA women (UKBB, BCAC-L, BCAC-S), we replicated 

significant association for increased breast cancer risk in EA women, although the ORs observed 

in our study were smaller in magnitude than the original studies (Supplementary Table S4). For 

example, BCAC-L had an OR of 1.40 in EA women compared to an OR of 1.66 reported in the 

original study [2]. Moreover, similar to other studies investigating the generalizability of PRSs in 

EA and non-EA cohorts, we found EA-based PRSs generalized well in LA women, but not in 

AA women. This is likely due to LA individuals in the US having a greater proportion of 

European ancestry than AA individuals [16]. Given that the majority of the participants in breast 

cancer-related GWAS are EA women, the lack of significant association of EA-based PRSs with 

breast cancer risk in AA women in our study is not surprising and is consistent with the PRS 

performance in non-EA cohorts for other diseases [17-21]. Worthy of note is the limited sample 

size for LA and AA women in our study, particularly for AA women where we had limited 

power. The poor generalizability can also be partly explained by differences in risk allele 

frequencies and LD patterns among diverse ancestries [21, 22]. This PRS coupled with other risk 

factors may influence clinical recommendations at an individual level such as enhanced 

screening. For example, the predicted cumulative risk by age 80 years for EA women in the 

lowest category of PRS is similar to the population risk (12.5%) and increases to 27% for EA 

women in the highest PRS category.  
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For PRSs developed in non-EA study populations (WHI-AA, WHI-LA, and ROOT) or adapted 

to non-EA population (LATINAS), we did not replicate the previously reported associations in 

the eMERGE cohort for either LA or AA women, except for the LATINAS in LA women. 

LATINAS is a multi-ethnic PRS that used effect sizes obtained from the EA population and 

further developed the PRS in a cohort of LA women, suggesting that combining training data 

from EA samples could improve the observed associations in non-EA populations [23-25]. 

Because the PRSs developed in non-EA studies are often based on much smaller GWAS cohorts, 

the uncertainty of the effect sizes used in those PRSs is larger, making their predictive power 

lower in the non-EA population [6, 12]. A recent study showed genome-wide PRSs with a larger 

number of included variants were more strongly associated with CHD than restricted PRSs [26]. 

The non-EA based PRSs included fewer variants due to smaller sample size in the discovery 

GWAS cohort, possibly additionally contributing to their weaker generalizability. Furthermore, 

even with an adequate sample size for non-EA populations, limitations inherent to the 

genotyping platforms used in GWAS [19] can make this subpopulation optimization 

theoretically insufficient to reduce the bias if the sub-population risk allele is not captured by the 

genotype platform, which is possible as many array designs are based on EA samples. Moreover, 

AA women’s 40% higher mortality rate [27], often attributed to later stage of diagnosis and 

related preventative healthcare barriers, create the needs to increase diversity in genomic studies 

so that future clinical applications of the PRS do not exacerbate existing health disparities.  

The eMERGE [28] and the All of Us Research Program [29] are two programs actively involved 

in increasing their recruitment of diverse patients to help address the gap. A key aspect of these 

programs is derived from EMRs, providing a scalable approach to independently validate 

previously developed PRSs for different phenotypes in multiple clinical operation sites [30-33]. 
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We found similar magnitude of PRS association in EA women across all study sites, except for 

Vanderbilt University (Supplementary Figure S3). This difference might be caused by the 

heterogeneity in the genotyping platforms and/or EMR systems [34, 35]. Continued efforts are 

required to address heterogeneity in the genotyping platforms and advance the unification of 

phenotypic information extracted from EMRs [36-40]. Our sensitivity analysis suggested that 

defining cases and controls based on a validated phenotyping algorithm achieved a slightly 

stronger association than the cohort when case-control definition was solely based on ICD codes 

(Supplementary Table S5). By utilizing EMR data elements such as drugs prescribed and ER-

status, our phenotyping algorithm enabled analyses of disease subtypes. However, implementing 

a phenotyping algorithm is more labor-intensive than simply using ICD-codes and continued 

efforts will be required to develop portable and computable phenotypes [39, 41]. In addition, 

other data challenges such as incomplete records or inconsistent documentation [42, 43] should 

be addressed while using the EMR for translational study especially in time to event analysis. 

In summary, we found EA-based PRSs were significantly associated with breast cancer risk in 

EA women in the eMERGE network. We also found that these EA-based PRSs generalized well 

to LA women but not to AA women. Additionally, we found that PRS developed on small, non-

EA GWAS studies did not generalize well in the respective ancestry group. Our results highlight 

the need to increase the participation of racially and ethnically diverse patients, especially AA 

women, in research cohorts, and suggest that until well-developed and validated PRSs for non-

EA women become available, the current PRSs developed based on EA cohorts could be adapted 

for LA women, but not AA women in clinical settings. 
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Tables and Figures Legends
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PRS  Author (year),  
Original study 

# of variantsa 

Original PRS (PRS 

in eMERGE) 

Sample sizeb 

Overall N (Breast cancer cases)  

Ancestry 

Derivation Validation 

BCAC-S 

Mavaddat (2019) [2], Breast Cancer 
Association Consortium (BCAC) 
including 69 studies for development, and 
10 prospective studies in the test set. Also 
validated in the UK biobank. 

313 (193) 

Development: 
169,092 (94,075) 

 
Test set: 29,751 (11,428) 

European European 

BCAC-L Same as BCAC-S  3820 (2213) 

Development: 
169,092 (94,075) 

 
Test set: 29,751 (11,428) 

European European 

LATINAS 

Shieh (2020) [6], Pooled case-control 
analysis of eight studies of US Latinas and 
Latin American women (from Mexico, 
Colombia, and Peru). Ancestry was 
predominantly European and Indigenous 
American. 

179c (129) 12,280 (4,658) European LatinX 

ROOT 

Wang (2018) [12], The Root consortium: 
breast cancer GWAS in the African 
diaspora including participants of African 
ancestry from Nigeria, USA, and 
Barbados. 

34 (30) 3,686 (1,657) African African 

UKBB 
Khera (2018) [11], UK biobank cohort 
phase 1 and phase 2 genotype data release. 5218 (2768) 190,040 (3,215) European European 

WHI-AA 

Allman (2015) [5], Self-reported African 
American women from the Women’s 
Health Initiative (WHI) SNP Health 
Association Resource (SHARe). 

75 (67) 7,539 (421) African African 

WHI-LA 
Allman (2015) [5], Self-reported Hispanic 
women in the WHI SHARe. 71 (64) 3,363 (147) LatinX LatinX 
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Table 1 Seven PRS models previously developed for the European ancestry or optimized for other ancestries.  

a The number in the parenthesis represent the number of variants overlapped with the genotype dataset in eMERGE.  

b Sample size of the original study, with the number of breast cancer cases presented in parenthesis.  

c While the original publication states there are 180 variants in the PRS, one variant was removed due to low imputation quality, which 

left 179 variants in the supplementary table.
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Characteristic 
EA 

(n = 32779) 
AA 

 (n=1293) 
LA 

(n=1455) 
Age, years (mean ± SD) a 65.9 ± 17.7 53.7 ± 18.0 56.4 ± 19.0 
Breast cancer diagnosis, n (%) 3939 (12.0) 121 (9.4) 92 (6.3) 
Age at breast cancer diagnosis b, years 
(mean ± SD) 

60.5 ± 13.1 55.9 ± 14.8 54.1 ± 12.7 

Estrogen receptor status, n (% of cases) 
Positive 1052 (26.7) 20 (16.5) 22 (23.9) 
Negative 241 (6.1) 15 (12.4) 4 (4.3) 
Missing 2646 (67.2) 86 (71.1) 66 (71.7) 
eMERGE site, n (%) 
Columbia University Medical Center 203 (0.6) 73 (5.6) 160 (11) 
Geisinger 1331 (4.1) 4 (0.3) 8 (0.5) 
Partners Healthcare 13416 (40.9) 926 (71.6) 1096 (75.3) 
Kaiser Permanente Washington Health 
Research Institute / University of Washington 

1663 (5.1) 66 (5.1) 55 (3.8) 

Marshfield Clinic Research Foundation 2837 (8.7) 0 8 (0.5) 
Mayo Clinic 3542 (10.8) 9 (0.7) 22 (1.5) 
Northwestern University 1900 (5.8) 215 (16.6) 23 (1.6) 
Vanderbilt University 7887 (24.1) 0 83 (5.7) 
 

Table 2 Participant Characteristics. 

EA = European ancestry; AA= African ancestry; LA = LatinX ancestry 

a Age was calculated at the time of electronic phenotyping algorithm deployment. 

b Age at breast cancer diagnosis was defined as the age at the first breast cancer ICD related code.  
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PRS 

 

EA 
(3939 breast cancer cases/ 

28840 controls) 

AA 
(121 breast cancer cases/ 

1173 controls) 

LA 
(92 breast cancer cases/  

1363 controls) 
AUC (95% CI) R2 AUC (95% CI) R2 AUC (95% CI) R2 

BCAC-L 0.60 (0.59-0.61) 2.54 0.52 (0.47-0.57) 0.07 0.57 (0.5-0.63) 1.14 

BCAC-S 0.59 (0.58-0.60) 2.04 0.51 (0.46-0.56) 0.01 0.54 (0.48-0.60) 0.41 

UKBB 0.61 (0.60-0.62) 3.00 0.54 (0.49-0.60) 0.27 0.54 (0.47-0.60) 0.27 

LATINAS - - - - 0.57 (0.50-0.63) 0.90 

ROOT - - 0.49 (0.43-0.55) 0.67 - - 

WHI-AA - - 0.48 (0.42-0.54) 1.55 - - 

WHI-LA - - - - 0.53 (0.47-0.59) 1.60 

  

Table 3 

The AUC (95% CI) for breast cancer prediction using PRS as a single predictor in women of 

different ancestries. The Nagelkerke's R2 (%) of a fitted logistic regression with PRS as a single 

variable is calculated. 
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Figure 1.  

The association of the different PRSs and breast cancer risk in women of (A) European ancestry 

(EA); (B) African ancestry (AA); and (C) LatinX ancestry (LA) in the eMERGE cohorts. The 

odds ratios and 95% confidence intervals of breast cancer per standard PRS unit increase, 

adjusted for the first three ancestry-specific principal components, age, family history, and study 

site are shown. Breast cancer cases and controls are defined according to breast cancer 

phenotyping algorithm. BCAC-S includes 313 variants in the original PRS, BCAC-L includes 

3820 variants in the original PRS, WHI-LA includes 71 variants in the original PRS and was 

optimized for LA women, WHI-AA includes 75 variants in the original PRS and was optimized 

for AA women, UKBB includes 5218 variants in the original PRS, ROOT includes 34 variants in 

the original PRS and was optimized to AA women, and LATINAS includes 179 variants in the 

original PRS and was optimized for LA women. 
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Figure 2. 

The association of the PRSs (for different quantities relative to the middle quantile, 40-60%) and 

overall breast cancer risk in women of European ancestry. The odds ratio and 95% confidence 

intervals, adjusted for the first three ancestry-specific principal components, age, family history, 

and study site are shown. BCAC-S includes 313 variants in the original PRS, BCAC-L includes 

3820 variants in the original PRS, and UKBB includes 5218 variants in the original PRS.  
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Figure 3. 

The association between different PRSs and (A) estrogen receptor (ER)-positive and (B) ER-

negative breast cancer for women of European ancestry women. Odds ratios and 95% confidence 

intervals are presented for each of the of breast cancer subtypes (A: ER-positive and B: ER-

negative) per standard PRS unit increase. 
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Figure 4. 

Cumulative risk (from birth) of breast cancer predicted by UKBB PRS model in women of 

European (EA) and African (AA) ancestry, and BCAC-L PRS model in LatinX women (LA)
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