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Abstract 1 

Understanding the mechanism that leads to immune dysfunction induced by SARS-CoV2 virus is 2 

crucial to develop treatment for severe COVID-19. Here, using single cell RNA-seq, we characterized 3 

the peripheral blood mononuclear cells (PBMC) from uninfected controls and COVID-19 patients, 4 

and cells in paired broncho-alveolar lavage fluid (BALF). We found a close association of decreased 5 

dendritic cells (DC) and increased monocytes resembling myeloid-derived suppressor cells (MDSC) 6 

which correlated with lymphopenia and inflammation in the blood of severe COVID-19 patients. 7 

Those MDSC-like monocytes were immune-paralyzed. In contrast, monocyte-macrophages in BALFs 8 

of COVID-19 patients produced massive amounts of cytokines and chemokines, but secreted little 9 

interferons. The frequencies of peripheral T cells and NK cells were significantly decreased in severe 10 

COVID-19 patients, especially for innate-like T and various CD8+ T cell subsets, compared to health 11 

controls. In contrast, the proportions of various activated CD4+ T cell subsets, including Th1, Th2 and 12 

Th17-like cells were increased and more clonally expanded in severe COVID-19 patients. Patients’ 13 

peripheral T cells showed no sign of exhaustion or augmented cell death, whereas T cells in BALFs 14 

produced higher levels of IFNG, TNF, CCL4 and CCL5 etc. Paired TCR tracking indicated abundant 15 

recruitment of peripheral T cells to the patients’ lung. Together, this study comprehensively depicts 16 

how the immune cell landscape is perturbed in severe COVID-19. 17 

Key words: scRNA-seq, immunopathogenesis, SARS-CoV-2, MDSC, cytokine storm 18 
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Introduction 20 

The coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has been spreading rapidly 21 

worldwide, causing serious public health crisis. Although most SARS-CoV-2 infected cases have 22 

asymptomatic or mild-to-moderate diseases, around 10% of those infected may develop severe 23 

pneumonia and other associated organ malfunctions1. Old age, the male sex and underlying 24 

comorbidities are risk factors for causing severe COVID-192, however, the pathogenesis mechanisms 25 

remains unclear. Immune perturbations were thought to play crucial roles in the COVID-19 26 

pathogenesis. Indeed, many reports showed that lymphopenia and increased blood cytokine levels 27 

were closely associated with the development or recovery of severe COVID-19 and proposed to treat 28 

the patients by inhibiting cytokine storms3-6.  29 

Recent studies have revealed more aspects of different immune players in COVID-19 infections. 30 

Although SARS-CoV-2 infection in host cells elicits robust secretion of chemokines and cytokines, it 31 

only weakly induces the IFNs7. In our earlier studies, we showed increased recruitment of highly 32 

inflammatory FCN1+ monocyte-derived macrophages in patients’ BALFs, suggesting their implication 33 

in the cytokine storm 8,9. Intriguingly, T and B cell responses, and neutralizing antibodies recognizing 34 

SARS-CoV-2 were detected among most of the infected patients, with higher levels in those with old 35 

age and severe diseases10-12. The dysregulations of other immune cell compartments, such as 36 

monocytes, DCs, and innate-like T cells are also likely present in severe COVID-19 13-16.  37 

To unravel the barely known immune mechanisms underlying COVID-19 pathogenesis in an unbiased 38 

and comprehensive manner, we and others have applied the scRNA-seq to profile the immune cell 39 

heterogeneity and dynamics in BALFs, blood, and respiratory tract samples from the COVID-19 40 

patients. Collectively, those studies revealed a stunted IFN response, depletion of NK and T 41 

lymphocytes, loss of MHC class II molecules and significantly elevated levels of chemokine 42 

production from monocytes in the patients 8,9,13,14,17-19. However, a complete picture of the COVID-19 43 

induced immune perturbation has not been generated. Here, we conducted scRNA-seq analysis of 44 

paired blood and BALF samples from the same COVID-19 patients. Our data revealed profound 45 

alterations of various immune compartments and depicted a dichotomy of peripheral immune paralysis 46 

and broncho-alveolar immune hyperactivation in COVID-19 patients. 47 
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Results 48 

The overview of dysregulated peripheral immune landscape in severe COVID-19 patients 49 

A high-quality single-cell RNAseq dataset composed of 200, 059 cells were generated that 50 

characterized peripheral immune cells from 3 healthy controls, 5 mild and 8 severe COVID-19 patients 51 

(Figure 1A). The metadata of these patients is listed in Table 1. Patients with mild diseases were all 52 

cured and discharged after 11-18 days hospitalization, 2 of the 8 patients with severe diseases 53 

succumbed, whereas other severe cases recovered after 12-58 days hospitalization. The clinical course 54 

of this patient cohort is similar to earlier reports, where elderly patients with underlying diseases were 55 

prone to develop severe symptoms and showed higher mortality1,2,20 . In addition, the plasma levels of 56 

IL-6 and C-reactive proteins (CRP) in severe patients were higher, while lymphocyte counts were 57 

reduced, indications of both cytokine storm and lymphopenia.  58 

The clustering analysis showed 29 clusters and 10 major cell types annotated by marker genes, 59 

including T cell (CD3D), natural killer (NK) cell (KLRF1), B cell (CD79A), monocyte (CD14, 60 

FEGR3A), myeloid dendritic cells (mDC) (CD1C), plasmacytoid dendritic cells (pDC) (IL3RA), and 61 

plasma cells (PC) (IGKC), megakaryocyte (MYL9), cycling cells (MKI67) and erythrocyte (HBB) 62 

(Figure 1B-C, Figure S1A-S1B). By visual inspection, the data integration was efficient and showed 63 

no significant batch-effect (Figure S1C). Erythrocytes were not included in subsequent analysis and 64 

cycling cells were reclustered into cycling T, cycling PC and cycling NK cells based on specific 65 

markers (Figure S1D-S1E). This dataset indicated significantly dysregulated peripheral immune 66 

landscapes in COVID-19 patients compared to health controls, especially among those severe cases 67 

(Figure 1D). The most prominent changes included an expansion of monocyte and cycling T cells, and 68 

a reduction of NK, T and mDC populations, thus resulting in largely increased monocyte/T-cell ratios 69 

in COVID-19 patients (Figure 1E-1F). The frequency of pDC was also decreased in severe COVID-70 

19, although the difference was not statistically significant. Together, these data show that SARS-71 

CoV-2 infection greatly perturbs the blood immune cell compartments, particularly in those with 72 

severer diseases.  73 

Remodeling of circulating myeloid cell populations in patients with COVID-19 74 
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We observed that the proportions of monocytes were increased in COVID-19 patients, especially in 75 

those with severe diseases. To further understand the remodeling of myeloid cell compartment, we re-76 

clustered myeloid cells and identified five distinct cell types including CD14+ classic monocyte, 77 

CD14+CD16+ intermediate monocytes, CD16+ non-classic monocytes, DC1 and DC2 (Figure 2A and 78 

Figure S2A). The composition of myeloid cells in severe COVID-19 patients differed significantly 79 

from that of mild cases and controls. Proportion of CD14+ monocyte increased significantly in severe 80 

COVID-19 compared to that in mild COVID-19 and control group, whereas those of CD16+ non-81 

classical monocyte (vs. controls), CD14+CD16+ monocytes (vs. mild COVID-19) and DC2 82 

significantly (vs. mild COVID-19 & controls) decreased in severe COVID-19 (Figure 2B-2C).  83 

CD14+ monocytes represent the major peripheral myeloid cell type and differential UMAP projection 84 

patterns of CD14+ monocytes between COVID-19 and controls (Figure 2B) indicated perturbed 85 

transcriptome features. Among the differentially expressed genes (DEGs) in CD14+ monocytes, we 86 

found 116 and 134 upregulated genes in mild COVID-19 and severe COVID-19 cases compared to 87 

controls, versus only 74 upregulated genes in comparison between two COVID-19 groups. In contrast, 88 

we found 217 and 160 downregulated genes in severe COVID-19 compared to controls or mild cases 89 

respectively, versus only 104 downregulated genes in comparison between mild COVID-19 and 90 

controls (Figure S2B and Table S1. GO terms of upregulated DEGs included response to virus, type I 91 

IFN and IFN-γ in both COVID-19 groups, and neutrophil activation and energy metabolism pathways 92 

in severe COVID-19 (Figure 2D). Unexpectedly, GO analysis of downregulated DEGs indicated 93 

deficient monocyte functions mainly in severe COVID-19 cases, such as decreased type I IFN 94 

production, cytokine secretion, chemokine production and antigen processing and presentation (Figure 95 

2D). We further examined the DEGs associated with those GO terms. Indeed, many canonical 96 

interferon-stimulating genes (ISGs), including ISG15, IFITM1, IFITM3, MX1, IRF7, IFI27 etc., were 97 

expressed at higher levels in COVID-19 patients than controls, while the genes associated with 98 

neutrophil activation, including S100A8, S100A9, S100A12, CLU and RNASE2 etc., were expressed at 99 

higher levels in severe COVID-19 than mild COVID-19 and controls (Figure 2E). Despite of 100 

upregulated ISGs, we failed to detect higher production of type I or type III IFNs in COVID-19 than 101 

controls. Regarding the downregulated geneset, MHC class II molecules, including HLA-DQA1, HLD-102 

DRA, HLA-DRB1, HLA-DMB, HLA-DMA, etc., and those cytokine/chemokine genes, including IL1B, 103 
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TNF, CCL3, CCL4 and CXCL8 were expressed at lower levels in COVID-19 patients, especially those 104 

with severe diseases (Figure 2E). Thus, those upregulated DEGs in CD14+ monocytes from COVID-105 

19 patients reflect the immune response to SARS-CoV-2 infection, while the downregulated DEGs in 106 

CD14+ monocytes from patients with severe COVID-19 suggest an immune paralyzed status of those 107 

cells. 108 

MDSCs are a population of heterogeneous myeloid cells expanded during inflammatory conditions 109 

and could suppress T-cell responses21,22. In peripheral blood, monocytic MDSCs have the phenotype 110 

CD14+ HLA-DR–/lo, whereas monocytes are HLA-DR+ 23,24. Downregulation of MHC class II 111 

molecules, increased calprotectin proteins like S100A8 and S100A9, and immune suppressive 112 

functions are reported features of MDSCs. Indeed, by their unique composite scores of MHC class II 113 

molecules (lower levels) and S100A8 family molecules (higher levels) versus those scores in mild 114 

COVID-19 and controls, we identified that the monocytes in severe COVID-19 highly resembled 115 

MDSCs (Figure 2F). Decreased levels of HLA-DR in CD14+ monocyte from severe patients were 116 

further validated by flow cytometry (Figure 2G) and also reported by other studies 14,18. Intriguingly, 117 

MDSCs-like scores in our study positively correlate with serum CRP, IL-6 levels and neutrophil-to-118 

lymphocyte ratio, and negatively correlate with decreased blood CD3+, CD4+ and CD8+ T cell counts 119 

(Figure 2H). 120 

Together, our scRNA-seq characterization revealed a multifaceted remodeling of peripheral myeloid 121 

compartment in COVID-19 patients. While the circulating monocytes in COVID-19 patients are 122 

featured by heightened ISG responses, they produce little interferons, cytokines and chemokines. 123 

Furthermore, the combined loss of dendritic cells and emergence of monocytic MDSCs suggest their 124 

involvements in the immune paralysis of severe COVID-19 patients. 125 

 126 

Abnormally activated lung monocyte-macrophages in severe COVID-19 127 

Recently, we discovered the aberrant activation of BALF monocyte-macrophages in severe COVID-128 

198,9. Here, to further understand the connection between the lung monocyte-macrophages and their 129 

blood counterparts and assess their differential roles in COVID-19, we studied paired BALF and blood 130 
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samples from 2 mild and 5 severe patients. The integration analysis of BALF and circulating myeloid 131 

cells showed clusters of neutrophil (FCGR3B), mDC (CD1C), monocyte-macrophages (CD14, 132 

FCGR3A and CD68) (Figure 3A and Figure S3A). Macrophage subset classification markers, 133 

including FCN1, SPP1 and FABP4, were differentially expressed by circulating and BALF monocyte-134 

macrophages from patients with mild or severe COVID-19(Figure 3B). Analysis of differentiation 135 

trajectory of circulating and BALF monocyte-macrophages from the same patient revealed a consensus 136 

blood-toward-BALF course (Figure 3C and Figure S3B), consistent with the recruitment to peripheral 137 

monocytes into inflammatory tissues as expected.  138 

Next, we performed transcriptome analysis of circulating and BALF monocyte-macrophages to 139 

understand their functional status. Among the DEGs, there were 524 shared upregulated genes and 140 

501 downregulated genes in BALF monocyte-macrophages versus those in blood, identified from both 141 

mild and severe COVID-19 patients (Figure 3D and Table S2). Such a large number of DEGs 142 

suggested significant difference existed between the peripheral and lung monocyte-macrophages. 143 

Indeed, the GO analysis revealed broad activation of multiple immune pathways in BALF monocyte-144 

macrophages, including response to IFNs and cytokines, neutrophil activation and leukocyte migration, 145 

while the pathway involved in myeloid cell differentiation, ATP metabolism etc. were enriched in 146 

blood monocytes (Figure 3E). In addition, these comparisons revealed perturbed pathways in BALF 147 

monocyte-macrophages relevant to severe COVID-19. e.g. responses to hypoxia, high temperature, 148 

metal ion, wounding and Fc receptor signaling pathways were specially upregulated (Figure 3E), while 149 

pathways related to alveoli macrophage functions were downregulated, including lipid metabolism, 150 

apoptotic cell clearance and antigen presentation (Figure 3E). The representative DEGs involved in 151 

those pathways were shown in Figure S3C. 152 

Monocyte-macrophages were thought to play key roles in driving the cytokine storm underlying the 153 

development of severe COVID-19 25. Therefore, we examined the cytokine and chemokine levels in 154 

monocyte-macrophages in paired blood and BALF samples from the same patient. We found that all 155 

types of IFNs (IFNAs, IFNB, IFNG and IFNLs) were minimally expressed by monocyte-macrophages, 156 

whereas cytokines (IL1A, IL1B, IL1R2, IL1RN, IL18, IL6, TNF, IL10 and TGFB1) and multiple 157 

chemokines were highly expressed in monocyte-macrophages from BALFs but not in those from 158 
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paired blood samples (Figure 3F). Intriguingly, we observed significantly higher levels of anti-159 

inflammatory cytokines (IL1R2, IL1RN and TGFB1) and lower levels of IL18 in BALF cells from 160 

severe COVID-19 than mild cases, whereas classical pro-inflammatory cytokines (IL1A, IL1B, IL6 161 

and TNF) were comparable between the two groups (Figure 3F). In contrast, as shown in our earlier 162 

studies, monocytes- and neutrophils- recruiting chemokines (CCL2, CCL3, CCL4, CCL7, CCL8, 163 

CXCL1, CXCL2, CXCL3 and CXCL8) recruiting monocytes and neutrophils were highly expressed, 164 

whereas T cell recruiting chemokines (CXCL9 and CXCL16) recruiting T cells were less expressed by 165 

monocyte-macrophages in BALFs of severe COVID-19 monocyte-macrophages than those in mild 166 

cases (Figure 3F). The higher levels of cytokines (IL-1β and IL-6 etc.) and IL-8 in BALFs than paired 167 

plasma was further validated at the protein levels, particularly exemplified by the extremely high levels 168 

of IL-8 in BALFs (Figure 3G). Thus, these paired analyses revealed a restricted involvement of tissue 169 

monocyte-macrophages in cytokine storms during severe COVID-19, through producing chemokines 170 

and recruiting more monocytes and neutrophils, but unlikely attribute to increased production of pro-171 

inflammatory cytokines. 172 

 173 

The dysregulated peripheral T cell compartments in COVID-19 patients 174 

NK and T lymphocytes are important anti-viral immune cells, which are depleted in severe COVID-175 

19 13,26. To further understand the dysregulated NK and T cell compartments, we re-clustered those 176 

cells and identified 18 subsets (Figure 4A and Figure S4A). NK cells highly expressed KLRF1, KLRC1 177 

and KLRD1. Cycling T cells expressed MKI67. Innate-like T cells included MAIT (SLC4A10), γδ T 178 

(TRGV9) and NKT cells (CD3E, KLRF1). CD4+ T cells included CD4-Naive (CCR7, SELL), CD4-179 

LTB, CD4-GZMK, CD4-GATA3, CD4-CCR6, CD4-ICOS, CD4-GZMB, Treg-SELL and Treg-CTLA4 180 

subsets, whereas CD8+ T cells included CD8-Naive (CCR7, SELL), CD8-LTB, CD8-GZMK and CD8-181 

GZMB subsets. Pseudo-time trajectory analysis was performed to infer lineage relationship among 182 

those CD4+ and CD8+ T cells subsets. Paired TCR clonotype analysis revealed increased clonal 183 

expansion along the inferred trajectories (Figure 4B). 184 
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Cell density UMAP projections revealed an obviously perturbed T cell landscape in severe COVID-185 

19 compared to mild COVID and control groups (Figure 4C). Percentages of innate-like T cells, 186 

including MAIT and NKT cells were significantly lower in severe COVID-19 than those in mild 187 

COVID-19. Percentages of CD8-Naive, CD8-GZMK and CD8-GZMB subsets were also lower in 188 

severe COVID-19 patients than those in mild cases, although the difference in CD8-GZMB 189 

comparison was not statistically significant (Figure 4D). In contrast, the percentages of several CD4+ 190 

T cell subsets, including CD4-Naive, CD4-LTB, CD4-ICOS, Treg-CTLA4, as well as cycling T cells, 191 

were significantly increased in severe COVID-19 than those in mild COVID-19. The percentages of 192 

CD4-GATA3 and CD4-CCR6 also showed an increasing trend in severe COVID-19 (Figure 4D). In 193 

addition, sc-TCR analysis revealed increased clonal expansion levels in several CD4+ but not CD8+ T 194 

cell subsets in severe COVID-19 than those in mild cases (Figure 4E-4F). Consistently, TCR sharing 195 

analysis among different T cell subsets revealed much more active interchange between different CD4+ 196 

T cell subsets and cycling T cells, but not among CD8+ T cell subsets during severe COVID-19 (Figure 197 

4G). Together, our data revealed the preferential activation of CD4+ T cell responses but significant 198 

depletion of multiple innate-like T cell and CD8+ T cell subsets in peripheral blood as the featured T 199 

cell perturbations in severe COVID-19. To further explore the clues of CD8+ T cell lymphopenia, we 200 

conducted transcriptome comparisons of MAIT, CD8-GZMK and CD8-GZMB subsets between the 201 

patients and control groups (Figure S4C and Table S3). There was no evidence of T cell exhaustion, 202 

activation of cell death pathways and cytokine productions in those cells from COVID-19 patients, 203 

although the pathways related to virus infection and IFNs responses were identified (Figure S4D). 204 

Similar findings were also noticed by other groups16; thus, exhaustion and cell death are unlikely the 205 

major causes for T cell loss during COVID-19. 206 

 207 

Tracking T cell function and migration across peripheral blood and BALFs 208 

We sought to study T cell movement from blood to BALFs in paired samples from COVID-19 patients. 209 

First, we integrated data of NK & T cells from PBMC and BALF. Cells were re-clustered into 9 major 210 

types, including NK cells, MAIT, CD4 Naive, CD4 Tm, Treg, CD8 Naive, CD8 Tm, CD8 IL7R and 211 

Cycling T cells (Figure 5A and Figure S5A). PBMC included plenty of naive CD4+ and CD8+ T cells, 212 
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in contrast there were fewer naive T cells in BALFs, which were mainly composed of NK cells, CD4 213 

Tm, CD8 Tm and cycling T cells (Figure 5B). We performed gene expression analysis to determine 214 

the functional divergence of NK and T cells across the peripheral blood and BALFs (Table S4. 215 

Compared with peripheral counterparts, we observed that response to virus, type I IFN and IFN-γ were 216 

commonly activated in NK, CD4 Tm and CD8 Tm cells from BALFs (Figure S5B). We also noticed 217 

higher levels of cytokines including IFNG, TNF, CSF1, TNFSF10 and TNFSF13B; chemokines 218 

including CCL3, CCL4 and CCL5; IL-15 signaling modules including IL15RA, IL2RB, IL2RG, JAK1 219 

and STAT3 in BALF cells (Figure 5C). However, the levels of other T cell relevant cytokines, including 220 

IL4, IL5, IL10, IL13, IL17A, IL17F, IL21, IL25 and IL33 were not detected in either blood or BALFs 221 

(Figure S5C). 222 

Next, we utilized the TCR clonotype information to track the migrating T cells in blood and BALF 223 

compartment. The T cell clonal expansion status and clonotype sharing were assessed in patients with 224 

paired blood and BALF samples (Figure 5D-5E). Interestingly, considerable proportion of BALF T 225 

cells belonging to CD8 Tm, CD8 CTL and cycling T cells subsets, could trace their clonotypes back 226 

to the paired blood counterparts, especially in those patients with severe COVID-19 (Figure 5F). Here, 227 

only two mild cases (M1 and M2) had paired blood and BALF samples for the analysis, and it showed 228 

a lower degree of clonotype sharing across the two compartments (Figure 5F). The higher levels of 229 

chemokines from the lung of severe COVID-19 is likely to lead to increased T cell infiltration. To 230 

assess the functional adaptation of migrating T cells, we performed transcriptional analysis between 231 

blood vs. BALF T cells derived from the same T-cell clonotypes (Figure 5H). We found increased 232 

expression of ISGs, CCL4, CXCR4, CXCR6, CD69 and GNLY etc. in BALF cells than those in blood, 233 

consistent with an activated and tissue resident phenotype. (Figure 5G and Table S5) Together, these 234 

data revealed the active recruitment and peculiar activation of peripheral T cells in human lungs 235 

infected by SARS-CoV-2.  236 

237 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.08.15.20175638doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.15.20175638


Discussion 238 

The scRNA-seq has been recently been applied to study host immune response in COVID-19 by us 239 

and others 8,9,13,17-19. Although these studies helped to reveal several aspects of the COVID-19 240 

pathogenesis, a complete picture has yet been generated. Here, we integrated scRNA-seq analysis of 241 

paired blood and BALFs, depicted unprecedented details about the altered immune cell landscape in 242 

COVID-19 patients, increasing our mechanistic and systemic understanding of COVID-19 243 

immunopathogenesis, such as cytokine storm and lymphopenia.  244 

IFN production is stunted in SARS-CoV-2 infected cells and COVID-19 patients 7,27. Consistent with 245 

these earlier reports, here we found that although ISGs in COVID-19 patients were induced in 246 

monocyte-macrophages, neither type I or type III IFNs were produced. However, the higher levels of 247 

ISGs in monocyte-macrophages and T cells from mild cases than those in severe COVID-19, still 248 

supported a heightened IFN responses linked to resolving the diseases. It is unclear what causes the 249 

imbalance of inflammation and IFN production in COVID-19, we assume that the loss of pDCs in 250 

severe cases may partly contribute to the diminished IFN production. Notably, in contrast to their blood 251 

counterparts, monocyte-macrophages in paired BALFs produced extremely higher levels of cytokines 252 

and chemokines, especially from those severe COVID-19 patients. Thus, massive tissue-resident 253 

production of cytokines / chemokines and lack of IFN induction suggest a crucial role played by local 254 

but not circulating monocyte-macrophages in fueling the cytokine storm during severe COVID-19. 255 

Previously, several studies have reported that MHC class II molecules were downregulated in blood 256 

monocytes 4,14,18 in patients with severe COVID-19, however, there was still no consensus on the 257 

upregulated genes. We found here that genes related to neutrophil activation, including S100A8, 258 

S100A9 and S100A12, were expressed at higher levels in severe COVID-19 patients than those in mild 259 

cases. Interestingly, these upregulated and downregulated genes marking monocytic MDSCs whose 260 

frequencies are known to increase during various inflammatory conditions 24,25. Consistent with this 261 

immune suppressive status, we also noticed that genes related to cytokine and IFN production were 262 

downregulated as well. Thus, contradicted with the inflammatory role by peripheral myeloid cells in 263 

severe COVID-19, the loss of mDCs, emergence of MDSC-like monocytes and reduced cytokine 264 

production actually suggested a peripheral immune paralysis. Since the MDSC-scores closely 265 
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associated with lymphopenia and inflammation markers, we speculate a crucial role of MDSCs in 266 

dampening immune response and amplifying COVID-19 pathogenesis, which need further functional 267 

validation and clinical investigations to evaluate its significance. 268 

The lymphopenia is another prominent feature of immune perturbation of severe COVID-19 2,3,16. Here, 269 

we further revealed that the COVID-19 associated lymphopenia included not only depletion of CD8+ 270 

T cells, but also significant loss of innate-like T cells, including MAIT, γδ T and NKT cells, similarly 271 

reported by another study 13,28. In contrast, we noticed that the frequencies of CD4+ T cells among all 272 

CD3+ T lymphocytes were actually increased, like Th2, Th17 and Tfh cells. Those CD4+ T cell subsets 273 

were also more clonally expanded, suggesting their activation status. We suspected that the disturbed 274 

T cell compartments may contribute to COVID-19 immunopathogenesis, e.g. the impaired anti-viral 275 

responses by innate-like T cells and CD8+ T cells, meanwhile amplifying inflammation and inducing 276 

aberrant antibody responses by CD4+ T cells. Moreover, our transcriptional analysis dispute against 277 

the evidence of cytokine production, exhaustion or increased cell death by peripheral T cells in 278 

COVID-19 patients noted by several earlier studies 26,29. Instead, current TCR tracking analysis 279 

suggested that the enhanced recruitment of peripheral CD4+ and CD8+ T cells into lung tissues in 280 

COVID-19 patients, where they were induced to made cytokines locally and likely contributed to 281 

cytokine storm and peripheral lymphopenia.  282 

In conclusion, we comprehensively delineated the perturbed immune landscapes during SARS-CoV-283 

2 infections from both peripheral blood and infected lungs. These data reveal potential cellular and 284 

molecular mechanisms implicated in COVID-19 immunopathogenesis; and identify a peculiar 285 

functional dichotomy, with peripheral immune paralysis and broncho-alveolar immune 286 

hyperactivation, specifically in severe COVID-19.287 
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Methods 

Patients 

Ethics statement: This study was conducted according to the ethical principles of the Declaration of 

Helsinki. Ethical approval was obtained from the Research Ethics Committee of Shenzhen Third 

People’s Hospital (2020-207). All participants provided written informed consent for sample 

collection and subsequent analyses. 

Thirteen COVID-19 patients were enrolled in this study at the Shenzhen Third People’s Hospital. 

Metadata and patients’ samples were collected similarly as previously described 8: The severity of 

COVID-19 was categorized to be mild, moderate, severe and critical according to the “Diagnosis and 

Treatment Protocol of COVID-19 (the 7th Tentative Version)” by National Health Commission of 

China (http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989.shtml). In 

this study, we grouped patients with mild and moderate COVID-19 as the mild group, and included 

those with severe and critical diseases as the severe group. Three healthy subjects were enrolled as the 

control group. 

qRT-PCR assay for SARS-CoV-2 RNA 

In clinical practice, nasal swab, throat swab, sputum, anal swab or BALF could be collected for the 

SARS-CoV-2 nucleic acid assays. Total nucleic acid was extracted from the samples using the 

QIAamp RNA Viral kit (Qiagen) and the qRT-PCR was performed using a China Food and Drug 

Administration-approved commercial kit specific for SARS-CoV-2 detection (GeneoDX). Each qRT–

PCR assay provided a threshold cycle (Ct) value. The specimens were considered positive if the Ct 

value was ≤ 37, and otherwise it was negative. Specimens with a Ct value > 37 were repeated. The 

specimen was considered positive if the repeat results were the same as the initial result or between 37 

and 40. If the repeat Ct was undetectable, the specimen was considered to be negative. 

Immune cell isolation 
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For harvesting BALF cells, freshly obtained BALF was placed on ice and processed within 2 hours in 

BSL-3 laboratory. By passing BALF through a 100 µm nylon cell strainer to filter out cell aggregates 

and debris, the remaining fluid was centrifuged and the cell pellets were re-suspended in the cooled 

RPMI 1640 complete medium. For PBMC isolation, immune cells from peripheral blood were isolated 

by ficoll-hypaque density gradient centrifugation protocol. For subsequent study, the isolated cells 

were counted in 0.4% trypan blued, centrifuged and re-suspended at the concentration of 2 × 106 /ml.  

Cytokines measurement by cytometric bead array 

Twelve cytokines including IL-1β, IL-6 and IL-8 etc. were detected according to the instruction (Uni-

medica, Shenzhen, China, Cat. No. 503022). In brief, the supernatant was taken from BALF after 10 

min centrifugation at 1, 000g. Afterwards, 25 µl Sonicate Beads, 25 µl BALF supernatant or plasma, 

and 25µl of Detection Antibodies were mixed and placed on a shaker at 500 rpm for 2 hours at room 

temperature. Then 25 µl of SA-PE was added to each tube directly. The tubes were then placed on a 

shaker at 500 rpm for 30 minutes. The data were obtained by flow cytometry (Canto II, BD) and were 

analyzed use LEGENDplex v8.0 (VigeneTech Inc.). 

Flow cytometry 

For cell-surface labeling, 1x106 cells were blocked with Fc-block reagent (BD Biosciences). Then, the 

following antibodies were added and incubated for 30 min, including anti-CD3 (BioLegend, HIT3a), 

anti-CD14 (BioLegend, 63D3), anti-HLA-DR (BioLegend, L243), and anti-CD45 (BioLegend, 2D1). 

After incubation, the samples were washed and reconstituted in PBS for flow cytometric analysis on a 

FACSCanto II flow cytometer. 

ScRNA-seq library construction 

The scRNA-seq libraries were prepared with Chromium Single Cell VDJ Reagent Kits v3 (10x 

Genomics; PN-1000006, PN-1000014, PN-1000020, PN-1000005) following the manufacturer’s 

instruction. Briefly, Gel bead in Emulsion (GEM) are generated by combining barcoded Gel Beads, a 

Master Mix containing 20,000 cells, and Partitioning Oil onto Chromium Chip B. Reverse 

transcription takes place inside each GEM, after which cDNAs are pooled together for amplification 
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and library construction. The resulting library products consist of Illumina adapters and sample indices, 

allowing pooling and sequencing of multiple libraries on the next-generation short read sequencer. 

ScRNA-seq data processing, cell clustering and dimension reduction 

We aligned the sequenced reads against GRCh38 human reference genome by Cell Ranger (version 

3.1.0, 10x genomics). To remove potential ambient RNAs, we used the remove-background function 

in CellBender 30, which removes ambient RNA contamination and random barcode swapping from the 

raw UMI-based scRNA-seq data. Quality of cells were further assessed by the following criteria: 1) 

The number of sequenced genes is 200 to 6,000; 2) The total number of UMI per cells is greater than 

1,000; 3) The percentage of mitochondrial RNA is less than 15% per cell. 

Data integration, cell clustering and dimension reduction were performed by Seurat (version 3)31. First, 

we identified 2,000 highly variable genes (HVGs) which were used for the following analysis using 

FindVariableFeatures function. Next, we integrated different samples by IntegrateData function, 

which eliminates technical or batch effect by canonical correlation analysis (CCA). Using those HVGs, 

we calculate a PCA matrix with the top 50 components by RunPCA function. The cells were then 

clustered by FindClusters function after building nearest neighbor graph using FindNeighbors function. 

The cluster-specific marker genes were identified by FindMarkers function using MAST algorithm. 

The clustered cells were then projected into a two-dimension space for visualization by a non-linear 

dimensional reduction method RunUMAP in Seurat package.  

Integrated analysis of peripheral myeloid, NK and T cells 

For cells in PBMCs, we integrated the myeloid compartment including mDC and monocytes, or NK 

and T cells using the similar aforementioned procedure. We re-clustered the myeloid or NK and T 

cells using the top 20 dimensions of PCA with default parameters. To obtain high resolution cell 

clusters for each subset, we set the parameter resolution to 1.2. The cell clusters were annotated by 

canonical markers. 

Integrated analysis of myeloid, NK and T cells from PBMC and BALF 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.08.15.20175638doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.15.20175638


Myeloid or NK and T cells from PBMC and BALF were integrated separately. For myeloid cells, we 

extracted macrophage and mDC cells in BALF, and monocyte and mDC in PBMC from the 

corresponding raw count matrix. The extracted cells were integrated using CCA in Seurat (version 3) 

as mentioned above. For clustering, the resolution parameter was set to 0.6. Similarly, we extracted 

NK and T cells in BALF and in PBMC from the corresponding raw count matrix. The extracted cells 

were integrated using CCA in Seurat (version 3) as mentioned above. For clustering, the resolution 

parameter was set to 1.5.  

Analysis of differentially expressed genes 

FindMarkers function in Seurat (version 3) with MAST algorithm was used to analyze differentially 

expressed genes (DEGs). For each pairwise comparison, we run FindMarkers function with parameters 

of test.use='MAST'. The overlap of differentiated expressed genes among different comparisons were 

shown by venn diagram. Genes were defined as significant up regulated if average natural logarithm  

fold change > 0.25 and adjusted P < 0.01. The genes with natural logarithm  fold change < -0.25 and 

adjusted P < 0.01 were considered significantly down regulated. The genes shown on the heatmap 

having natural logarithm fold change < -0.41 or >0.41 and adjusted P < 0.01. 

Gene ontology annotation 

ClusterProfiler 32 in R was used to perform GO term enrichment analysis for the significantly up-

regulated and down-regulated genes. Only GO term of Biological Process (BP) was displayed. 

Calculation of composite score of MHC class II molecules and calprotectin proteins 

Composite signature scores of MHC class II molecules and calprotectin proteins of each peripheral 

CD14+ monocytes were calculated using “AddModuleScore” function implemented in the Seurat 

package. MHC class II score was calculated using the following genes, i.e., HLA-DMA, HLA-DMB, 

HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, and HLA-DRB5. 

Calprotectin protein score was calculated using genes including S100A1, S100A2, S100A3, S100A4, 

S100A5, S100A6, S100A7, S100A7A, S100A7L2, S100A7P1, S100A7P2, S100A8, S100A9, S100A10, 

S100A11, S100A12, S100A13, S100A14, S100A15A, S100A16, S100B, S100G, S100P, and S100Z. The 
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correlations between MDSC-like scores (“Calprotectin protein score” minus “MHC class II score”) 

and plasma IL6, CRP levels, and the blood neutrophil / CD3 / CD4 / CD8 cell counts, were calculated 

using GraphPad Prism 8.4.2. Lines were fitted using the simple linear regression method. 

Pseudotime trajectory analysis 

Trajectories analysis was performed using slingshot 33 for monocyte-macrophages and T cells 

separately. For T cells in PBMC, naive CD4 and CD8 T cells were set as the start point for CD4+ T 

cells and CD8+ T differentiation trajectory, respectively. For integrated analysis of monocyte-

macrophages in PBMC and BALF, we deduced the cell trajectory for each individual using the 

peripheral monocytes as the start point. 

Single-cell TCR analysis 

The amino acid and nucleotide sequence of TCR chains were assembled and annotated by cellranger 

vdj function in CellRanger (version 3.1.0). Only cells with paired TCRα and TCRβ chains were 

included in clonotype analysis. Cells sharing the same TCRα- and TCRβ-CDR3 amino acid sequences 

were assigned to the same TCR clonotype. We assessed the TCR expansion, TCR transition among 

cell types and TCR migration between PBMC and BALF using R package STARTRAC (version 0.1.0) 
34. TCR migration between PBMC and BALF were shown using circos software 35. 

Statistics 

The Student’s t-test (t.test in R, two-sided, unadjusted for multiple comparisons) was used for 

pairwise comparisons of the cell proportions between different groups. Statistical difference of TCR 

expansion index and migration index, between mild and severe disease group, were calculated using 

t.test in R. Statistical difference of cytokines level between BALF and Blood in Figure 3G were 

calculated using two-sided wilcox.test in R. 
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Table 1. Clinical data of the enrolled COVID-19 patients and healthy controls examined by scRNA-seq 

 

Sample NO. S1 S2 S3 S4 S5 S6 S7 S8 M1 M2 M3 M4 M5 H1 H2 H3

Severity severe severe severe severe severe severe severe severe mild mild mild mild mild HC HC HC

Age 73 46 67 65 62 57 63 66 35 36 42 49 32 66 36 31

Gender Male Male Male Female Male Female Male Male Male Male Male Female Female Female Female Male

Symptom onset day 2020/1/20 2020/1/21 2020/1/17 2020/1/4 2020/1/11 2020/1/21 2020/1/8 2020/1/3 2020/1/9 2020/1/9 2020/1/18 2020/1/22 2020/1/21

First symptom Fever Fever/Cough Fever/diarrhea Fever/Cough Fever/Cough Cough Fever/Cough Fever Cough Cough Fever/Cough Fever/Cough Fever

Hospitalization date 2020/1/22 2020/1/22 2020/1/22 2020/1/20 2020/1/15 2020/1/23 2020/1/15 2020/1/11 2020/1/15 2020/1/16 2020/1/21 2020/1/23 2020/1/23

Chronic basic 

disease none none Bronchitis diabetes none none COPD hyperpression none none None None

CoV-RNA + + + + + + + + + + - - - + - +

Influenza A virus - - - - - - - - - - - - - - - -

Influenza B virus - - - - - - - - - - - - - - - -

Respiratory 

syncytial virus - - - - - - - - - - - - - - - -

Adenovirus - - - - - - - - - - - - - - - -

CT finding

Bilateral 

pneumonia

Unilateral 

pneumonia

Bilateral 

pneumonia

Unilateral 

pneumonia

Bilateral 

pneumonia

Bilateral 

pneumonia

Bilateral 

pneumonia

Bilaeral 

pneumonia

Bilateral 

pneumonia

Bilateral 

pneumonia

Bilaeral 

pneumonia

Bilaeral 

pneumonia

Unilateral 

pneumonia

PBMC

sampling date 2020/2/2 2020/2/2 2020/1/28 2020/1/28 2020/1/30 2020/1/29 2020/1/29 2020/1/31 2020/1/29 2020/1/22 2020/1/23 2020/1/28 2020/1/28

Outcome-date Cure/2020/2/20 Cure/2020/3/8 Cure/2020/3/20 Cure/2020/3/9 Cure/2020/2/27 Cure/2020/3/7 Dead/2020/2/16 Dead/2020/2/16 Cure/2020/2/3 Cure/2020/1/27 Cure/2020/2/3 Cure/2020/2/8 Cure/2020/2/9

IL6 (pg/ml) 35.54 17.99 36.14 14.61 69.18 22.87 225.3 353.2 4.43 1.92 18.33 35.2 4.59

CRP (pg/ml) 6.94 50.63 112.78 2.4 88.88 7.86 33.11 189.23 6.75 1.31 12.75 60.01 8.63

WBC(109/L) 5.75 12.42 11.47 9.59 7.13 32.04 11.47 7.24 5.38 4.13 5.67 4.55

NEUT(109/L) 5.49 11.5 10.52 8.62 5.45 29.19 10.11 5.56 2.64 2.58 3.77 3.02

LYMPH(109/L) 0.16 0.33 0.46 0.59 0.82 1.45 0.88 0.78 2.14 1.09 1.19 1.09

MONO(109/L) 0.1 0.58 0.47 0.37 0.79 1.39 0.45 0.18 0.44 0.46 0.59 0.31

NEUT/LYMPH 34.3 34.8 22.9 14.6 6.6 20.1 11.5 7.1 1.2 2.4 3.2 2.8

CD3 (cells/ul) 66 92 141 201 427 744 268 629 1782 527 1258 1261

CD4 (cells/ul) 59 58 93 149 354 563 181 495 1141 301 684 671

CD8 (cells/ul) 5 30 37 45 66 166 80 128 566 204 420 565
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Figure 1 Single-cell analysis of peripheral blood mononuclear cells from patients with COVID-19  
(A) The carton outlines the study design. PBMC and BALF cells from COVID-19 patients and healthy controls were 
collected for scRNA-seq characterization using the 10x Genomics platform. Number of samples, analyzed cells, and 
samples with PBMC and BALF cells simultaneously collected from the same patient are indicated.  
(B) The UMAP projection of the combined PBMCs scRNA-seq dataset, identifies 9 major cell types. PC stands for 
plasma cells. 
(C) The specific markers for identifying each immune cell types in (B) are indicated. 
(D) Density plots shows the UMAP projection of PBMCs from COVID-19 patients and controls.  
(E) The bar plot shows the proportions of each cell types in PBMCs from individual subjects. The cell numbers and 
ratios of monocyte / T-cells are listed to the right-side. 
(F) Comparisons of percentages of each cell types in PBMCs (Cycling cells were re-clustered into T and PC subsets) 
between the two COVID-19 groups and controls (two-sided Student’s t-test, *p＜0.05, **p＜0.01, ***p＜0.001. 

 
Figure 2 Single-cell analysis of peripheral myeloid cell compartments in patients with COVID-19 
(A) UMAP plot of the five types of myeloid cells in PBMCs. 
(B) Density plots show the UMAP projection of peripheral myeloid cells from COVID-19 patients and controls.  
(C) Comparisons of percentages of each peripheral myeloid cell types between the two COVID-19 groups and 
controls (two-sided Student’s t-test, *p＜0.05, **p＜0.01, ***p＜0.001). 
(D) Enrichment of GO biological process (BP) terms for up-regulated genes (left) and down-regulated genes (right) 
in blood CD14+ monocyte comparisons between mild and HC (M vs H), severe and HC (S vs H), and severe and 
mild groups (S vs M). (representative terms are shown, adjusted p < 0.01 as indicated by the colored bar). 
(E) The heatmaps show the selected differentially expressed genes and their associated GO terms as indicated in (D). 
(Natural logarithm fold change > 0.41 or < -0.41, adjusted p < 0.01). 
(F) Density plots show the composite MHC class II signature scores and calprotectin signature scores of peripheral 
CD14+ monocytes in 2D maps. The horizontal and vertical lines separating the four quadrants represent the median 
scores of all CD14+ monocytes. The percentages of cells in each quadrant are indicated. 
(G) The Pearson correlation of “MDSC-like signature score” and plasma CRP, IL-6 levels, blood neutrophil, CD3+, 
CD4+ and CD8+ T cell counts. 
(H) Left panel shows the representative flow cytometric data of HLA-DR expression on CD14+ and CD14- PBMCs. 
Right plot shows the summarized data from more subjects (two-sided Student’s t-test). 

 
Figure 3 Abnormally activated lung monocyte-macrophages in severe COVID-19 
(A) The myeloid cell data from 2 mild and 5 severe COVID-19 patients who had paired PBMC and BALF samples, 
were integrated and presented on the UMAP. 
(B) The expression of monocyte-macrophage markers FCN1, SPP1 and FABP4 were projected to UMAP from (A). 
(C) Differentiation trajectory of the blood monocytes and BALF monocyte-macrophages from two representative 
COVID-19 patients, analyzed independently. 
(D) Venn diagram shows the number of up-regulated and down-regulated DEGs in monocyte-macrophages 
comparisons as indicated. BM: BALF of mild cases; BS: BALF of severe cases; PM: Peripheral cells of mild cases; 
PS: Peripheral cells of severe cases. (Natural logarithm fold change > 0.41 or < -0.41, adjust p < 0.01) 
(E) Enrichment of GO biological process (BP) terms for up-regulated genes (left) and down-regulated genes (right) 
in monocyte-macrophage comparisons as indicated. (Selected terms are shown, adjusted p value is indicated by the 
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colored bar). 
(F) Heatmaps show the expression of selected interferon, cytokine and chemokine genes in paired blood and BALF 
monocyte-macrophages derived from the same patient. Stars indicate that the genes are differentially expressed in 
BALF monocyte-macrophages between mild and severe COVID-19. Purple and green stars show the gene expression 
are significantly upregulated in severe COVID-19 and mild COVID-19 group respectively (MAST; p < 0.01).  
(G) The levels of selected cytokines and chemokines in paired BALF and plasma samples were measured by CBA 
(two-sided Wilcoxon test between BALF and PBMC of severe patients). 

 
Figure 4 Single-cell analysis of peripheral NK and T cell compartments in patients with COVID-19 
(A) UMAP plot of the 18 subsets of NK and T cells in PBMCs. 
(B) Pseudo-time differentiation trajectory of the peripheral CD4+ and CD8+ T cells subsets performed by slingshot. 
The bar plots in the corner shows the percentages of clonally expanded cells in each T cell subsets.  
(C) Density plots show the UMAP projection of peripheral NK and T cells from COVID-19 patients and controls. 
(D) Comparisons of percentages of each peripheral NK and T cell types between the two COVID-19 groups and 
controls (two-sided Student’s t-test, *p＜0.05, **p＜0.01, ***p＜0.001). 
(E) Clonally expanded T cells from COVID-19 patients and controls are projected into UMAP from (A). 
(F) Clonal expansion indexes of T cell subsets from COVID-19 patients and controls, are separately displayed. 
(G) T cell state transition status among any two clusters is inferred by their shared TCR clonotypes. Each T cell 
cluster is represented by a unique color. The numbers above the bar indicate the percentages of cells sharing TCRs 
in those two clusters. 

 
Figure 5 Tracking T cells across peripheral blood and BALFs in patients with COVID-19 
(A) The T cell data from 2 mild and 5 severe COVID-19 patients who had paired PBMC and BALF samples, were 
integrated and presented on the UMAP. 
(B) The percentages of each T cell subset in paired BALF (B) and PBMC (P) of the same patient are compared. 
(C) Heatmaps display the selected DEGs in NK, CD4 Tm and CD8 Tm cells in BALF (B) or PBMC (P) from the 
mild (M) or severe (S) COVID-19 patients. (Natural logarithm fold change > 0.41,, adjust p < 0.01). 
(D) The migration index in each T cell subset across paired PBMC and BALF from seven patients were shown 
(STARTRAC-migr indices). 
(E) TCR clonotypes were classified into five different types as indicated by different color bars (singleton indicates 
non-expanded TCR clonotype, multiplet indicates expanded TCR clonotype, dual-clone indicates those clonotype 
shared in paired PBMC and BALF samples). The bar plots show the percentages of different types of TCR clonotypes 
in different T cell subsets from paired PBMC and BALF samples. 
(F) The circus plot shows the degree of TCR clonotype sharing across different T cell subsets in PBMC and BALF 
from mild and severe COVID-19 groups. 
(G) Heatmap shows the selected DEGs in each T cell clones derived from the top 13 TCR clonotypes shared across 
PBMC versus BALF compartments. (Natural logarithm fold change > 0.41, adjust p < 0.01).  
(H) The V, J genes of the TCR α and β chains of the top 13 dual clonotypes are listed, the amino acid sequences of 
their CDR3 are shown. 
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